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Talk outline


Graph Metric Spaces!


1.  Quick	review	about	graphs	
	


2.  Applications	where	comparing	graphs	is	important	


3.  Graph	distances	


4.  Why	a	metric?	


5.  Scalable	alignment	algorithms	
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Graphs, their comparison, and applications


Graph Metric Spaces!


Protein	1	


Protein	2	
Protein	3	


interaction	


Protein	i	and	j	interact	transiently	
,	or	in	a	stable	form	


(i, j) 2 E ,


Unlabeled,	undirected,	non-weighted	


G = (V, E) V = [n]
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Graphs, their comparison, and applications


Graph Metric Spaces! Boston college 2/51	


Labeled,	undirected,	non-weighted	


V ⇢ Possible	amino	acid	sequences	G = (V, E)


Protein	1	[R	G	N	I	L	….]	


Protein	2	[E	R	H	D	…]	
Protein	3	


6=
Protein	1	[E	G	H	I	L	….]	


Protein	2	[A	R	N	D	…]	
Protein	3	







Graphs, their comparison, and applications


Graph Metric Spaces!


Protein	1	[E	G	H	I	L	….]	


Protein	2	[A	R	N	D	…]	
Protein	3	
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Graphs, their comparison, and applications


Graph Metric Spaces!


Protein	1	


Protein	j 
Protein	i !i,j


How	confident	are	we	that	i	and j	will	interact?	


G = (V, E ,W) V = [n]
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Unlabeled,	undirected,	weighted	
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Unlabeled,	undirected,	weighted	







Graphs, their comparison, and applications


Graph Metric Spaces!


activation	


inhibition	
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Unlabeled,	directed,	weighted	


(i, j) 2 E 6) (j, i) 2 E


G = (V, E ,W) V = [n]







Graphs, their comparison, and applications


Graph Metric Spaces!


activation	


inhibition	
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Unlabeled,	directed,	weighted	


(i, j) 2 E 6) (j, i) 2 E


G = (V, E ,W) V = [n]







Graphs, their comparison, and applications


Graph Metric Spaces! Boston college 5/51	


All	of	these	types	of	graphs,	and	other	combinations,	


can	be	described	by	an	adjacency	matrix.	


	


	


	


	


•  Non-weighted	graphs	have	0/1	entries	in	A 
•  Undirected	graphs	have	symmetric	A 
•  																iff	node	i	and	j	are	not	connected	


 


A =


2


4
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


3


5


ai,j 6= 0
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Talk outline


Graph Metric Spaces!


1.  Quick	review	about	graphs	
	


2.  Applications	where	comparing	graphs	is	important	


3.  Graph	distances	


4.  Why	a	metric?	


5.  Scalable	alignment	algorithms	
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Graphs, their comparison, and applications


Graph Metric Spaces!


Graph	comparison	methods	


	


	


	


•  Alignment-based	


•  Alignment-free	


	 		


	


(although	this	distinction	might	not	always	be	clear)	
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Graphs, their comparison, and applications


Graph Metric Spaces!


Example	of	alignment-based	method	in	biology:	
Alignment	of	protein-protein	interaction	(PPI)	networks	


Network	1	 Network	2	


a
b


i
j


[A	R	N	D	…]	


We	want	to	maximize	the	#	of																			such	that	


									are	evolutionarily	related,	and										are	too,	and	


the	interaction	between											and										is	the	same.		


(a, b, i, j)
(a, i) (b, j)


(a, b) (i, j)(a, b) (i, j)
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(a, i) (b, j)







Graphs, their comparison, and applications


Graph Metric Spaces!
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(a, i) (b, j)







Graphs, their comparison, and applications


Graph Metric Spaces!


Network	1	 Network	2	


a
b


i
j


[A	R	N	D	…]	


•  Do	we	give	more	importance	to	the	labels	
(matching	nodes	with	similar	sequences)	or	to	the	
topology?	


•  How	do	we	get	a	score	from	the	alignment	between	


the	two	graphs?	
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Graphs, their comparison, and applications


Graph Metric Spaces!
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Graphs, their comparison, and applications


Graph Metric Spaces!


The	alignment	of	PPI	networks	(or	networks	in	general)	


allows	us	to	


	


1.  	Transfer	knowledge	from	one	graph	into	another	


	


	


	


	
p1 p2 p3 p4 p5


p1 p2 p3 p4 p5p1 p2 p3 p4 p5


p1 p2 p3 p4 p5p1 p2 p3 p4 p5 p01 p02 p03 p04 p05


p01 p02 p03 p04 p05


p01 p02 p03 p04 p05p
0
1 p02 p03 p04 p05


p01 p02 p03 p04 p05


known	function	for	p1 inferred	function	for	p’5 
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Graphs, their comparison, and applications


Graph Metric Spaces!


The	alignment	of	PPI	networks	(or	networks	in	general)	


allows	us	to	


	


2.  Get	a	score	of	how	similar,	or		dissimilar,	two	


graphs	are	


	


3.  Determine	how	well	is	a	sub	network	of	proteins	
found	in	a	large	network	of	proteins?	
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Graphs, their comparison, and applications


Graph Metric Spaces!


The	alignment	of	PPI	networks	(or	networks	in	general)	


allows	us	to	


	


2.  Get	a	score	of	how	similar,	or		dissimilar,	two	


graphs	are	


	


3.  Determine	how	well	a	sub	network	of	proteins	can	
be	found	in	a	large	network	of	proteins?	
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Graphs, their comparison, and applications


Graph Metric Spaces!


Alignment-free	methods	facilitate	comparing	graphs	


from	different	domains.	


	


We	can	compare	networks	from	different	domains	


using,	e.g.,	degree	distribution,	together	with	a	
method	to	compare	distributions.	


	


For	example,	several	networks	from	different	domains	


are	similar	in	the	sense	that	they	have	heavy	tail	


degree	distributions:	e.g.	social	networks	[e.g.	Ahn	et	


al.	2007],	WWW	[e.g.	Crovella	et	al.	1998],	PPI	[e.g.	


Hormozdiari	et	al.	2007].	
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Graphs, their comparison, and applications


Graph Metric Spaces!


There	are	many	other	kinds	of	networks	that,	if	


compared,	bring	more	knowledge	than	the	sum	of	


their	parts.	
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Graphs, their comparison, and applications


Graph Metric Spaces!


There	are	many	other	kinds	of	networks	that,	if	


compared,	bring	more	knowledge	than	the	sum	of	


their	parts.	


	


In	biology	
	


•  PPI	networks,	e.g.	[Rohit	et	al.	2008]	


•  Gene	regulatory	networks	


•  Metabolic	networks,	e.g.		[Pinter	et	al.	2005]	


•  Signaling	networks			


•  Neural	networks	(of	the	real	kind),	


	e.g.	[Milano	et	al.	2017]	
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Graphs, their comparison, and applications


Graph Metric Spaces!


In	computer	vision,	comparing	graphs,	known	usually	as	


graph	matching,	is	useful	in	several	tasks.	
	


1.   Locate	objects	from	features,	


e.g.	[Gold	&	Rangarajan	96]	


	


2.   Transfer	knowledge,	e.g.	
[Zhang	et	al.	2010]	


3.   Find	matches	in	database,	
e.g.	[Kisku	et	al.	2007]	
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Graphs, their comparison, and applications


Graph Metric Spaces!


Comparing	social	networks	is	very	important.	


	


E.g.	it	allows	us	to	uncover	identities,	or	communities	


[Kong	et	al.	2013]	


	


	 John	 starlord	


Facebook	 Twitter	
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Graphs, their comparison, and applications


Graph Metric Spaces!


In	chemistry,	compounds	are	represented	by	graphs:	


vertices	are	atoms	and	edges	are	chemical	bounds.	


Both	atoms	and	edges	can	be	labeled	by	atom	type	


and	bound	type.	


	


In	chemistry,	comparing	graphs	is	important	to	


answer	the	following	questions	[Akutsu	et	al.	2013]:	
	


•  Are	two	chemicals	identical?	


•  Is	one	compound	part	of	another	compound?	


•  What	is	the	maximum	common	part	of	two	


chemicals?	
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atom	


atom	


chemical	


bound	







Graphs, their comparison, and applications


Graph Metric Spaces!


In	general,	most	of	these	tasks	are	hard	to	complete	


exactly/optimally.	However,	domain	knowledge	can	


make	tasks	tractable.		


	


For	example,	in	chemistry,	most	graphs	have	


maximum	degree	8,	which	simplifies	many	of	these	


tasks.	
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Graphs, their comparison, and applications


Graph Metric Spaces!


Alignment-based	methods:	usually	chosen	for	tasks	


such	as	


•  Transfer	knowledge	


•  Sub	graph	matching	


	


Alignment-free	methods:	more	flexible	in	terms	of	


what	kinds	of	graphs	can	be	compared	


	


Is	there	a	family	of	methods	that	encompass	both	


alignment-free	and	alignment-based	methods?	


	


(stay	tuned	for	Part	II)	
Boston college 18/51	







Graphs, their comparison, and applications


Graph Metric Spaces!
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(stay	tuned	for	Part	II)	
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Talk outline


Graph Metric Spaces!


1.  Quick	review	about	graphs	
	


2.  Applications	where	comparing	graphs	is	important	


3.  Graph	distances	


4.  Why	a	metric?	


5.  Scalable	alignment	algorithms	
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Notions to compare graphs


Graph Metric Spaces!


Exact	graph	comparisons	(output	a	“yes”	or	“no”)	
	


	


•  Graph	isomorphism:	given	two	graphs	


	is	there	a	permutation																											such	that	


	


	


	


(this	problem	belongs	to	NP	but	it	is	not	known	if	it	


belongs	to	P	or	NP-complete)	


G1 = ([n], E1),G2 = ([n], E2)
P : [n] 7! [n]


(i, j) 2 E1 i↵ (P (i), P (j)) 2 E2
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Notions to compare graphs


Graph Metric Spaces!


Exact	graph	comparisons	(output	a	“yes”	or	“no”)	
	
	
•  Sub	graph	isomorphism:	given	two	graphs	


is	there	a	sub-graph	of						,	i.e.																													s.t.	


																																																						,	s.t.																		?		


	


	


	


G1 G0 = (V0, E0)
G0


⇠= G2
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G1 = ([n], E1),G2 = ([m], E2), n � m


V0 ✓ [n], E0 ✓ E1 \ V0 ⇥ V0







Notions to compare graphs


Graph Metric Spaces!


Inexact	graph	comparison	(output	a	closeness	score):	
	


•  Matching:	1-to-1;	1-to-many;	many-to-many;	


•  Score:	edge	overlap;	spectrum	overlap;	etc.	
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Inexact graph comparisons


Graph Metric Spaces!


•  Chemical	distance	(alignment-based)	


Let								and								be	the	adjacency	matrices	of	two	


graphs	of	equal	size.	


	


	


•  Chartramd-Kubicki-Schultz	dist.	(alignment-based)	


	


Same	as	Chemical	distance	but	with							and								equal	


to	the	hop	distance	between	each	two	nodes	in	each	


of	the	two	graphs.	


A1 A2


A1 A2
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min
P2⇧


kA1P � PA2kF = min
P2⇧


|P (E1)�E2|
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P2⇧
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Inexact graph comparisons


Graph Metric Spaces!


•  Edit	distance	(alignment-free)	


Given	two	graphs,	not	necessarily	of	equal	size,	and	a	


set	of	operations,	e.g.							


	


	


	


,	and	a	cost	function																				,		we	want	to	find	the	


cheapest	sequence	of	operations	that	take						into						.		


	


	


	


For	certain				and					this	reduces	to	the	Chemical	dist.	


c : O 7! R


O ={vertex/edge/label


insertion/deletion/substitution}


G1 G2


min
{ei}k


i=12Ok:G2=(ek�···�e1)�G1


kX


i=1


c(ek)


c O
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Inexact graph comparisons


Graph Metric Spaces!


•  Spectral	distance	(alignment-free)	


Given	two	graphs	of	equal	size	with	adjacency	


matrices							and							,	let																													and		


																												be	the	spectrum	of							and							.		


		


	
	


•  Zelinks	distance,	common	sub	graph	distance	
(alignment-based)	is:		


	


A1 A2 µ1 � · · · � µn
⌫1 � · · · � ⌫n A1 A2


nX


i=1


|µi � ⌫i|


max{|V1|, |V2|}� n(G1,G2)


Boston college 24/51	


n(G1,G2) = max |S1| s.t. S1 ✓ V1, S2 ✓ V2,


|S1| = |S2|,G1(S1) ⇠= G2(S2)
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Inexact graph comparisons


Graph Metric Spaces!


•  Bunke-Shearer	metric	(alignment-based)	


	


Using	the	same	setup	as	the	common	sub	graph	


distance,	this	is		


	


	


•  Common	super	graph	distance	(alignment-based)	


	


where	


1� n(G1,G2)


max{|V1|, |V2|}


N(G1,G2) = min |V| s.t. G = (V, E), S1, S2 ✓ V,
G(S1) ⇠= G1,G(S2) ⇠= G2


N(G1,G2)�min{|V1|, |V2|}
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Inexact graph comparisons


Graph Metric Spaces!


•  Edge	distance	


•  Fernández-Valiente	metric	


If						and								are	the	sizes	of	the	maximum	common	


sub	graph	and	minimum	common	super	graph,	then	


														is	a	metric.	


|E1|+ |E2|� 2E(G1,G2) + ||V1|� |V2||


n m


m� n
Boston college 26/51	


E(G1,G2) = max |E| s.t. G = (V, E), S1 ✓ V1, S2 ✓ V2,


|S1| = |S2|,G ⇠= G1(S1) ⇠= G2(S2)
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Talk outline
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Metrics


Graph Metric Spaces!


All	of	the	notions	of	comparing	graphs	just	mentioned	


are	metrics	(if	we	consider	an	appropriate	quotient	


space,	where	the	equivalence	classes	are	the	graphs	


for	which	the	respective	distance	is	zero).	
	


Metric:																																		such	that		
	


	


	


	


	
	


The	pair												is	called	a	metric	space.	


d : ⌦⇥ ⌦ 7! R 8A,B,C 2 ⌦
d(A,B) � 0 (non-negativity)


d(A,B) = 0 i↵ A = B (identity of indescernibles)


d(A,B) = d(B,A) (symmetry)


d(A,B) + d(B,C) � d(A,C) (triangle inequality)


(⌦, d)
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Metric:																																		such	that		
	


	


	


	


	
	


The	pair												is	called	a	metric	space.	


d : ⌦⇥ ⌦ 7! R 8A,B,C 2 ⌦
d(A,B) � 0 (non-negativity)


d(A,B) = 0 i↵ A = B (identity of indescernibles)


d(A,B) = d(B,A) (symmetry)


d(A,B) + d(B,C) � d(A,C) (triangle inequality)


(⌦, d)


Boston college 
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Pseudo-metrics and quasi-metrics


Graph Metric Spaces!


A	pseudo-metric	relaxes	the	condition	
	


to	
	


Given	a	pseudo-metric,	we	can	obtain	a	metric	if	we	


define	the	equivalence	relation		


and	define	the	metric																																																				


such	that																																										.	
	


A	quasi-metric	removes	the	symmetry	condition	from	


the	definition	of	metrics.	From	a	quasi-metric					we	


can	obtain	a	metric	as		


d(A,B) � 0 (non-negativity)


d(A,B) = 0 i↵ A = B (identity of indescernibles)


d(A,B) = d(B,A) (symmetry)


d(A,B) + d(B,C) � d(A,C) (triangle inequality)


d(A,A) = 0


A ⇠ B i↵ d(A,B) = 0
d̃ : (⌦\ ⇠)⇥ (⌦\ ⇠) 7! R


d
d̃(A,B) = d(A,B) + d(B,A)


Boston college 


d̃([A], [B]) = d(A,B)
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Why a metric?


Graph Metric Spaces!


Metrics	allow	fast	algorithms	for	several	tasks	


	


•  Diameter	estimation:	Given	a	set	S	with	n	
elements,	we	want	to	find	


	


[Indyk	1999]	1/2-approximation	


algorithm	with												expected	


run	time.	Idea:	if	there	exists	two	
points	with	dist.	≥	Δ		then	there	
are	at	least	n – 1 pairs	of	points	with	dist.	≥	Δ /2.	
	


Hence,	sampling											pairs	is	enough	on	average.


max
x,y2S


d(x, y)


O(n)


Boston college 


O(n)


� �
1


2


i


< �/2
< �/2
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Why a metric?


Graph Metric Spaces!


Metrics	allow	fast	algorithms	for	several	tasks	


	


•  Nearest	neighbor	search:	For	a	set	S	with	n	elements	


and	query	point	q drawn	randomly	from	V in							
[Kenneth	&	Clarkson	1999]	propose	a	data	structure	


with	the	following	expected	run	times 
•  Preprocessing	:																																											where				is	


the	ratio	of	the	maximum	to	minimum	distance	


between	points	


•  Query:		


•  Space:		


Rk


O(n)(log n)O(log log �) �


O((log n)O(1)+2 log log �)


O(n(log n)O(1)+2 log log �)


Boston college 
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Metrics	allow	fast	algorithms	for	several	tasks	


	


•  Fast	NN	algorithms	can	be	used	to	derive	fast	outlier	
detection	algorithms.	E.g.	[Angiulli	&	Pizzuti	2002]	
	do	this	with	the	following	definition	of	outlier	p 


	
weightk(p) =


X


s2k-NN(p)


d(s, p)


outlier = large wk


Boston college 
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Why a metric?


Graph Metric Spaces!


Metrics	allow	fast	algorithms	for	several	tasks	


	


•  Clustering	(k-means	clustering):	Given	a	set	P	of	
size	n,	find	


In	arbitrary	metric	spaces	this	problem	is	NP-hard.	


Approximation	algorithms	are	possible.	E.g.	in							


[Badiou	et	al.	2002/2003]	get	an	(1 + ε)-approx.	in	
time		


Rd


O(dO(1)n(logO(k) n)2(
k
✏ )


O(1)


)


min
C✓P :|C|=k


nX


p2P


min
c2C


d(p, c)
o


Boston college 
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Why a metric?


Graph Metric Spaces!


Metrics	allow	fast	algorithms	for	several	tasks	


	


•  Clustering	(k-means	clustering):	Given	a	set	P	of	
size	n,	find	


Arbitrary	metrics:		[Ackermann,	Blomer	&	Sohler	


2008]:	If	the	1-median	can	be	solved	in	linear	time	


then	there	exists	an		(1 + ε)-approximation	algorithm	


with	run	time	


	


min
C✓P :|C|=k


nX


p2P


min
c2C


d(p, c)
o


O(n2(
k
✏ )


O(1)


)


Boston college 
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Metrics	allow	fast	algorithms	for	several	tasks	


	


•  Clustering	(k-means	clustering):	Given	a	set	P	of	


size	n,	find	


Arbitrary	dissimilarity:	There	are	a	few	results	for	the	


Kullback	Leibler	divergence	and	Bergman	divergence.	


But,	in	general,	results	are	rare	for	non-metrics.	


	


min
C✓P :|C|=k


nX


p2P


min
c2C


d(p, c)
o


Boston college 







Talk outline


Graph Metric Spaces!


1.  Quick	review	about	graphs	
	


2.  Applications	where	comparing	graphs	is	important	


3.  Graph	distances	


4.  Why	a	metric?	


5.  Scalable	alignment	algorithms	


Boston college 
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Scalable algorithms for graph aligment


Graph Metric Spaces!


Many	of	the	metrics	just	mentioned	cannot	be	


computed	easily.	We	now	go	over	a	few	efficient	


algorithms	that	try	to	find	globally-optimal	alignment	


between	two	graphs.	


	


Any	alignment	algorithms	can	be	transformed	into	


distance	functions.	For	example,	given	an	alignment			


between	two	graphs,	with	adjacency	matrices	


we	can	compute																																	.	


	


These	distances	often	do	not	result	in	metrics.	


(Stay	tuned	for	Part	II)	


kA1P � PA2kF


kA1P � PA2kF
A1, A2


Boston college 
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Quadratic formulation
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V1 V2


i i0 j j0i i0 j j0


i i0 j j0


i i0 j j0


Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square


Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square


L


L = possible node matches


G1 G2
Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square through L,G1 and G2


max


8
<


:↵
X


(i,i0)2L


wi,i0xi,i0 +
X


(i,i0),(j,j0)2L


xi,i0xj,j0Si,i0,j,j0


9
=


;


subject to
X


i0:(i,i0)2L


xi,i0  1, 8i;
X


i:(i,i0)2L


xi,i0  1, 8i0;


xi,i0 2 {0, 1}, 8(i, i0) 2 L
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Quadratic formulation


Graph Metric Spaces! Boston college 


V1 V2


i i0 j j0i i0 j j0


i i0 j j0
Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square


Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square


L


L = possible node matches


G1 G2
Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square through L,G1 and G2


If	L	is	the	complete	graph,	and	w = 0,	this	reduced	to		
maximum	common	sub	graph	distance,	which	is	NP-


hard,	even	NP-hard	to	approximate.	


	


Several	relaxations	of	this	IQP	lead	to	scalable	


algorithms	for	matching	two	graphs.	


i i0 j j0







Quadratic formulation: linear relaxation
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•  Linear	relaxation:	Replace	


by		


	


	
	


	


This	LP	relaxation	requires	a	final	rounding	scheme.	


max


8
<


:↵
X


(i,i0)2L


wi,i0xi,i0 +
X


(i,i0),(j,j0)2L


xi,i0xj,j0Si,i0,j,j0


9
=


;


subject to
X


i0:(i,i0)2L


xi,i0  1, 8i;
X


i:(i,i0)2L


xi,i0  1, 8i0;


xi,i0 2 {0, 1}, 8(i, i0) 2 L


max


8
<


:↵
X


(i,i0)2L


wi,i0xi,i0 +
X


(i,i0),(j,j0)2L


xi,i0xj,j0Si,i0,j,j0


9
=


;


subject to
X


i0:(i,i0)2L


xi,i0  1, 8i;
X


i:(i,i0)2L


xi,i0  1, 8i0;


xi,i0 2 {0, 1}, 8(i, i0) 2 Ls.t. (...) and


(...) +


X


(i,i0),(j,j0)2L


yi,i0,j,j0Si,i0,j,j0


yi,i0,j,j0 = yj,j0,i,i0 , yi,i0,j,j0  xi,i0 , xi,i0 2 [0, 1], 8(i, i0), (j, j0) 2 L


(...) + s.t. (...) and







Quadratic formulation: Klau’s algorithm & Natalie 2.0
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•  [Klau	2009]	First,	move	the	symmetry	constraint	in	


the	linear	relaxation	into	the	objective	as	


	


	and	add	the	constraint	that		


	


For	any	U,	this	problem	upper	bounds	the	linear	


relaxation.	The	resulting	LP	has	the	form	of	a	


maximum	weight	matching,	hence	produces	0/1	sols.	


(...) +
X


(i,i0),(j,j0)2L


Ui,i0,j,j0(yi,i0,j,j0 � yj,j0,i,i0)


X


j:(j,j0)2L


yi,i0,j,j0  18j0,
X


j0:(j,j0)2L


yi,i0,j,j0  1, 8j, 8(i, i0) 2 L
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Quadratic formulation: Klau’s algorithm & Natalie 2.0


Graph Metric Spaces! Boston college 


	Second,	use	sub	gradient	descent	to	optimize	over	


	U.		This	algorithm	does	not	require	a	final	
	rounding	scheme.	


	Natalie	2.0	[El-Kebir	2015]	is	an	improvement	on	


	Klau’s	algorithm,		where	the	sub	gradient	descent	is	


	combined	with	a	dual	descent	step.	
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Quadratic formulation: Belief propagation [Bayati et al 09]


Graph Metric Spaces! Boston college 


Write	the	quadratic	problem	(w = 0	for	simplicity)	as	


	


	


	


	


	


	
	


Build	the	probability	distribution	


max
X


i,i0,j,j02⇤(L)


xi,i0,j,j0


subject to
X


i0:(i,i0)2L


xi,i0  1, 8i;
X


i:(i,i0)2L


xi,i0  1, 8i0;


xi,i0,j,j0 = xi,i0xj,j08i, i0, j, j0 2 ⇤(L),


xi,i0 2 {0, 1}, 8(i, i0) 2 L


⇤(L) = potential square in L


P({xi,i0}, {xi,i0,j,j0}) =
1


Z


⇣
e


�
2


P
i,i0,j,j02⇤(L))xi,i0,j,j0


⌘Y


i0


 
� X


i:(i,i0)2L


xi,i0  1
�


Y


i


 
� X


i0:(i,i0)2L


xi,i0  1
� Y


i,i0,j,j022⇤(L)


 
�
xi,i0,j,j0 = xi,i0xj,j0)
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Quadratic formulation: Belief propagation [Bayati et al 09]


42/51	Graph Metric Spaces! Boston college 


The	support	of																																									is	the	set	of	


feasible	solution	to	the	original	IQP.	


	


We	can	use	max-product	BP,	a	message-passing	


algorithm	over	the	factor-graph	associated	to	this	


distribution,	to	find	


	


		


	


With	a	rounding	scheme,	we	can	then	extract	an	


approximate	solution	to	the	original	problem		from	


the	maximizers	of	the	marginal	probabilities.	


P({xi,i0}, {xi,i0,j,j0})


argmaxP(xi,i0) or argmaxP(xi,i0,j,j0)
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3b 


Isorank [Singh et al. 2008]


43/51	Graph Metric Spaces! Boston college 


1 


2 
3 


4 


a 


b c 


d e 


G1 ⇥ G2 = (V1 ⇥ V2, {((i, j), (u, v)) : (i, u) 2 E1, (j, v) 2 E2})
Let	A	be	the	adjacency	matrix	of	the	product	graph	


G1 = (V1, E1) G2 = (V2, E2)


1a 


3d 


Isorank:	(1)	Find	R: R =A R and	(2)	
then	use							                	as	weights	
in	a	maximum	matching	problem	


to	match	nodes	of						and							. 


R 2 R|V1||V2|


G1 G2


deg(3b) = deg(3)⇥ deg(b)
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Isorank [Singh et al. 2008]
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Note	that	R = A R	corresponds	to	finding	the	
stationary	distribution	of	a	random	walk	on	


 
This	stationary	distribution	is		


	


The	equation	R = A R	can	be	generalized	to	include	
node-similarity	information	as	R = αAR	+	(1 – α)E,	
where	E	is	normalized	to	sum	to	1	and	α	is	in	[0, 1].	
	


We	can	solve	R = αAR	+	(1 – α)E	using	a	PageRank-
like	method.	A	match	then	can	be	produced	using	a	


maximum	weight	matching	with	R	as	weights. 


G1 ⇥ G2 = (V1 ⇥ V2, {((i, j), (u, v)) : (i, u) 2 E1, (j, v) 2 E2})


Ri,j =
deg(i)deg(j)


2|E1||E2|
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Sparse Isorank [Bayati et al 09]


Graph Metric Spaces! Boston college 


Let																																									be	as	in	the	original	IQP	for	


a	complete	L. Recall	that		
 
 
 
We	can	write	the	adjacency	matrix	of	the	product	


graph																as																									where			


 
 
Hence,	we	can	generalize	the	Isorank	to	sparse-


Isorank	as																																																								where	S,	
now,	can	be	sparse	and	allow	only	some	matches. 
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S S>, where DS = diag(rowsum(S))


A = D�1
S S>, where DS = diag(rowsum(S))


↵D�1
S S>R+ (1� ↵)E = R
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Sparse Isorank [Bayati et al 09]
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Start	with	the	Chemical	distance	definition.	Then	do,	


	


	


	


	


Theorem:	For	several	families	of	random	graphs,	with	


high	probability,	solving	(2)	gives	a	solution	to	(1).	


	


	


(2)	Can	be	approx.	solved	easily	using,	e.g.,	projected	


gradient	descent.	When	(2)	does	not	return	a	


permutation,	we	use	rounding	methods.	


(1) arg min
P2⇧


kAP � PBk2F = arg min
P2⇧


kAPk2F + kPBk2F � 2hAP,PBi


= argmax
P2⇧


hAP,PBi ! (2) arg max
P2Doubly stochastic


hAP,PBi
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Weisfeiler-Lehman algorithm [Weisfeiler & Lehman 1968]
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This	alg.	can,	sometimes,	determine	if	two	graphs	are	


non-isomorphic:	


1.  Color	the	two	graphs	with	nodes	of	equal	color	
2.  For	each	graph	do,	for	each	node	I 
 
3.  Once	colors	are	stable,	compare	the	distributions	


of	the	colors	in	the	two	graphs.	If	they	are	


different,	output	non-isomorphic.	


The	final	colors	can	be	use	to	find	an	(inexact)	


matching.	Find	a	cost	function	to	compare	colors,	and	


use	a	maximum	weight	matching	to	match	nodes. 


colort+1
i = hash(sort({colortj}j2neig.ofi)
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Scalability
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These	algorithms	can	align	large	graphs	(~300k	nodes	


per	graph,	and	~20M	possible	matches	between	


nodes	[Bayati	et	al.	2009]).	


 
A	few	can	be	solved	using	distributed	message	passing	


schemes	and	hence,	at	least	in	principle,	can	scale	to	


very	large	graphs:	WL	alg.,	NetAlignBP,	Isorank.	


	


Optimization-based	algs.,	e.g.	the	LP	relaxation,	Klau’s	


alg.,	Natalie	2.0,	and	Inner	alg.,	can	be	solved	using	


standard	distributed	optimization	methods. 
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Scalability
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Among	existing	methods	for	large	scale	distributed	


optimization,	worth	noting	is	the	Alternating	
Direction	Method	of	Multipliers.	
	


1.  Can	deal	with	non-smooth	functions	


2.  Easily	distributed	and	parallelized	
3.  Good	convergence	properties,	and	empirically	


good	performance	in	several	non-convex	problems	


4.  Convergence	rate	equals	that	of	fastest	first-order	
method	among	strongly	convex	functions	with	


Lipschitz	gradients	[França	&	Bento	2016]	







Scalability
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The	alignment	produced	by	these	algorithms	often	


leads	to	a	distance	between	graphs	that	is	not	a	


metric.	


	


This	is	the	case	for	Natalie	2.0,	Klau’s	alg.,	IsoRank,	


SparseIsoRank	and	Inner	alg.,	when	we	use	an	


alignment’s	permutation	matrix	to	compute		


	


	 kAP � PBk







Scalability
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Can	we	find	a	rich	set	of	scalable	graph	comparison	


methods	that	result	in	metrics?	


	


	


(part	II	of	this	tutorial)	
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A Highly Desirable Property


A Family of Tractable Graph Metrics1


symmetric) binary matrices A œ {0, 1}n◊n, and weighted
graphs by real matrices A œ Rn◊n.
Matrix Norms. Given a matrix A = [aij ]i,jœ[n] œ
Rn◊n and a p œ N+ fi {Œ}, its induced or operator p-
norm is defined in terms of the vector p-norm through
ÎAÎp = supxœRn:ÎxÎp=1 ÎAxÎp, while its entry-wise p-
norm is given by ÎAÎp = (


qn
i=1


qn
j=1 |aij |p)1/p, for


p œ N+, and ÎAÎŒ = maxi,j |ai,j |. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as Î · ÎF .
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as P


n = {P œ {0, 1}n◊n : P1 = 1, P €1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkho� polytope)
as Wn = {W œ [0, 1]n◊n : W1 = 1, W €1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as O


n = {U œ Rn◊n : UU€ = U€U = I}. Note that
P


n = WnflO
n. Moreover, the Birko�-von Neumann The-


orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of P


n.
Metrics. Given a set �, a function d : � ◊ � æ R is
called a metric, and the pair (�, d) is called a metric
space, if for all x, y, z œ �:


d(x, y) Ø 0 (non-negativity)(2.3a)
d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)


A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:


d(x, x) = 0 for all x œ �.(2.3e)


If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥d y over �. A pseudometric
is then a metric over �/ ≥d, the quotient space of ≥d.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.
Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs GA and GB . Then, GA and GB are isomor-
phic if and only if there exists P œ P


n s.t. P €AP = B
or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define dS : � ◊ � æ R+ as:


dS(A, B) = minP œS ÎAP ≠ PBÎ,(2.4)


where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that dS is the chemical


distance (1.1) when � = Rn◊n, S = P
n and Î ·Î = Î ·ÎF .


In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which dS is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.


For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].


3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.


Theorem 3.1. If S = P
n and Î · Î is an arbitrary


entry-wise or operator norm, then dS given by (2.4) is a
pseudometric over � = Rn◊n.


Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.


Theorem 3.2. If S = Wn and Î·Î is an arbitrary entry-
wise norm, then dS given by (2.4) is a pseudometric
over � = Sn◊n. If Î · Î is an arbitrary entry-wise or
operator norm, then its symmetric extension d̄S(A, B) =
dS(A, B) + dS(B, A) is a pseudometric over � = Rn◊n.


Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected
graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
dS is a quasimetric over the quotient space �/≥d, and
symmetry is attained via the symmetric extension d̄S .


Theorem 3.2 has significant practical implications.
In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:


Theorem 3.3. If S = O
n and Î ·Î is either the operator


or the entry-wise (i.e., Frobenius) 2-norm, then dS given
by (2.4) is a pseudometric over � = Rn◊n.


Though (2.4) is not a convex problem when S = O
n,


it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · ÎF


and � = Sn (i.e., for undirected graphs) by performing
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Distance score     is a metricd
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q Poly-time Algorithms with provable guarantees:
q k-NN
q Clustering
q Dataset diameter
q …


q Work very well in practice.
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Example: Chemical Distance


A Family of Tractable Graph Metrics2


A,B 2 {0, 1}n⇥n


ü "Natural": minimal edge discrepancy
ü Zero iff graphs are isomorphic
ü Metric


A Family of Tractable Graph Distances


Jose Bentoú Stratis Ioannidis†


Abstract
Important data mining problems such as nearest-
neighbor search and clustering admit theoretical guar-
antees when restricted to objects embedded in a metric
space. Graphs are ubiquitous, and clustering and classi-
fication over graphs arise in diverse areas, including, e.g.,
image processing and social networks. Unfortunately,
popular distance scores used in these applications, that
scale over large graphs, are not metrics and thus come
with no guarantees. Classic graph distances such as,
e.g., the chemical and the CKS distance are arguably
natural and intuitive, and are indeed also metrics, but
they are intractable: as such, their computation does
not scale to large graphs. We define a broad family of
graph distances, that includes both the chemical and the
CKS distance, and prove that these are all metrics. Cru-
cially, we show that our family includes metrics that are
tractable. Moreover, we extend these distances by incor-
porating auxiliary node attributes, which is important
in practice, while maintaining both the metric property
and tractability.


1 Introduction
Graph similarity and the related problem of graph
isomorphism have a long history in data mining, machine
learning, and pattern recognition [21, 43, 38]. Graph
distances naturally arise in this literature: intuitively,
given two (unlabeled) graphs, their distance is a score
quanitifying their structural di�erences. A highly
desirable property for such a score is that it is a
metric, i.e., it is non-negative, symmetric, positive-
definite, and, crucially, satisfies the triangle inequality.
Metrics exhibit significant computational advantages
over non-metrics. For example, operations such as
nearest-neighbor search [20, 19, 11], clustering [3], outlier
detection [7], and diameter computation [31] admit
fast algorithms precisely when performed over objects
embedded in a metric space. To this end, proposing
tractable graph metrics is of paramount importance in
applying such algorithms to graphs.


Unfortunately, graph metrics of interest are often
computationally expensive. A well-known example is


úBoston College, jose.bento@bc.edu
†Northeastern University, ioannidis@ece.neu.edu


the chemical distance [40]. Formally, given graphs
GA and GB, represented by their adjacency matrices
A, B œ {0, 1}n◊n, the chemical distance is dPn(A, B) is
defined in terms of a mapping between the two graphs
that minimizes their edge discrepancies, i.e.:


dPn(A, B) = minP œPn ÎAP ≠ PBÎF ,(1.1)


where P
n is the set of permutation matrices of size n and


Î · ÎF , is the Frobenius norm (see Sec. 2 for definitions).
The Chartrand-Kubiki-Shultz (CKS) [18] distance is an
alternative: CKS is again given by (1.1) but, instead of
edges, matrices A and B contain the pairwise shortest
path distances between any two nodes.


The chemical and CKS distances have important
properties. First, they are zero if and only if the
graphs are isomorphic, which appeals to both intuition
and practice; second, as desired, they are metrics;
third, they have a natural interpretation, capturing
global structural similarities between graphs. However,
finding an optimal permutation P is notoriously hard;
graph isomorphism, which is equivalent to deciding if
there exists a permutation P s.t. AP = PB (for both
adjacency and path matrices), is famously a problem
that is neither known to be in P nor shown to be NP-
hard [8]. There is a large and expanding literature on
scalable heuristics to estimate the optimal permutation P
[34, 9, 42, 23]. Despite their computational advantages,
unfortunately, using them to approximate dPn(A, B)
breaks the metric property.


This significantly degrades the performance of many
important tasks that rely on computing distances be-
tween graphs. For example, there is a clear separation
on the approximability of clustering over metric and non-
metric spaces [3]. We also demonstrate this empirically
in Section 5 (c.f. Fig. 1): attempting to cluster graphs
sampled from well-known families based on non-metric
distances significantly increases the misclassification rate,
compared to clustering using metrics.


An additonal issue that arises in practice is that
nodes often have attributes not associated with adja-
cency. For example, in social networks, nodes may con-
tain profiles with a user’s age or gender; similarly, nodes
in molecules may be labeled by atomic numbers. Such
attributes are not captured by the chemical or CKS
distances. However, in such cases, only label-preserving
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is the set of permutation matrices and            is the Frobenius norm.


symmetric) binary matrices A œ {0, 1}n◊n, and weighted
graphs by real matrices A œ Rn◊n.
Matrix Norms. Given a matrix A = [aij ]i,jœ[n] œ
Rn◊n and a p œ N+ fi {Œ}, its induced or operator p-
norm is defined in terms of the vector p-norm through
ÎAÎp = supxœRn:ÎxÎp=1 ÎAxÎp, while its entry-wise p-
norm is given by ÎAÎp = (


qn
i=1


qn
j=1 |aij |p)1/p, for


p œ N+, and ÎAÎŒ = maxi,j |ai,j |. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as Î · ÎF .
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as P


n = {P œ {0, 1}n◊n : P1 = 1, P €1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkho� polytope)
as Wn = {W œ [0, 1]n◊n : W1 = 1, W €1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as O


n = {U œ Rn◊n : UU€ = U€U = I}. Note that
P


n = WnflO
n. Moreover, the Birko�-von Neumann The-


orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of P


n.
Metrics. Given a set �, a function d : � ◊ � æ R is
called a metric, and the pair (�, d) is called a metric
space, if for all x, y, z œ �:


d(x, y) Ø 0 (non-negativity)(2.3a)
d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)


A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:


d(x, x) = 0 for all x œ �.(2.3e)


If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥d y over �. A pseudometric
is then a metric over �/ ≥d, the quotient space of ≥d.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.
Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs GA and GB . Then, GA and GB are isomor-
phic if and only if there exists P œ P


n s.t. P €AP = B
or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define dS : � ◊ � æ R+ as:


dS(A, B) = minP œS ÎAP ≠ PBÎ,(2.4)


where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that dS is the chemical


distance (1.1) when � = Rn◊n, S = P
n and Î ·Î = Î ·ÎF .


In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which dS is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.


For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].


3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.


Theorem 3.1. If S = P
n and Î · Î is an arbitrary


entry-wise or operator norm, then dS given by (2.4) is a
pseudometric over � = Rn◊n.


Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.


Theorem 3.2. If S = Wn and Î·Î is an arbitrary entry-
wise norm, then dS given by (2.4) is a pseudometric
over � = Sn◊n. If Î · Î is an arbitrary entry-wise or
operator norm, then its symmetric extension d̄S(A, B) =
dS(A, B) + dS(B, A) is a pseudometric over � = Rn◊n.


Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected
graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
dS is a quasimetric over the quotient space �/≥d, and
symmetry is attained via the symmetric extension d̄S .


Theorem 3.2 has significant practical implications.
In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:


Theorem 3.3. If S = O
n and Î ·Î is either the operator


or the entry-wise (i.e., Frobenius) 2-norm, then dS given
by (2.4) is a pseudometric over � = Rn◊n.


Though (2.4) is not a convex problem when S = O
n,


it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · ÎF


and � = Sn (i.e., for undirected graphs) by performing
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CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which dS is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.


For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].


3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.


Theorem 3.1. If S = P
n and Î · Î is an arbitrary


entry-wise or operator norm, then dS given by (2.4) is a
pseudometric over � = Rn◊n.


Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.


Theorem 3.2. If S = Wn and Î·Î is an arbitrary entry-
wise norm, then dS given by (2.4) is a pseudometric
over � = Sn◊n. If Î · Î is an arbitrary entry-wise or
operator norm, then its symmetric extension d̄S(A, B) =
dS(A, B) + dS(B, A) is a pseudometric over � = Rn◊n.


Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected
graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
dS is a quasimetric over the quotient space �/≥d, and
symmetry is attained via the symmetric extension d̄S .


Theorem 3.2 has significant practical implications.
In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:


Theorem 3.3. If S = O
n and Î ·Î is either the operator


or the entry-wise (i.e., Frobenius) 2-norm, then dS given
by (2.4) is a pseudometric over � = Rn◊n.


Though (2.4) is not a convex problem when S = O
n,


it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · ÎF


and � = Sn (i.e., for undirected graphs) by performing
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A Family of Tractable Graph Distances


Jose Bentoú Stratis Ioannidis†


Abstract
Important data mining problems such as nearest-
neighbor search and clustering admit theoretical guar-
antees when restricted to objects embedded in a metric
space. Graphs are ubiquitous, and clustering and classi-
fication over graphs arise in diverse areas, including, e.g.,
image processing and social networks. Unfortunately,
popular distance scores used in these applications, that
scale over large graphs, are not metrics and thus come
with no guarantees. Classic graph distances such as,
e.g., the chemical and the CKS distance are arguably
natural and intuitive, and are indeed also metrics, but
they are intractable: as such, their computation does
not scale to large graphs. We define a broad family of
graph distances, that includes both the chemical and the
CKS distance, and prove that these are all metrics. Cru-
cially, we show that our family includes metrics that are
tractable. Moreover, we extend these distances by incor-
porating auxiliary node attributes, which is important
in practice, while maintaining both the metric property
and tractability.


1 Introduction
Graph similarity and the related problem of graph
isomorphism have a long history in data mining, machine
learning, and pattern recognition [21, 43, 38]. Graph
distances naturally arise in this literature: intuitively,
given two (unlabeled) graphs, their distance is a score
quanitifying their structural di�erences. A highly
desirable property for such a score is that it is a
metric, i.e., it is non-negative, symmetric, positive-
definite, and, crucially, satisfies the triangle inequality.
Metrics exhibit significant computational advantages
over non-metrics. For example, operations such as
nearest-neighbor search [20, 19, 11], clustering [3], outlier
detection [7], and diameter computation [31] admit
fast algorithms precisely when performed over objects
embedded in a metric space. To this end, proposing
tractable graph metrics is of paramount importance in
applying such algorithms to graphs.


Unfortunately, graph metrics of interest are often
computationally expensive. A well-known example is
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the chemical distance [40]. Formally, given graphs
GA and GB, represented by their adjacency matrices
A, B œ {0, 1}n◊n, the chemical distance is dPn(A, B) is
defined in terms of a mapping between the two graphs
that minimizes their edge discrepancies, i.e.:


dPn(A, B) = minP œPn ÎAP ≠ PBÎF ,(1.1)


where P
n is the set of permutation matrices of size n and


Î · ÎF , is the Frobenius norm (see Sec. 2 for definitions).
The Chartrand-Kubiki-Shultz (CKS) [18] distance is an
alternative: CKS is again given by (1.1) but, instead of
edges, matrices A and B contain the pairwise shortest
path distances between any two nodes.


The chemical and CKS distances have important
properties. First, they are zero if and only if the
graphs are isomorphic, which appeals to both intuition
and practice; second, as desired, they are metrics;
third, they have a natural interpretation, capturing
global structural similarities between graphs. However,
finding an optimal permutation P is notoriously hard;
graph isomorphism, which is equivalent to deciding if
there exists a permutation P s.t. AP = PB (for both
adjacency and path matrices), is famously a problem
that is neither known to be in P nor shown to be NP-
hard [8]. There is a large and expanding literature on
scalable heuristics to estimate the optimal permutation P
[34, 9, 42, 23]. Despite their computational advantages,
unfortunately, using them to approximate dPn(A, B)
breaks the metric property.


This significantly degrades the performance of many
important tasks that rely on computing distances be-
tween graphs. For example, there is a clear separation
on the approximability of clustering over metric and non-
metric spaces [3]. We also demonstrate this empirically
in Section 5 (c.f. Fig. 1): attempting to cluster graphs
sampled from well-known families based on non-metric
distances significantly increases the misclassification rate,
compared to clustering using metrics.


An additonal issue that arises in practice is that
nodes often have attributes not associated with adja-
cency. For example, in social networks, nodes may con-
tain profiles with a user’s age or gender; similarly, nodes
in molecules may be labeled by atomic numbers. Such
attributes are not captured by the chemical or CKS
distances. However, in such cases, only label-preserving
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where


is the set of permutation matrices and            is the Frobenius norm.


symmetric) binary matrices A œ {0, 1}n◊n, and weighted
graphs by real matrices A œ Rn◊n.
Matrix Norms. Given a matrix A = [aij ]i,jœ[n] œ
Rn◊n and a p œ N+ fi {Œ}, its induced or operator p-
norm is defined in terms of the vector p-norm through
ÎAÎp = supxœRn:ÎxÎp=1 ÎAxÎp, while its entry-wise p-
norm is given by ÎAÎp = (


qn
i=1


qn
j=1 |aij |p)1/p, for


p œ N+, and ÎAÎŒ = maxi,j |ai,j |. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as Î · ÎF .
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as P


n = {P œ {0, 1}n◊n : P1 = 1, P €1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkho� polytope)
as Wn = {W œ [0, 1]n◊n : W1 = 1, W €1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as O


n = {U œ Rn◊n : UU€ = U€U = I}. Note that
P


n = WnflO
n. Moreover, the Birko�-von Neumann The-


orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of P


n.
Metrics. Given a set �, a function d : � ◊ � æ R is
called a metric, and the pair (�, d) is called a metric
space, if for all x, y, z œ �:


d(x, y) Ø 0 (non-negativity)(2.3a)
d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)


A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:


d(x, x) = 0 for all x œ �.(2.3e)


If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥d y over �. A pseudometric
is then a metric over �/ ≥d, the quotient space of ≥d.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.
Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs GA and GB . Then, GA and GB are isomor-
phic if and only if there exists P œ P


n s.t. P €AP = B
or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define dS : � ◊ � æ R+ as:


dS(A, B) = minP œS ÎAP ≠ PBÎ,(2.4)


where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that dS is the chemical


distance (1.1) when � = Rn◊n, S = P
n and Î ·Î = Î ·ÎF .


In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which dS is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.


For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].


3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.


Theorem 3.1. If S = P
n and Î · Î is an arbitrary


entry-wise or operator norm, then dS given by (2.4) is a
pseudometric over � = Rn◊n.


Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.


Theorem 3.2. If S = Wn and Î·Î is an arbitrary entry-
wise norm, then dS given by (2.4) is a pseudometric
over � = Sn◊n. If Î · Î is an arbitrary entry-wise or
operator norm, then its symmetric extension d̄S(A, B) =
dS(A, B) + dS(B, A) is a pseudometric over � = Rn◊n.


Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected
graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
dS is a quasimetric over the quotient space �/≥d, and
symmetry is attained via the symmetric extension d̄S .


Theorem 3.2 has significant practical implications.
In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:


Theorem 3.3. If S = O
n and Î ·Î is either the operator


or the entry-wise (i.e., Frobenius) 2-norm, then dS given
by (2.4) is a pseudometric over � = Rn◊n.


Though (2.4) is not a convex problem when S = O
n,


it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · ÎF


and � = Sn (i.e., for undirected graphs) by performing
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two graphs GA and GB . Then, GA and GB are isomor-
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In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which dS is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.


For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].


3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.


Theorem 3.1. If S = P
n and Î · Î is an arbitrary


entry-wise or operator norm, then dS given by (2.4) is a
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Hence, dPn is a pseudometric under any entry-wise or
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Our second result states that this property extends to
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permutations are replaced by doubly stochastic matrices.


Theorem 3.2. If S = Wn and Î·Î is an arbitrary entry-
wise norm, then dS given by (2.4) is a pseudometric
over � = Sn◊n. If Î · Î is an arbitrary entry-wise or
operator norm, then its symmetric extension d̄S(A, B) =
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Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected
graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
dS is a quasimetric over the quotient space �/≥d, and
symmetry is attained via the symmetric extension d̄S .


Theorem 3.2 has significant practical implications.
In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:
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A Family of Tractable Graph Distances


Jose Bentoú Stratis Ioannidis†


Abstract
Important data mining problems such as nearest-
neighbor search and clustering admit theoretical guar-
antees when restricted to objects embedded in a metric
space. Graphs are ubiquitous, and clustering and classi-
fication over graphs arise in diverse areas, including, e.g.,
image processing and social networks. Unfortunately,
popular distance scores used in these applications, that
scale over large graphs, are not metrics and thus come
with no guarantees. Classic graph distances such as,
e.g., the chemical and the CKS distance are arguably
natural and intuitive, and are indeed also metrics, but
they are intractable: as such, their computation does
not scale to large graphs. We define a broad family of
graph distances, that includes both the chemical and the
CKS distance, and prove that these are all metrics. Cru-
cially, we show that our family includes metrics that are
tractable. Moreover, we extend these distances by incor-
porating auxiliary node attributes, which is important
in practice, while maintaining both the metric property
and tractability.


1 Introduction
Graph similarity and the related problem of graph
isomorphism have a long history in data mining, machine
learning, and pattern recognition [21, 43, 38]. Graph
distances naturally arise in this literature: intuitively,
given two (unlabeled) graphs, their distance is a score
quanitifying their structural di�erences. A highly
desirable property for such a score is that it is a
metric, i.e., it is non-negative, symmetric, positive-
definite, and, crucially, satisfies the triangle inequality.
Metrics exhibit significant computational advantages
over non-metrics. For example, operations such as
nearest-neighbor search [20, 19, 11], clustering [3], outlier
detection [7], and diameter computation [31] admit
fast algorithms precisely when performed over objects
embedded in a metric space. To this end, proposing
tractable graph metrics is of paramount importance in
applying such algorithms to graphs.


Unfortunately, graph metrics of interest are often
computationally expensive. A well-known example is


úBoston College, jose.bento@bc.edu
†Northeastern University, ioannidis@ece.neu.edu


the chemical distance [40]. Formally, given graphs
GA and GB, represented by their adjacency matrices
A, B œ {0, 1}n◊n, the chemical distance is dPn(A, B) is
defined in terms of a mapping between the two graphs
that minimizes their edge discrepancies, i.e.:


dPn(A, B) = minP œPn ÎAP ≠ PBÎF ,(1.1)


where P
n is the set of permutation matrices of size n and


Î · ÎF , is the Frobenius norm (see Sec. 2 for definitions).
The Chartrand-Kubiki-Shultz (CKS) [18] distance is an
alternative: CKS is again given by (1.1) but, instead of
edges, matrices A and B contain the pairwise shortest
path distances between any two nodes.


The chemical and CKS distances have important
properties. First, they are zero if and only if the
graphs are isomorphic, which appeals to both intuition
and practice; second, as desired, they are metrics;
third, they have a natural interpretation, capturing
global structural similarities between graphs. However,
finding an optimal permutation P is notoriously hard;
graph isomorphism, which is equivalent to deciding if
there exists a permutation P s.t. AP = PB (for both
adjacency and path matrices), is famously a problem
that is neither known to be in P nor shown to be NP-
hard [8]. There is a large and expanding literature on
scalable heuristics to estimate the optimal permutation P
[34, 9, 42, 23]. Despite their computational advantages,
unfortunately, using them to approximate dPn(A, B)
breaks the metric property.


This significantly degrades the performance of many
important tasks that rely on computing distances be-
tween graphs. For example, there is a clear separation
on the approximability of clustering over metric and non-
metric spaces [3]. We also demonstrate this empirically
in Section 5 (c.f. Fig. 1): attempting to cluster graphs
sampled from well-known families based on non-metric
distances significantly increases the misclassification rate,
compared to clustering using metrics.


An additonal issue that arises in practice is that
nodes often have attributes not associated with adja-
cency. For example, in social networks, nodes may con-
tain profiles with a user’s age or gender; similarly, nodes
in molecules may be labeled by atomic numbers. Such
attributes are not captured by the chemical or CKS
distances. However, in such cases, only label-preserving
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permutations P may make sense (e.g., mapping females
to females, oxygens to oxygens, etc.). Incorporating
attributes while preserving the metric property is thus
important from a practical perspective.
Contributions. We seek generalization of the chemical
and CKS distances that (a) satisfy the metric property
and (b) are tractable: by this, we mean that they can
be computed either by solving a convex optimization
problem, or by a polynomial time algorithm. Specifically,
we study generalizations of (1.1) of the form:


dS(A, B) = minP œS ÎAP ≠ PBÎ(1.2)


where S µ Rn◊n is closed and bounded, Î · Î is a matrix
norm, and A, B œ Rn◊n are arbitrary real matrices
(representing adjacency, path distances, weights, etc.).
We make the following contributions:
• We prove su�cient conditions on S and norm Î · Î for


which (1.2) is a metric. In particular, we show that
dS is a so-called pseudo-metric (see Sec. 2) when:


(i) S = P
n and Î ·Î is any entry-wise or operator norm;


(ii) S = Wn, the set of doubly stochastic matrices,
Î · Î is an arbitrary entry-wise norm, and A, B are
symmetric; a modification on dS extends this result
to both operator norms as well as arbitrary matrices
(capturing, e.g., directed graphs); and


(iii) S = O
n, the set of orthogonal matrices, and Î · Î


is the operator or entry-wise 2-norm.
Relaxations (ii) and (iii) are very important from a
practical standpoint. For all matrix norms, computing
(1.2) with S = Wn is tractable, as it is a convex
optimization. For S = O


n, (1.2) is non-convex but is
still tractable, as it reduces to a spectral decomposition.
This was known for the Frobenius norm [56]; we prove
this is the case for the operator 2-norm also.


• We include node attributes in a natural way in the
definition of dS as both soft (i.e., penalties in the
objective) or hard constraints in Eq. (1.2). Crucially,
we do this without a�ecting the metric property and
tractability. This allows us to explore label or feature
preserving permutations, that incorporate both (a)
exogenous node attributes, such as, e.g., user age or
gender in a social network, as well as (b) endogenous,
structural features of each node, such as its degree
or the number of triangles that pass through it. We
numerically show that adding these constraints can
speed up the computation of dS .


From an experimental standpoint, we extensively
compare our tractable metrics to several existing heuris-
tic approximations. We also demonstrate the tractability
of our metrics by parallelizing their execution using the
alternating method of multipliers [15], which we imple-
ment over a compute cluster using Apache Spark [62].


Related Work. Graph distance (or similarity) scores
find applications in varied fields such as in image
processing [21], chemistry [6, 40], and social network
analysis [43, 38]. Graph distances are easy to define
when, contrary to our setting, the correspondence
between graph nodes is known, i.e., graphs are labeled
[46, 38, 55]. Beyond the chemical distance, classic
examples of distances between unlabeled graphs are
the edit distance [28, 51] and the maximum common
subgraph distance [17, 16], both of which also have
versions for labeled graphs. Both are metrics and are
hard to compute, while existing heuristics [48, 26] are
not metrics. The reaction distance [36] is also a metric
directly related to the chemical distance [40] when edits
are restricted to edge additions and deletions. Jain [32]
also considers an extension of the chemical distance,
limited to the Frobenius norm, that incorporates edge
attributes. However, it is not immediately clear how to
relax the above metrics [32, 36] to attain tractability.


A metric can also be induced by embedding graphs
in a metric space and measuring the distance of these
embeddings [50, 27, 49]. Several works follow such an
approach, mapping graphs, e.g., to spaces determined by
their spectral decomposition [63, 60, 24]. In general,
in contrast to our metrics, such approaches are not
as discriminative, as embeddings summarize graph
structure. Continuous relaxations of graph isomorphism,
both convex and non-convex [42, 4, 56], have found
applications in a variety of contexts, including social
networks [37], computer vision [52], shape detection
[53, 30], and neuroscience [57]. None of the above works
focus on metric properties of resulting relaxations, which
several fail to satisfy [57, 37, 53, 30].


Metrics naturally arise in data mining tasks, includ-
ing clustering [61, 29], NN search [20, 19, 11], and outlier
detection [7]. Some of these tasks become tractable or
admit formal guarantees precisely when performed over
a metric space. For example, finding the nearest neigh-
bor [20, 19, 11] or the diameter of a dataset [31] become
polylogarithimic under metric assumptions; similarly,
approximation algorithms for clustering (which is NP-
hard) rely on metric assumptions, whose absence leads
to a deterioration on known bounds [3]. Our search for
metrics is motivated by these considerations.


2 Notation and Preliminaries
Graphs. We represent an undirected graph G(V, E)
with node set V = [n] © {1, . . . , n} and edge set
E ™ [n] ◊ [n] by its adjacency matrix, i.e. A =
[ai,j ]i,jœ[n] œ {0, 1}n◊n s.t. aij = aji = 1 if and only if
(i, j) œ E. In particular, A is symmetric, i.e. A = A€.
We denote the set of all real, symmetric matrices by
Sn. Directed graphs are represented by (possibly non-
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satisfies the following properties: 
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d : ⌦⇥ ⌦ ! R ⌦


symmetric) binary matrices A œ {0, 1}n◊n, and weighted
graphs by real matrices A œ Rn◊n.
Matrix Norms. Given a matrix A = [aij ]i,jœ[n] œ
Rn◊n and a p œ N+ fi {Œ}, its induced or operator p-
norm is defined in terms of the vector p-norm through
ÎAÎp = supxœRn:ÎxÎp=1 ÎAxÎp, while its entry-wise p-
norm is given by ÎAÎp = (


qn
i=1


qn
j=1 |aij |p)1/p, for


p œ N+, and ÎAÎŒ = maxi,j |ai,j |. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as Î · ÎF .
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as P


n = {P œ {0, 1}n◊n : P1 = 1, P €1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkho� polytope)
as Wn = {W œ [0, 1]n◊n : W1 = 1, W €1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as O


n = {U œ Rn◊n : UU€ = U€U = I}. Note that
P


n = WnflO
n. Moreover, the Birko�-von Neumann The-


orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of P


n.
Metrics. Given a set �, a function d : � ◊ � æ R is
called a metric, and the pair (�, d) is called a metric
space, if for all x, y, z œ �:


d(x, y) Ø 0 (non-negativity)(2.3a)
d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)


A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:


d(x, x) = 0 for all x œ �.(2.3e)


If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥d y over �. A pseudometric
is then a metric over �/ ≥d, the quotient space of ≥d.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.
Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs GA and GB . Then, GA and GB are isomor-
phic if and only if there exists P œ P


n s.t. P €AP = B
or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define dS : � ◊ � æ R+ as:


dS(A, B) = minP œS ÎAP ≠ PBÎ,(2.4)


where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that dS is the chemical


distance (1.1) when � = Rn◊n, S = P
n and Î ·Î = Î ·ÎF .


In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which dS is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.


For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].


3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.


Theorem 3.1. If S = P
n and Î · Î is an arbitrary


entry-wise or operator norm, then dS given by (2.4) is a
pseudometric over � = Rn◊n.


Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.


Theorem 3.2. If S = Wn and Î·Î is an arbitrary entry-
wise norm, then dS given by (2.4) is a pseudometric
over � = Sn◊n. If Î · Î is an arbitrary entry-wise or
operator norm, then its symmetric extension d̄S(A, B) =
dS(A, B) + dS(B, A) is a pseudometric over � = Rn◊n.


Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected
graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
dS is a quasimetric over the quotient space �/≥d, and
symmetry is attained via the symmetric extension d̄S .


Theorem 3.2 has significant practical implications.
In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:


Theorem 3.3. If S = O
n and Î ·Î is either the operator


or the entry-wise (i.e., Frobenius) 2-norm, then dS given
by (2.4) is a pseudometric over � = Rn◊n.


Though (2.4) is not a convex problem when S = O
n,


it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · ÎF


and � = Sn (i.e., for undirected graphs) by performing
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If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥d y over �. A pseudometric
is then a metric over �/ ≥d, the quotient space of ≥d.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
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tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs GA and GB . Then, GA and GB are isomor-
phic if and only if there exists P œ P


n s.t. P €AP = B
or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define dS : � ◊ � æ R+ as:


dS(A, B) = minP œS ÎAP ≠ PBÎ,(2.4)


where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that dS is the chemical


distance (1.1) when � = Rn◊n, S = P
n and Î ·Î = Î ·ÎF .


In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which dS is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.


For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].


3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.


Theorem 3.1. If S = P
n and Î · Î is an arbitrary


entry-wise or operator norm, then dS given by (2.4) is a
pseudometric over � = Rn◊n.


Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.


Theorem 3.2. If S = Wn and Î·Î is an arbitrary entry-
wise norm, then dS given by (2.4) is a pseudometric
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an operator norm or graphs are directed. In either case,
dS is a quasimetric over the quotient space �/≥d, and
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Theorem 3.2 has significant practical implications.
In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:


Theorem 3.3. If S = O
n and Î ·Î is either the operator


or the entry-wise (i.e., Frobenius) 2-norm, then dS given
by (2.4) is a pseudometric over � = Rn◊n.


Though (2.4) is not a convex problem when S = O
n,


it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · ÎF


and � = Sn (i.e., for undirected graphs) by performing
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Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.


Theorem 3.2. If S = Wn and Î·Î is an arbitrary entry-
wise norm, then dS given by (2.4) is a pseudometric
over � = Sn◊n. If Î · Î is an arbitrary entry-wise or
operator norm, then its symmetric extension d̄S(A, B) =
dS(A, B) + dS(B, A) is a pseudometric over � = Rn◊n.


Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected
graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
dS is a quasimetric over the quotient space �/≥d, and
symmetry is attained via the symmetric extension d̄S .


Theorem 3.2 has significant practical implications.
In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:


Theorem 3.3. If S = O
n and Î ·Î is either the operator


or the entry-wise (i.e., Frobenius) 2-norm, then dS given
by (2.4) is a pseudometric over � = Rn◊n.


Though (2.4) is not a convex problem when S = O
n,


it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · ÎF


and � = Sn (i.e., for undirected graphs) by performing
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is a metric.


d
d̄(x, y) = d(x, y) + d(y, x)







q Weighted, directed graphs
q Equivalence relation=Isomorphism
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permutations P may make sense (e.g., mapping females
to females, oxygens to oxygens, etc.). Incorporating
attributes while preserving the metric property is thus
important from a practical perspective.
Contributions. We seek generalization of the chemical
and CKS distances that (a) satisfy the metric property
and (b) are tractable: by this, we mean that they can
be computed either by solving a convex optimization
problem, or by a polynomial time algorithm. Specifically,
we study generalizations of (1.1) of the form:


dS(A, B) = minP œS ÎAP ≠ PBÎ(1.2)


where S µ Rn◊n is closed and bounded, Î · Î is a matrix
norm, and A, B œ Rn◊n are arbitrary real matrices
(representing adjacency, path distances, weights, etc.).
We make the following contributions:
• We prove su�cient conditions on S and norm Î · Î for


which (1.2) is a metric. In particular, we show that
dS is a so-called pseudo-metric (see Sec. 2) when:


(i) S = P
n and Î ·Î is any entry-wise or operator norm;


(ii) S = Wn, the set of doubly stochastic matrices,
Î · Î is an arbitrary entry-wise norm, and A, B are
symmetric; a modification on dS extends this result
to both operator norms as well as arbitrary matrices
(capturing, e.g., directed graphs); and


(iii) S = O
n, the set of orthogonal matrices, and Î · Î


is the operator or entry-wise 2-norm.
Relaxations (ii) and (iii) are very important from a
practical standpoint. For all matrix norms, computing
(1.2) with S = Wn is tractable, as it is a convex
optimization. For S = O


n, (1.2) is non-convex but is
still tractable, as it reduces to a spectral decomposition.
This was known for the Frobenius norm [56]; we prove
this is the case for the operator 2-norm also.


• We include node attributes in a natural way in the
definition of dS as both soft (i.e., penalties in the
objective) or hard constraints in Eq. (1.2). Crucially,
we do this without a�ecting the metric property and
tractability. This allows us to explore label or feature
preserving permutations, that incorporate both (a)
exogenous node attributes, such as, e.g., user age or
gender in a social network, as well as (b) endogenous,
structural features of each node, such as its degree
or the number of triangles that pass through it. We
numerically show that adding these constraints can
speed up the computation of dS .


From an experimental standpoint, we extensively
compare our tractable metrics to several existing heuris-
tic approximations. We also demonstrate the tractability
of our metrics by parallelizing their execution using the
alternating method of multipliers [15], which we imple-
ment over a compute cluster using Apache Spark [62].


Related Work. Graph distance (or similarity) scores
find applications in varied fields such as in image
processing [21], chemistry [6, 40], and social network
analysis [43, 38]. Graph distances are easy to define
when, contrary to our setting, the correspondence
between graph nodes is known, i.e., graphs are labeled
[46, 38, 55]. Beyond the chemical distance, classic
examples of distances between unlabeled graphs are
the edit distance [28, 51] and the maximum common
subgraph distance [17, 16], both of which also have
versions for labeled graphs. Both are metrics and are
hard to compute, while existing heuristics [48, 26] are
not metrics. The reaction distance [36] is also a metric
directly related to the chemical distance [40] when edits
are restricted to edge additions and deletions. Jain [32]
also considers an extension of the chemical distance,
limited to the Frobenius norm, that incorporates edge
attributes. However, it is not immediately clear how to
relax the above metrics [32, 36] to attain tractability.


A metric can also be induced by embedding graphs
in a metric space and measuring the distance of these
embeddings [50, 27, 49]. Several works follow such an
approach, mapping graphs, e.g., to spaces determined by
their spectral decomposition [63, 60, 24]. In general,
in contrast to our metrics, such approaches are not
as discriminative, as embeddings summarize graph
structure. Continuous relaxations of graph isomorphism,
both convex and non-convex [42, 4, 56], have found
applications in a variety of contexts, including social
networks [37], computer vision [52], shape detection
[53, 30], and neuroscience [57]. None of the above works
focus on metric properties of resulting relaxations, which
several fail to satisfy [57, 37, 53, 30].


Metrics naturally arise in data mining tasks, includ-
ing clustering [61, 29], NN search [20, 19, 11], and outlier
detection [7]. Some of these tasks become tractable or
admit formal guarantees precisely when performed over
a metric space. For example, finding the nearest neigh-
bor [20, 19, 11] or the diameter of a dataset [31] become
polylogarithimic under metric assumptions; similarly,
approximation algorithms for clustering (which is NP-
hard) rely on metric assumptions, whose absence leads
to a deterioration on known bounds [3]. Our search for
metrics is motivated by these considerations.


2 Notation and Preliminaries
Graphs. We represent an undirected graph G(V, E)
with node set V = [n] © {1, . . . , n} and edge set
E ™ [n] ◊ [n] by its adjacency matrix, i.e. A =
[ai,j ]i,jœ[n] œ {0, 1}n◊n s.t. aij = aji = 1 if and only if
(i, j) œ E. In particular, A is symmetric, i.e. A = A€.
We denote the set of all real, symmetric matrices by
Sn. Directed graphs are represented by (possibly non-
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Theorem: If              and        is an arbitrary entry-wise or operator 
matrix norm, then        is a pseudo-metric over               . 


S = Pn


dS


k · k
⌦ = Rn⇥n


Pn = {P 2 {0, 1}n⇥n : P1 = P>1 = 1}


(⇤)


S =







Theorem: If               and        is an arbitrary entry-wise matrix norm, 
then        is a pseudo-metric over               . dS


k · k
⌦ = Sn


S = Wn


q Weighted, undirected graphs + entry-wise norms o.k.
q Operator norms/directed graphs break symmetry
q Equivalence classes characterized by Weisfeiler-Lehman algorithm.
q Tractable: is a convex optimization problem!
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permutations P may make sense (e.g., mapping females
to females, oxygens to oxygens, etc.). Incorporating
attributes while preserving the metric property is thus
important from a practical perspective.
Contributions. We seek generalization of the chemical
and CKS distances that (a) satisfy the metric property
and (b) are tractable: by this, we mean that they can
be computed either by solving a convex optimization
problem, or by a polynomial time algorithm. Specifically,
we study generalizations of (1.1) of the form:


dS(A, B) = minP œS ÎAP ≠ PBÎ(1.2)


where S µ Rn◊n is closed and bounded, Î · Î is a matrix
norm, and A, B œ Rn◊n are arbitrary real matrices
(representing adjacency, path distances, weights, etc.).
We make the following contributions:
• We prove su�cient conditions on S and norm Î · Î for


which (1.2) is a metric. In particular, we show that
dS is a so-called pseudo-metric (see Sec. 2) when:


(i) S = P
n and Î ·Î is any entry-wise or operator norm;


(ii) S = Wn, the set of doubly stochastic matrices,
Î · Î is an arbitrary entry-wise norm, and A, B are
symmetric; a modification on dS extends this result
to both operator norms as well as arbitrary matrices
(capturing, e.g., directed graphs); and


(iii) S = O
n, the set of orthogonal matrices, and Î · Î


is the operator or entry-wise 2-norm.
Relaxations (ii) and (iii) are very important from a
practical standpoint. For all matrix norms, computing
(1.2) with S = Wn is tractable, as it is a convex
optimization. For S = O


n, (1.2) is non-convex but is
still tractable, as it reduces to a spectral decomposition.
This was known for the Frobenius norm [56]; we prove
this is the case for the operator 2-norm also.


• We include node attributes in a natural way in the
definition of dS as both soft (i.e., penalties in the
objective) or hard constraints in Eq. (1.2). Crucially,
we do this without a�ecting the metric property and
tractability. This allows us to explore label or feature
preserving permutations, that incorporate both (a)
exogenous node attributes, such as, e.g., user age or
gender in a social network, as well as (b) endogenous,
structural features of each node, such as its degree
or the number of triangles that pass through it. We
numerically show that adding these constraints can
speed up the computation of dS .


From an experimental standpoint, we extensively
compare our tractable metrics to several existing heuris-
tic approximations. We also demonstrate the tractability
of our metrics by parallelizing their execution using the
alternating method of multipliers [15], which we imple-
ment over a compute cluster using Apache Spark [62].


Related Work. Graph distance (or similarity) scores
find applications in varied fields such as in image
processing [21], chemistry [6, 40], and social network
analysis [43, 38]. Graph distances are easy to define
when, contrary to our setting, the correspondence
between graph nodes is known, i.e., graphs are labeled
[46, 38, 55]. Beyond the chemical distance, classic
examples of distances between unlabeled graphs are
the edit distance [28, 51] and the maximum common
subgraph distance [17, 16], both of which also have
versions for labeled graphs. Both are metrics and are
hard to compute, while existing heuristics [48, 26] are
not metrics. The reaction distance [36] is also a metric
directly related to the chemical distance [40] when edits
are restricted to edge additions and deletions. Jain [32]
also considers an extension of the chemical distance,
limited to the Frobenius norm, that incorporates edge
attributes. However, it is not immediately clear how to
relax the above metrics [32, 36] to attain tractability.


A metric can also be induced by embedding graphs
in a metric space and measuring the distance of these
embeddings [50, 27, 49]. Several works follow such an
approach, mapping graphs, e.g., to spaces determined by
their spectral decomposition [63, 60, 24]. In general,
in contrast to our metrics, such approaches are not
as discriminative, as embeddings summarize graph
structure. Continuous relaxations of graph isomorphism,
both convex and non-convex [42, 4, 56], have found
applications in a variety of contexts, including social
networks [37], computer vision [52], shape detection
[53, 30], and neuroscience [57]. None of the above works
focus on metric properties of resulting relaxations, which
several fail to satisfy [57, 37, 53, 30].


Metrics naturally arise in data mining tasks, includ-
ing clustering [61, 29], NN search [20, 19, 11], and outlier
detection [7]. Some of these tasks become tractable or
admit formal guarantees precisely when performed over
a metric space. For example, finding the nearest neigh-
bor [20, 19, 11] or the diameter of a dataset [31] become
polylogarithimic under metric assumptions; similarly,
approximation algorithms for clustering (which is NP-
hard) rely on metric assumptions, whose absence leads
to a deterioration on known bounds [3]. Our search for
metrics is motivated by these considerations.


2 Notation and Preliminaries
Graphs. We represent an undirected graph G(V, E)
with node set V = [n] © {1, . . . , n} and edge set
E ™ [n] ◊ [n] by its adjacency matrix, i.e. A =
[ai,j ]i,jœ[n] œ {0, 1}n◊n s.t. aij = aji = 1 if and only if
(i, j) œ E. In particular, A is symmetric, i.e. A = A€.
We denote the set of all real, symmetric matrices by
Sn. Directed graphs are represented by (possibly non-
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q Weighted, directed graphs
q Restricted to 2-norms
q Equivalence classes characterized by co-spectrality.
q Tractable: is not convex, but can be solved via a spectral 


decomposition.
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permutations P may make sense (e.g., mapping females
to females, oxygens to oxygens, etc.). Incorporating
attributes while preserving the metric property is thus
important from a practical perspective.
Contributions. We seek generalization of the chemical
and CKS distances that (a) satisfy the metric property
and (b) are tractable: by this, we mean that they can
be computed either by solving a convex optimization
problem, or by a polynomial time algorithm. Specifically,
we study generalizations of (1.1) of the form:


dS(A, B) = minP œS ÎAP ≠ PBÎ(1.2)


where S µ Rn◊n is closed and bounded, Î · Î is a matrix
norm, and A, B œ Rn◊n are arbitrary real matrices
(representing adjacency, path distances, weights, etc.).
We make the following contributions:
• We prove su�cient conditions on S and norm Î · Î for


which (1.2) is a metric. In particular, we show that
dS is a so-called pseudo-metric (see Sec. 2) when:


(i) S = P
n and Î ·Î is any entry-wise or operator norm;


(ii) S = Wn, the set of doubly stochastic matrices,
Î · Î is an arbitrary entry-wise norm, and A, B are
symmetric; a modification on dS extends this result
to both operator norms as well as arbitrary matrices
(capturing, e.g., directed graphs); and


(iii) S = O
n, the set of orthogonal matrices, and Î · Î


is the operator or entry-wise 2-norm.
Relaxations (ii) and (iii) are very important from a
practical standpoint. For all matrix norms, computing
(1.2) with S = Wn is tractable, as it is a convex
optimization. For S = O


n, (1.2) is non-convex but is
still tractable, as it reduces to a spectral decomposition.
This was known for the Frobenius norm [56]; we prove
this is the case for the operator 2-norm also.


• We include node attributes in a natural way in the
definition of dS as both soft (i.e., penalties in the
objective) or hard constraints in Eq. (1.2). Crucially,
we do this without a�ecting the metric property and
tractability. This allows us to explore label or feature
preserving permutations, that incorporate both (a)
exogenous node attributes, such as, e.g., user age or
gender in a social network, as well as (b) endogenous,
structural features of each node, such as its degree
or the number of triangles that pass through it. We
numerically show that adding these constraints can
speed up the computation of dS .


From an experimental standpoint, we extensively
compare our tractable metrics to several existing heuris-
tic approximations. We also demonstrate the tractability
of our metrics by parallelizing their execution using the
alternating method of multipliers [15], which we imple-
ment over a compute cluster using Apache Spark [62].


Related Work. Graph distance (or similarity) scores
find applications in varied fields such as in image
processing [21], chemistry [6, 40], and social network
analysis [43, 38]. Graph distances are easy to define
when, contrary to our setting, the correspondence
between graph nodes is known, i.e., graphs are labeled
[46, 38, 55]. Beyond the chemical distance, classic
examples of distances between unlabeled graphs are
the edit distance [28, 51] and the maximum common
subgraph distance [17, 16], both of which also have
versions for labeled graphs. Both are metrics and are
hard to compute, while existing heuristics [48, 26] are
not metrics. The reaction distance [36] is also a metric
directly related to the chemical distance [40] when edits
are restricted to edge additions and deletions. Jain [32]
also considers an extension of the chemical distance,
limited to the Frobenius norm, that incorporates edge
attributes. However, it is not immediately clear how to
relax the above metrics [32, 36] to attain tractability.


A metric can also be induced by embedding graphs
in a metric space and measuring the distance of these
embeddings [50, 27, 49]. Several works follow such an
approach, mapping graphs, e.g., to spaces determined by
their spectral decomposition [63, 60, 24]. In general,
in contrast to our metrics, such approaches are not
as discriminative, as embeddings summarize graph
structure. Continuous relaxations of graph isomorphism,
both convex and non-convex [42, 4, 56], have found
applications in a variety of contexts, including social
networks [37], computer vision [52], shape detection
[53, 30], and neuroscience [57]. None of the above works
focus on metric properties of resulting relaxations, which
several fail to satisfy [57, 37, 53, 30].


Metrics naturally arise in data mining tasks, includ-
ing clustering [61, 29], NN search [20, 19, 11], and outlier
detection [7]. Some of these tasks become tractable or
admit formal guarantees precisely when performed over
a metric space. For example, finding the nearest neigh-
bor [20, 19, 11] or the diameter of a dataset [31] become
polylogarithimic under metric assumptions; similarly,
approximation algorithms for clustering (which is NP-
hard) rely on metric assumptions, whose absence leads
to a deterioration on known bounds [3]. Our search for
metrics is motivated by these considerations.


2 Notation and Preliminaries
Graphs. We represent an undirected graph G(V, E)
with node set V = [n] © {1, . . . , n} and edge set
E ™ [n] ◊ [n] by its adjacency matrix, i.e. A =
[ai,j ]i,jœ[n] œ {0, 1}n◊n s.t. aij = aji = 1 if and only if
(i, j) œ E. In particular, A is symmetric, i.e. A = A€.
We denote the set of all real, symmetric matrices by
Sn. Directed graphs are represented by (possibly non-
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q We can construct pseudo-metrics for
,       , and     .


q In the latter two cases, computing
is tractable.
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dS(A,B)
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(c) TIVs, n = 50(b) TIVs, n = 10


Description


Bd Barabasi Albert of degree d [5]
Ep Erd�s-Rényi with probability p [25]
P Power Law Tree [44]


Rd Regular Graph of degree d [13]
S Small World [35]


Wd Watts Strogatz of degree d [58]


(d) Synthetic Graph Classes


1 2 3 4 5 6 7 8 9 10 11
0


0.02


0.04


0.06


0.08
1 - InnerDSL2
2 - NetAlignBP
3 - IsoRank
4 - SparseIsoRank
5 - NetAlignMR
6 - Natalie
7 - DSL1
8 - DSL2
9 - InnerPerm
10 - InnerDSL1
11 - EXACT
12 - ORTHOP
13 - ORTHFR


(e) TIVs, small graphs


Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for di�erent algorithms on the small graphs dataset of all 7-node graphs.


map nodes in one graph to nodes of the same color.
Theorem 4.2 therefore implies that such constraints
can thus be added to the optimization problem, while
maintaining the metric property. In practice, as the
number of variables in optimization problem (2.4) is
n2, incorporating such hard constraints can significantly
reduce the problem’s computation time; we illustrate
this in the next section. Note that adding (4.5) to dOn


does not preserve the metric propery.


5 Experiments
Graphs. We use synthetic graphs from six classes
summarized in the table in Fig. 1(d). In addition, we use
a dataset of small graphs, comprising all 853 connected
graphs of 7 nodes [45]. Finally, we use a collaboration
graph with 5242 nodes and 14496 edges representing
author collaborations [41].
Algorithms. We compare our metrics to several
competitors outlined in Table 1 (see also [10] for
additional details). All receive only two unlabeled
undirected simple graphs A and B and output a
matching a matrix P̂ either in Wn or in P


n estimating
P ú. If P̂ œ P


n, we compute ÎAP̂ ≠ P̂BÎ1. If P̂ œ Wn,
then we compute both ÎAP̂ ≠ P̂BÎ1 and ÎAP̂ ≠ P̂BÎF ;
all norms are entry-wise. We also implement our two
relaxations dW and dOn , for two di�erent matrix norm
combinations.


(Non-metric) Distance Score Algorithms


NetAlignBP Network Alignment using Belief Propagation [9, 33]
IsoRank Neighborhood Topology Isomorphism using Page Rank


[54, 33]
SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page


Rank [9, 33]
InnerPerm Inner Product Matching with Permutations [42]
InnerDSL1 Inner Product Matching with Matrices in Wn and entry-


wise 1-norm [42]
InnerDSL2 Inner Product Matching with Matrices in Wn and Frobe-


nius norm [42]
NetAlignMR Iterative Matching Relaxation [34, 33]


Natalie (V2.0) Improved Iterative Matching Relaxation [23, 22]


Metrics from our Family (2.4)


EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dWn with entry-


wise 1-norm
DSL2 Doubly Stochastic Chemical Distance dWn with Frobe-


nius norm
ORTHOP Orthogonal Relaxation of Chemical Distance d


On with
operator 2-norm


ORTHFR Orthogonal Relaxation of Chemical Distance d
On with


Frobenius norm


Table 1: Competitor Distance Scores & Our Metrics


k ÎP Î0 ÎAP≠P AÎ0 ·
1 3,747,960 100.569 133s
2 239,048 3,004 104s
3 182,474 2,036 136s
4 182,016 2,030 169s
5 182,006 2,030 200s


(a) Coloring Constraints


(b) Convergence of ADMM


Figure 3: (a) E�ect of coloring/hard constraints on the numbers
of variables (ÎP Î0) and terms of objective (ÎAP ≠ P AÎ0) using k
iterations of the WL coloring algorithm. The last column shows
the execution time of WL on a 40 CPU machine using Apache
Spark [62]. (b) Convergence of ADMM algorithm [15] computing
DSL2 on two copies of the collaboration graph as a function of
time, implemented using Apache Spark [62] on a 40 CPU machine.
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Ep Erd�s-Rényi with probability p [25]
P Power Law Tree [44]


Rd Regular Graph of degree d [13]
S Small World [35]


Wd Watts Strogatz of degree d [58]


(d) Synthetic Graph Classes


1 2 3 4 5 6 7 8 9 10 11
0


0.02


0.04


0.06


0.08
1 - InnerDSL2
2 - NetAlignBP
3 - IsoRank
4 - SparseIsoRank
5 - NetAlignMR
6 - Natalie
7 - DSL1
8 - DSL2
9 - InnerPerm
10 - InnerDSL1
11 - EXACT
12 - ORTHOP
13 - ORTHFR


(e) TIVs, small graphs


Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for di�erent algorithms on the small graphs dataset of all 7-node graphs.


map nodes in one graph to nodes of the same color.
Theorem 4.2 therefore implies that such constraints
can thus be added to the optimization problem, while
maintaining the metric property. In practice, as the
number of variables in optimization problem (2.4) is
n2, incorporating such hard constraints can significantly
reduce the problem’s computation time; we illustrate
this in the next section. Note that adding (4.5) to dOn


does not preserve the metric propery.


5 Experiments
Graphs. We use synthetic graphs from six classes
summarized in the table in Fig. 1(d). In addition, we use
a dataset of small graphs, comprising all 853 connected
graphs of 7 nodes [45]. Finally, we use a collaboration
graph with 5242 nodes and 14496 edges representing
author collaborations [41].
Algorithms. We compare our metrics to several
competitors outlined in Table 1 (see also [10] for
additional details). All receive only two unlabeled
undirected simple graphs A and B and output a
matching a matrix P̂ either in Wn or in P


n estimating
P ú. If P̂ œ P


n, we compute ÎAP̂ ≠ P̂BÎ1. If P̂ œ Wn,
then we compute both ÎAP̂ ≠ P̂BÎ1 and ÎAP̂ ≠ P̂BÎF ;
all norms are entry-wise. We also implement our two
relaxations dW and dOn , for two di�erent matrix norm
combinations.


(Non-metric) Distance Score Algorithms


NetAlignBP Network Alignment using Belief Propagation [9, 33]
IsoRank Neighborhood Topology Isomorphism using Page Rank


[54, 33]
SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page


Rank [9, 33]
InnerPerm Inner Product Matching with Permutations [42]
InnerDSL1 Inner Product Matching with Matrices in Wn and entry-


wise 1-norm [42]
InnerDSL2 Inner Product Matching with Matrices in Wn and Frobe-


nius norm [42]
NetAlignMR Iterative Matching Relaxation [34, 33]


Natalie (V2.0) Improved Iterative Matching Relaxation [23, 22]


Metrics from our Family (2.4)


EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dWn with entry-


wise 1-norm
DSL2 Doubly Stochastic Chemical Distance dWn with Frobe-


nius norm
ORTHOP Orthogonal Relaxation of Chemical Distance d


On with
operator 2-norm


ORTHFR Orthogonal Relaxation of Chemical Distance d
On with


Frobenius norm


Table 1: Competitor Distance Scores & Our Metrics


k ÎP Î0 ÎAP≠P AÎ0 ·
1 3,747,960 100.569 133s
2 239,048 3,004 104s
3 182,474 2,036 136s
4 182,016 2,030 169s
5 182,006 2,030 200s


(a) Coloring Constraints


(b) Convergence of ADMM


Figure 3: (a) E�ect of coloring/hard constraints on the numbers
of variables (ÎP Î0) and terms of objective (ÎAP ≠ P AÎ0) using k
iterations of the WL coloring algorithm. The last column shows
the execution time of WL on a 40 CPU machine using Apache
Spark [62]. (b) Convergence of ADMM algorithm [15] computing
DSL2 on two copies of the collaboration graph as a function of
time, implemented using Apache Spark [62] on a 40 CPU machine.
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(e) TIVs, small graphs


Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for di�erent algorithms on the small graphs dataset of all 7-node graphs.
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a dataset of small graphs, comprising all 853 connected
graphs of 7 nodes [45]. Finally, we use a collaboration
graph with 5242 nodes and 14496 edges representing
author collaborations [41].
Algorithms. We compare our metrics to several
competitors outlined in Table 1 (see also [10] for
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matching a matrix P̂ either in Wn or in P


n estimating
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n, we compute ÎAP̂ ≠ P̂BÎ1. If P̂ œ Wn,
then we compute both ÎAP̂ ≠ P̂BÎ1 and ÎAP̂ ≠ P̂BÎF ;
all norms are entry-wise. We also implement our two
relaxations dW and dOn , for two di�erent matrix norm
combinations.
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NetAlignBP Network Alignment using Belief Propagation [9, 33]
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ORTHOP Orthogonal Relaxation of Chemical Distance d


On with
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ORTHFR Orthogonal Relaxation of Chemical Distance d
On with
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Table 1: Competitor Distance Scores & Our Metrics


k ÎP Î0 ÎAP≠P AÎ0 ·
1 3,747,960 100.569 133s
2 239,048 3,004 104s
3 182,474 2,036 136s
4 182,016 2,030 169s
5 182,006 2,030 200s


(a) Coloring Constraints


(b) Convergence of ADMM


Figure 3: (a) E�ect of coloring/hard constraints on the numbers
of variables (ÎP Î0) and terms of objective (ÎAP ≠ P AÎ0) using k
iterations of the WL coloring algorithm. The last column shows
the execution time of WL on a 40 CPU machine using Apache
Spark [62]. (b) Convergence of ADMM algorithm [15] computing
DSL2 on two copies of the collaboration graph as a function of
time, implemented using Apache Spark [62] on a 40 CPU machine.
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Ep Erd�s-Rényi with probability p [25]
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(e) TIVs, small graphs


Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for di�erent algorithms on the small graphs dataset of all 7-node graphs.


Theorem 4.2 therefore implies that such constraints
can thus be added to the optimization problem, while
maintaining the metric property. In practice, as the
number of variables in optimization problem (2.4) is
n2, incorporating such hard constraints can significantly
reduce the problem’s computation time; we illustrate
this in the next section. Note that adding (4.5) to dOn


does not preserve the metric propery.


5 Experiments
Graphs. We use synthetic graphs from six classes
summarized in the table in Fig. 1(d). In addition, we use
a dataset of small graphs, comprising all 853 connected
graphs of 7 nodes [45]. Finally, we use a collaboration
graph with 5242 nodes and 14496 edges representing
author collaborations [41].
Algorithms. We compare our metrics to several
competitors outlined in Table 1 (see also [10] for
additional details). All receive only two unlabeled
undirected simple graphs A and B and output a
matching a matrix P̂ either in Wn or in P


n estimating
P ú. If P̂ œ P


n, we compute ÎAP̂ ≠ P̂BÎ1. If P̂ œ Wn,
then we compute both ÎAP̂ ≠ P̂BÎ1 and ÎAP̂ ≠ P̂BÎF ;
all norms are entry-wise. We also implement our two
relaxations dW and dOn , for two di�erent matrix norm
combinations.
Clustering Graphs. The di�erence between our met-


(Non-metric) Distance Score Algorithms


NetAlignBP Network Alignment using Belief Propagation [9, 33]
IsoRank Neighborhood Topology Isomorphism using Page Rank


[54, 33]
SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page


Rank [9, 33]
InnerPerm Inner Product Matching with Permutations [42]
InnerDSL1 Inner Product Matching with Matrices in Wn and entry-


wise 1-norm [42]
InnerDSL2 Inner Product Matching with Matrices in Wn and Frobe-


nius norm [42]
NetAlignMR Iterative Matching Relaxation [34, 33]


Natalie (V2.0) Improved Iterative Matching Relaxation [23, 22]


Metrics from our Family (2.4)


EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dWn with entry-


wise 1-norm
DSL2 Doubly Stochastic Chemical Distance dWn with Frobe-


nius norm
ORTHOP Orthogonal Relaxation of Chemical Distance d


On with
operator 2-norm


ORTHFR Orthogonal Relaxation of Chemical Distance d
On with


Frobenius norm


Table 1: Competitor Distance Scores & Our Metrics


rics and non-metrics is striking when clustering graphs.
This is illustrated by the clustering experiment shown
in Fig. 1(a). Graphs of size n = 50 from the 6 classes in
Fig. 1(d) are clustered together through hierarchical ag-
glomerative clustering. We compute distances between
them using nine di�erent algorithms; only the distances
in our family (DSL1, DSL2, ORTHOP, and ORTHFR)
are metrics. The quality of clusters induced by our
metrics are far superior than clusters induced by non-
metrics; in fact, ORTHOP and ORTHFR can lead to
no misclassifications. This experiment strongly suggests
our produced metrics correctly capture the topology of
the metric space between these larger graphs.


Copyright c• 2018 by SIAM
Unauthorized reproduction of this article is prohibited


Average Centroid Complete Median Single Ward Weighted


NetAlignBP


SparseIsoRank


IsoRank


NetAlignMR


Natalie


DSL1


DSL2


ORTHOP


ORTHFR
0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


Fraction of M
issclassified G


raphs à
 better 


Methods of Merging Clusters in Hierarchical Agglomerative Clustering 


N
on


-m
et


ric
s 


M
et


ric
s 


Average Centroid Complete Median Single Ward Weighted


NetAlignBP


SparseIsoRank


IsoRank


NetAlignMR


Natalie


DSL1


DSL2


ORTHOP


ORTHFR
0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


Average Centroid Complete Median Single Ward Weighted


NetAlignBP


SparseIsoRank


IsoRank


NetAlignMR


Natalie


DSL1


DSL2


ORTHOP


ORTHFR
0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


(a) Clustering Misclassification Error


0.58
0.61
0.61
0.59
0.36


0.20
0.20


0.00
0.00


B3 B4 B5 E0.1 P R3 R4 R5 S W3 W4 W5


NetAlignBP


IsoRank


SparseIsoRank


NetAlignMR


Natalie
0


0.01


0.02


0.03


0.04


0.05


B3 B4 B5 E0.02E0.1 P R3 R4 R5 S W3 W4 W5


NetAlignBP


SparseIsoRank


IsoRank


NetAlignMR


Natalie
0


0.01


0.02


0.03


0.04


0.05
(c) TIVs, n = 50(b) TIVs, n = 10


Description


Bd Barabasi Albert of degree d [5]
Ep Erd�s-Rényi with probability p [25]
P Power Law Tree [44]


Rd Regular Graph of degree d [13]
S Small World [35]


Wd Watts Strogatz of degree d [58]


(d) Synthetic Graph Classes


1 2 3 4 5 6 7 8 9 10 11
0


0.02


0.04


0.06


0.08
1 - InnerDSL2
2 - NetAlignBP
3 - IsoRank
4 - SparseIsoRank
5 - NetAlignMR
6 - Natalie
7 - DSL1
8 - DSL2
9 - InnerPerm
10 - InnerDSL1
11 - EXACT
12 - ORTHOP
13 - ORTHFR


(e) TIVs, small graphs


Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for di�erent algorithms on the small graphs dataset of all 7-node graphs.
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This is illustrated by the clustering experiment shown
in Fig. 1(a). Graphs of size n = 50 from the 6 classes in
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them using nine di�erent algorithms; only the distances
in our family (DSL1, DSL2, ORTHOP, and ORTHFR)
are metrics. The quality of clusters induced by our
metrics are far superior than clusters induced by non-
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(c) TIVs, n = 50(b) TIVs, n = 10


Description


Bd Barabasi Albert of degree d [5]
Ep Erd�s-Rényi with probability p [25]
P Power Law Tree [44]


Rd Regular Graph of degree d [13]
S Small World [35]


Wd Watts Strogatz of degree d [58]


(d) Synthetic Graph Classes


1 2 3 4 5 6 7 8 9 10 11
0


0.02


0.04


0.06


0.08
1 - InnerDSL2
2 - NetAlignBP
3 - IsoRank
4 - SparseIsoRank
5 - NetAlignMR
6 - Natalie
7 - DSL1
8 - DSL2
9 - InnerPerm
10 - InnerDSL1
11 - EXACT
12 - ORTHOP
13 - ORTHFR


(e) TIVs, small graphs


Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for di�erent algorithms on the small graphs dataset of all 7-node graphs.


Theorem 4.2 therefore implies that such constraints
can thus be added to the optimization problem, while
maintaining the metric property. In practice, as the
number of variables in optimization problem (2.4) is
n2, incorporating such hard constraints can significantly
reduce the problem’s computation time; we illustrate
this in the next section. Note that adding (4.5) to dOn


does not preserve the metric propery.


5 Experiments
Graphs. We use synthetic graphs from six classes
summarized in the table in Fig. 1(d). In addition, we use
a dataset of small graphs, comprising all 853 connected
graphs of 7 nodes [45]. Finally, we use a collaboration
graph with 5242 nodes and 14496 edges representing
author collaborations [41].
Algorithms. We compare our metrics to several
competitors outlined in Table 1 (see also [10] for
additional details). All receive only two unlabeled
undirected simple graphs A and B and output a
matching a matrix P̂ either in Wn or in P


n estimating
P ú. If P̂ œ P


n, we compute ÎAP̂ ≠ P̂BÎ1. If P̂ œ Wn,
then we compute both ÎAP̂ ≠ P̂BÎ1 and ÎAP̂ ≠ P̂BÎF ;
all norms are entry-wise. We also implement our two
relaxations dW and dOn , for two di�erent matrix norm
combinations.
Clustering Graphs. The di�erence between our met-


(Non-metric) Distance Score Algorithms


NetAlignBP Network Alignment using Belief Propagation [9, 33]
IsoRank Neighborhood Topology Isomorphism using Page Rank


[54, 33]
SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page


Rank [9, 33]
InnerPerm Inner Product Matching with Permutations [42]
InnerDSL1 Inner Product Matching with Matrices in Wn and entry-


wise 1-norm [42]
InnerDSL2 Inner Product Matching with Matrices in Wn and Frobe-


nius norm [42]
NetAlignMR Iterative Matching Relaxation [34, 33]


Natalie (V2.0) Improved Iterative Matching Relaxation [23, 22]


Metrics from our Family (2.4)


EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dWn with entry-


wise 1-norm
DSL2 Doubly Stochastic Chemical Distance dWn with Frobe-


nius norm
ORTHOP Orthogonal Relaxation of Chemical Distance d


On with
operator 2-norm


ORTHFR Orthogonal Relaxation of Chemical Distance d
On with


Frobenius norm


Table 1: Competitor Distance Scores & Our Metrics


rics and non-metrics is striking when clustering graphs.
This is illustrated by the clustering experiment shown
in Fig. 1(a). Graphs of size n = 50 from the 6 classes in
Fig. 1(d) are clustered together through hierarchical ag-
glomerative clustering. We compute distances between
them using nine di�erent algorithms; only the distances
in our family (DSL1, DSL2, ORTHOP, and ORTHFR)
are metrics. The quality of clusters induced by our
metrics are far superior than clusters induced by non-
metrics; in fact, ORTHOP and ORTHFR can lead to
no misclassifications. This experiment strongly suggests
our produced metrics correctly capture the topology of
the metric space between these larger graphs.
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Figure 2: (a) E�ect of introducing TIVs on the performance of di�erent algorithms on the clustering experiment of Figure 1(a)
when using the Ward method. (b) Cosine similarity between the Laplacian of distances produced by each algorithm and the one by
EXACT. (c) Distance between nearest neighbor (NN) graphs induced by di�erent algorithms and NN graph induced by EXACT.


k ÎP Î0 ÎAP≠P AÎ0 ·
1 3,747,960 100.569 133s
2 239,048 3,004 104s
3 182,474 2,036 136s
4 182,016 2,030 169s
5 182,006 2,030 200s


(a) Coloring Constraints


(b) Convergence of ADMM


Figure 3: (a) E�ect of coloring/hard constraints on the numbers
of variables (ÎP Î0) and terms of objective (ÎAP ≠ P AÎ0) using k
iterations of the WL coloring algorithm. The last column shows
the execution time of WL on a 40 CPU machine using Apache
Spark [62]. (b) Convergence of ADMM algorithm [15] computing
DSL2 on two copies of the collaboration graph as a function of
time, implemented using Apache Spark [62] on a 40 CPU machine.


Triangle Inequality Violations (TIV). Given
graphs A, B and C and a distance d, a TIV occurs
when d(A, C) > d(A, B) + d(B, C). Being metrics, none
of our distances induce TIVs; this is not the case for the
remaining algorithms in Table 1. Fig. 1(b) and (c) show
the TIV fraction across the synthetic graphs of Fig. 1(d),
while Fig. 1(e) shows the fraction of TIVs found on the
853 small graphs (n = 7). NetAlignMR also produces
no TIVs on the small graphs, but it does induce TIVs
in synthetic graphs. We observe that it is easier to find
TIVs when graphs are close: in synthetic graphs, TIVs
abound for n = 10. No algorithm performs well across
all categories of graphs.
E�ect of TIVs on Clustering. Next, to investigate
the e�ect of TIVs on clustering, we artificially introduced
triangle inequality violations into the pairs of distances
between graphs. We then re-evaluated clustering per-
formance for hierarchical agglomerative clustering using
the Ward method, which performed best in Fig. 1(a).
Fig. 2(a) shows the fraction of misclassified graphs as the
fraction of TIVs introduced increases. To incur as small
a perturmbation on distances as possible, we introduce
TIVs as follows: For every three graphs, A, B, C, with
probability p, we set d(A, C) = d(A, B) + d(B, C). Al-
though this does not introduce a TIV w.r.t. A,B, and C,
this distortion does introduce TIVs w.r.t. other triplets


involving A and C. We repeat this 20 times for each
algorithm and each value of p, and compute the average
fraction of TIVs, shown in the x-axis, and the average
fraction of misclassified graphs, shown in the y-axis. As
little as 1% TIVs significantly deteriorate clustering per-
formance. We also see that, even after introducing TIVs,
clustering based on metrics outperforms clustering based
on non-metrics.
Comparison to Chemical Distance. We compare
how di�erent distance scores relate to the chemical
distance EXACT through two experiments on the small
graphs (computation on larger graphs is prohibitive). In
Figure 2(b), we compare the distances between small
graphs with 7 nodes produced by the di�erent algorithms
and EXACT using the DISTATIS method of [1]. Let
D œ R835◊835


+ be the matrix of distances between graphs
under an algorithm. DISTATIS computes the normalized
Laplacian of this matrix, given by L = ≠UDU/ÎUDUÎ2
where U = I ≠ 11€


n . The DISTATIS score is the cosine
similarity of such Laplacians (vectorized). We see that
our metrics produce distances attaining high similarity
with EXACT, though NetAlignBP has the highest
similarity. We measure proximity to EXACT with
an additional test. Given D, we compute the nearest
neighbor (NN) meta-graph by connecting a graph in D
to every graph at distance less than its average distance
to other graps. This results in a (labeled) meta-graph,
which we can compare to the NN meta-graph induced
by other algorithms, measuring the fraction of distinct
edges. Fig. 2(c) shows that our algorithms perform quite
well, though Natalie yields the smallest distance to
EXACT.
Incorporating Constraints. Computation costs can
be reduced through metric embeddings, as in (4.6).
To show this, we produce a copy of the 5242 node
collaboration graph with permuted node labels. We
then run the WL algorithm [59] to produce structural
colors, which induce coloring constraints on P œ Wn.
The support of P (i.e., the number of variables in
the optimization (2.4)), the support of AP ≠ PA
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q Nodes often have attributes


Node Attributes
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qExogenous (gender, age, in social network, atomic number in molecule, etc.)


70K 20ysxv =
Age


Gender


Salary


qEndogenous (degree, number of triangles, pagerank, etc.)


1 0.46xv =
PageRank


Degree
#Tria


ngles


3
Find mappings that map


"similar" nodes to each other







Metric Embeddings
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(⌦̃, d̃)


(⌦̃, d̃)q Metric embedding: Mapping of nodes to metric space          . 


70K 20ysxv =
Age


Gender


SalaryE.g. :
⌦̃ = Rd d̃ = Euclidian distance,







Incorporating Node Attributes
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(⌦̃, d̃)


(⌦̃, d̃)q Consider two graphs embedded in the same metric space . 


q Seek permutations that map nodes to other nearby/proximal nodes.


Pairwise distances between
nodes in  (⌦̃, d̃)


Theorem: If              or              ,  then        is a pseudo-
metric over  graphs embedded in           . 


S = WnS = Pn dS
(⌦̃, d̃)


q For            , optimization is convex!S = Wn


dS(A,B) = min
P2S


tr(P>D̃A,B)


D̃A,B 2 Rn⇥n


q For            , optimization is polytime-solvable! 
(Hungarian algorithm)


S = Pn







Incorporating Node Attributes
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(⌦̃, d̃)


(⌦̃, d̃)q Consider two graphs embedded in the same metric space . 


q Seek permutations that map nodes to other nearby/proximal nodes.


Pairwise distances between
nodes in  (⌦̃, d̃)


dS(A,B) = min
P2S


⇣
kAP � PBk+ tr(P>D̃A,B)


⌘


Theorem: If              or              ,  then        is a pseudo-
metric over  graphs embedded in           . 


S = WnS = Pn dS
(⌦̃, d̃)


q For            , optimization is still tractable!S = Wn







Important Practical Implications
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(⌦̃, d̃)


dS(A,B) = min
P2S


⇣
kAP � PBk+ tr(P>D̃A,B)


⌘


q Endogenous features in       : degree, 
pagerank, etc.
q Speed up convergence


Rd


q Constraints
q Map nodes of degree k only to nodes of degree k
q Map females to females, oxygens to oxygens, etc.


Constraints maintain metric property!!


q Reduces # variables in optimization 


⌦̃ = {0, 1, 2, 3, . . .} (degrees, atomic numbers, …)


d̃(x, y) =


(
0, if x = y,


1, if x 6= y.
(Dirac distance)







q Embedding must place nodes in the same metric space.
q Mapping must be unique (in particular, deterministic)
q Preferred property: embedding is permutation invariant.


q Possible Example Embeddings
q Local/node centric features


q WL counts, degrees, cycles, k-hop neighborhoods


q Laplacian Eigenmaps [Hoffman and Buchanan 94, Balasubramanian and Swartz 02, He and Nyogi 03]
q Eigenmaps of Non-Backtracking Walks [See Part III of tutorial!!!]


q Non-Examples:
q Nearly-isometric embeddings [Linial et al. 96, Matousek 99, Bourgain 86, Rao 95]
q Matrix factorization [Nikoletzos et al. 17, Ou et al 16, Shaw and Jebara 09]


q Path-NLP based methods [DeepWalk, node2vec, etc.]


How to Pick an Embedding?
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(⌦̃, d̃)


Need for
research on how 


to co-embed







qRelaxations of Chemical & CKS distances


qIncorporating Metric Embeddings
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q Objective can be written as sum of convex functions
q Solution can be parallelized via consensus ADMM


Distributing Computation
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||AP � PB||1 + tr(P>D̃A,B) =
nX


i=1


nX


j=1


�����
X


k


aikpkj �
X


k


pikbkj


�����+
nX


i=1


nX


j=1


pij d̃ij


nX


i=1


pij = 1
nX


j=1


pij = 1


Boyd, Stephen, et al. "Distributed optimization and statistical learning via the 
alternating direction method of multipliers." Foundations and Trends® in 
Machine learning 3.1 (2011): 1-122.







q Objective cannot be written as sum of convex 
functions


q Solution can still be parallelized through map and 
reduce operations+ADMM


Distributing Computation
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nX
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Parallel Implementation
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Figure 2: Computing the distance be-
tween two isomorphic graphs with
82,168 nodes and 948,464 edges, rep-
resenting Slashdot posts [91], using
hard constraints imposed by the WL al-
gorithm [136] with k = 5. This is a con-
strained optimization problem involv-
ing 3,184,682 unknowns and an objec-
tive with 1,389,824 terms. Our ADMM
Spark code solves this problem by par-
allelizing it over a cluster of 8 ma-
chines with 56 cores each; additional
speedups are attainable over a Google-
scale cluster.


Transformative Potential & Applicability: If successful, our
project will provide a general family of graph metrics across var-
ious domains with the purpose of narrowing down on canonical
distances and geometries for practical uses. Scalable, discrim-
inative, interpretable, statistically robust, metric distances over
graphs have wide applicability because distance (or, conversely,
similarity) is a ubiquitous function in many domains such as bi-
ology, social network analysis, and crystallography. We intend
to demonstrate this applicability by studying metrics specifically
applied to these domains.
Research Thrusts: The project is organized across three re-
search thrusts.
Thrust 1: Multi-scale Graph Embeddings in Metric Spaces. This
thrust studies how to embed a graph into a metric space. There
are no canonical ways of doing this at the moment. To find
distances, we need to scale up counting of cycles in a graph.
Also, to find statistically robust metric spaces and interpretable
results, we need to sample from this metric space, which also
does not have a canonical form.
Thrust 2: Large Scale Study of Graph Metrics and their Induced
Topology. Here we use large synthetic and real-life graphs to
see how different properties of our family of metrics compare to
that of other distances, and the chemical distance in particular.
Guided by this large scale study, we plan to explore our family in several important directions while
keeping properties (1)-(6).
Thrust 3: Scalability Via ADMM. We propose a massively distributed implementation of metrics in
our family through the Alternating Directions Method of Multipliers. We have created a preliminary
implementation over C, as well as one over Apache Spark, that can be readily deployed on Google
Cloud. The goal of this thrust is to incorporate, scale, and test the metrics produced by Thrusts 1 & 2
using this massively parallel implementation.


2 Literature Survey


Symbol Description


d, dS Graph distance, metric or pseudometric
W Metric space over which distance d is defined


GA, GB Graphs
A, B Adjacency matrices


G = (V,E) A graph with vertex set V and edge set E


fi(u) The i
th feature of node u


P,P> Relaxed association matrix and its transpose
eu,v The edge connecting nodes u and v


S Set of values for P


P
n Permutations on n elements


W
n Set of doubly stochastic matrices of dimension n


O
n Set of orthogonal matrices of dimension n


k ·k Matrix norm
y Graph embedding map


D,DyA ,yB
Matrix of embedded distances by maps yA,yB


1 Vector of all ones


Table 1: Common notation used.


Graph similarity and the related problem of
graph matching have a long history in image
processing [41], chemistry [10, 90], and so-
cial network analysis [95, 85]. Distances are
easy to define when the correspondence between
nodes in the two graphs is known (i.e., graphs
are labeled) [104, 85, 122]. Beyond the chem-
ical distance [90], classic examples of distances
between unlabeled graphs are the edit distance
[60, 113] and the maximum common subgraph
distance [32, 31], both of which also have ver-
sions for labeled graphs. Both are metrics and
hard to compute, while known approximation
algorithms [109, 51] do not maintain the met-
ric property. Additional alternatives include the
Chartrand-Kubiki-Shultz (CKS) distance [35] and the reaction distance [82]. There are strong con-
nections between these metrics and the chemical distance [90], including that all three are defined


D–2


q Apache Spark
q ADMM


Slashdot graph
q n = 82,168 nodes
q |E| = 948,464 edges


q Constraints: WL-coloring
algorithm


k # vars exec. time
0 27,478,564 0s
1 3,747,960 133s
2 239,048 104s
3 182,474 136s
4 182,016 169s
5 182,006 200s


Table 4: Effect of structural constraints
on problem complexity. A graph with
5242 nodes and 14496 edges, repre-
senting author collaborations [91] was
colored using k iterations of the WL al-
gorithm [136]. Unconstrained, find-
ing an isomorphism between the graph
and a permutation of its nodes involves
52422 ⇡ 27.4M variables. Restricting
maps to nodes of the same color re-
duces the number of variables in (3.4)
significantly. For k  5, the execution
time of the WL algorithm over a single
machine with 40 cores using our Spark
implementation is less than 4 mins.


Preliminary Implementation: We have produced an imple-
mentation of both (a) a C-based solver for (3.4), that runs on a
single multi-core machine with a GPU card, and (b) a Python-
based Apache Spark solver. Currently these solve (3.4) under
doubly stochastic constraints, using `1 and `2 entry-wise matrix
norms. Also, to test linear penalties, we have implemented sev-
eral standard methods for producing topology-related numeric
attributes, including the size of k-hop neighborhood, the num-
ber of cycles passing through a node k, and a node’s page-rank.
We have also implemented the Weisfeiler-Lehman (WL) color-
ing algorithm [136], which colors nodes identically if their k-
hop neighborhoods are isomorphic. We have parallelized all of
the above node attribute and coloring algorithms through map-
reduce in our Apache Spark implementation (see Fig. 2) This
allows us to readily deploy and test our solver on hundreds of
machines and thousands of computing cores. It also seamlessly
interfaces with the Google cloud computing infrastructure, al-
lowing us to scale and deploy our experiments on Google cloud
to more machines at almost no additional coding overhead.
Task 3.1: Scaling through Colors/Hard Constraints: In general, computing dS involves O(n2) vari-
ables. However, by introducing hard constraints through node colors, we can significantly reduce
the number of free variables and computation complexity. This color constraints might enforce, for
example, that when comparing two molecules, represented as graphs, oxygen atoms in one molecule
are only mapped to oxygen atoms in the other molecule. Most importantly, our Theorem 3 guaran-
tees that such constraints do not violate the metric property. In Fig. 4 we illustrate how introducing
structural color restrictions, using the WL algorithm, can reduce the number of variables (and thus
the convergence time) of ADMM, by several orders of magnitude. We intend to investigate means of
introducing different coloring constraints, and characterizing the effect on convergence performance,
as well as the resulting metric space they induce over graphs. We will explore both exogenous, domain
specific hard constraints, as well as structural constraints developed in combination with Thrust 1.
We will characterize the trade-offs between the pre-computation of constraints and the convergence
time of the algorithm.
Task 3.2: Scaling through Penalty Terms: Our preliminary implementation only supports dS when
S = W


n and using `1 and `2 entry-wise matrix norms. We will extend our framework so that users
can include many other useful terms in the objective function of (3.4), as developed in Thrusts 1
and 2. Structural node attributes and their embeddings also improve scalability, not by reducing the
number of free variables but by improving the rate of convergence: well-designed node attributes
penalize sub-optimal solutions. In this task, we will leverage the structural local metrics designed
in Thrusts 1 and 2 and quantify their effect on the convergence of ADMM. We will develop code for
the parallel implementation of these metric embeddings, as well as the computation of the distances
between nodes. We will also consider combinations of soft and hard constraints, and characterize the
tradeoffs between the computational cost of producing embeddings, computing pairwise distances
and the convergence time of the algorithm.
Task 3.3: Optimal Partitioning: The convergence of ADMM is affected in four different ways when
we alter how we partition the data across multiple machines: the communication cost, the number of
iterations to convergence, the cost per iteration and the choice of good ADMM parameters. To mini-
mize communication during the consensus phase, one needs to solve a balanced partitioning problem
over a bipartite graph that encodes the connection between terms in the objective and variables. The
balanced partitioning is an NP-hard problem, with a long history in distributed computing and data
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q 448 CPUs = 8 machines x 56 cores each
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q Given two graphs as input, how similar are they?
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Graph Distances & Graph Similarity
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q Given two graphs as input, how similar are they?


q"Labeled" setting: correspondence between nodes given.  
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Graph Distances & Graph Similarity
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q Given two graphs as input, how similar are they?


q"Unlabeled" setting: no prior correspondence between nodes. 
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Applications of Graph Distances
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q Key in many Graph Mining 
Tasks
q Graph De-anonymization
q k-Nearest Neighbors Search
q Clustering
q …


q Graphs are Ubiquitous
q Social Networks
q Computer Vision
q Chemistry
q Computer Networks
q …


friendship graph phone-call graph







A Highly Desirable Property
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symmetric) binary matrices A œ {0, 1}n◊n, and weighted
graphs by real matrices A œ Rn◊n.
Matrix Norms. Given a matrix A = [aij ]i,jœ[n] œ
Rn◊n and a p œ N+ fi {Œ}, its induced or operator p-
norm is defined in terms of the vector p-norm through
ÎAÎp = supxœRn:ÎxÎp=1 ÎAxÎp, while its entry-wise p-
norm is given by ÎAÎp = (


qn
i=1


qn
j=1 |aij |p)1/p, for


p œ N+, and ÎAÎŒ = maxi,j |ai,j |. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as Î · ÎF .
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as P


n = {P œ {0, 1}n◊n : P1 = 1, P €1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkho� polytope)
as Wn = {W œ [0, 1]n◊n : W1 = 1, W €1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as O


n = {U œ Rn◊n : UU€ = U€U = I}. Note that
P


n = WnflO
n. Moreover, the Birko�-von Neumann The-


orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of P


n.
Metrics. Given a set �, a function d : � ◊ � æ R is
called a metric, and the pair (�, d) is called a metric
space, if for all x, y, z œ �:


d(x, y) Ø 0 (non-negativity)(2.3a)
d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)


A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:


d(x, x) = 0 for all x œ �.(2.3e)


If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥d y over �. A pseudometric
is then a metric over �/ ≥d, the quotient space of ≥d.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.
Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs GA and GB . Then, GA and GB are isomor-
phic if and only if there exists P œ P


n s.t. P €AP = B
or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define dS : � ◊ � æ R+ as:


dS(A, B) = minP œS ÎAP ≠ PBÎ,(2.4)


where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that dS is the chemical


distance (1.1) when � = Rn◊n, S = P
n and Î ·Î = Î ·ÎF .


In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which dS is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.


For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].


3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.


Theorem 3.1. If S = P
n and Î · Î is an arbitrary


entry-wise or operator norm, then dS given by (2.4) is a
pseudometric over � = Rn◊n.


Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.


Theorem 3.2. If S = Wn and Î·Î is an arbitrary entry-
wise norm, then dS given by (2.4) is a pseudometric
over � = Sn◊n. If Î · Î is an arbitrary entry-wise or
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Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected
graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
dS is a quasimetric over the quotient space �/≥d, and
symmetry is attained via the symmetric extension d̄S .


Theorem 3.2 has significant practical implications.
In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:


Theorem 3.3. If S = O
n and Î ·Î is either the operator


or the entry-wise (i.e., Frobenius) 2-norm, then dS given
by (2.4) is a pseudometric over � = Rn◊n.


Though (2.4) is not a convex problem when S = O
n,


it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · ÎF


and � = Sn (i.e., for undirected graphs) by performing
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operator norm, then its symmetric extension d̄S(A, B) =
dS(A, B) + dS(B, A) is a pseudometric over � = Rn◊n.


Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected
graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
dS is a quasimetric over the quotient space �/≥d, and
symmetry is attained via the symmetric extension d̄S .


Theorem 3.2 has significant practical implications.
In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:


Theorem 3.3. If S = O
n and Î ·Î is either the operator


or the entry-wise (i.e., Frobenius) 2-norm, then dS given
by (2.4) is a pseudometric over � = Rn◊n.


Though (2.4) is not a convex problem when S = O
n,


it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · ÎF


and � = Sn (i.e., for undirected graphs) by performing
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Pair           is then called a metric space.(⌦, d)
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Isometry in metric spaces


Two metric spaces (Ω1, d1) and (Ω2, d2) are called


isometric when there exists a function:
!: Ω$ → Ω& such that -$ ., 0 = -& ! . , !(0)


2







Isometry and graphs as metric spaces


Two metric spaces (Ω1, d1) and (Ω2, d2) are called
isometric when there exists a function:


!: Ω$ → Ω& such that -$ ., 0 = -& ! . , !(0)


Graphs as metric spaces
• Graph G
– Ω1 = node set of G and d1 = a distance function on Ω1


• Graph H
– Ω2 = node set of H and d2 = a distance function on Ω2


• f = a node-correspondence function
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From isometry to isomorphism


• Given a graph G = (V, E), the set of nodes is a 
metric space under the shortest path distance


• If two unweighted graphs are isometric with the 
shortest path distance, then they are isomorphic
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The length spectrum of a graph 
characterizes its 2-core uniquely 
up to isometry.


– Constantine, David, and Jean-François Lafont. 
“Marked Length Rigidity for One-Dimensional 
Spaces.” Journal of Topology and Analysis, 2018.


The length spectrum
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1-Core


2-Core







The length spectrum of a graph 
characterizes its 2-core uniquely 
up to isometry.


– Constantine, David, and Jean-François Lafont. 
“Marked Length Rigidity for One-Dimensional 
Spaces.” Journal of Topology and Analysis, 2018.


è If two graphs have the same length spectrum, 
then their 2-cores are isometric.


The length spectrum
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1-Core


2-Core







• Given a graph G = (V, E) and a node v ...


How to construct the length spectrum?
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• ... consider the set of all closed walks that start 
and end at node v


Closed walks
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• Closed walks are equivalent if they differ by 
tree-like parts that don’t go through the 
basepoint ...


Equivalence of closed walks
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equivalence 
class







• Retain the shortest closed walk in each subset
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A representative from each equivalence class


equivalence 
class







• The set of representatives is the fundamental 
group of G with basepoint v – a.k.a. !" #, %


The fundamental group
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• Closed walks are equivalent if they differ by 
tree-like parts that don’t go through the 
basepoint


Modifying equivalence of closed walks
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• Under this new equivalence definition, we get the 
set of non-backtracking cycles (NBCs) of G


Non-backtracking cycles
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NBCs of G







Back to the length spectrum
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NBCs


• The length spectrum, ℒ, assigns to each closed 
walk the length of its shaved version


ℒ = 3







Back to the length spectrum
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NBCs


• The length spectrum, ℒ, assigns to each closed 
walk the length of its shaved version


ℒ = 3







Back to the length spectrum
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NBCs


• The length spectrum, ℒ, assigns to each closed 
walk the length of its shaved version


ℒ = 3







Back to the length spectrum
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NBCs


• The length spectrum, ℒ, assigns to each closed 
walk the length of its shaved version


ℒ = 3







How can we measure distance between graphs 
with the length spectrum?
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! ",$ = !(ℒ(, ℒ))







How can we measure distance between graphs 
with the length spectrum?
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! ",$ = !(ℒ(, ℒ))


Two 
assumptions


Two
problems


Two
solutions


How to compute? Outputs instead of 
inputs


How to compare? Partition the set of 
outputs







How can we measure distance between graphs 
with the length spectrum?
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G H
Partition the set of outputs


Inputs


Outputs







G H


How can we measure distance between graphs 
with the length spectrum?
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Outputs







G H


How can we measure distance between graphs 
with the length spectrum?
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3 34 4


Partition the set of outputs


length
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Inputs


Outputs







G H


How can we measure distance between graphs 
with the length spectrum?
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Partition the set of outputs


length
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Inputs


Outputs







G H


How can we measure distance between graphs 
with the length spectrum?
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Partition the set of outputs
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• How should we compare these two histograms?
• Observe the height of each bar is the number of 


NBCs of a certain length
• We can compute this using the non-backtracking 


matrix


From length spectrum to histogram of NBCs
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Detour: Non-Backtracking matrix B
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Detour: non-backtracking matrix B
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0 1 1







Detour: non-backtracking matrix B
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0 1 1


!"# = %0 if ) ≠ +
1 if ) = +







Detour: non-backtracking matrix B
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0 1 1


• Similar to an adjacency 
matrix of the set of 
directed edges


• Entries of the powers 
store the number of 
non-backtracking walks


• !"#"$% = # of non-
backtracking walks 
starting at e1 and 
ending at e2







Detour: non-backtracking matrix B
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0 1 1


• Similar to an adjacency 
matrix of the set of 
directed edges


• Entries of the powers 
store the number of 
non-backtracking walks


• ∑" #$%$%& = # of non-
backtracking cycles 
(NBCs) of length k







Detour: non-backtracking matrix B
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0 1 1


• Similar to an adjacency 
matrix of the set of 
directed edges


• Entries of the powers 
store the number of 
non-backtracking walks


• !"($%) = # of NBCs of 
length k







Detour: non-backtracking matrix B
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0 1 1


• Similar to an adjacency 
matrix of the set of 
directed edges


• Entries of the powers 
store the number of 
non-backtracking walks


• ∑" #"$ = # of NBCs of 
length k







Computing B
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• Given G = (V, E ) with |V| = n and |E| = m, 
define


• Q and P are n × 2m matrices, so C is a 
2m × 2m matrix


Given                     with               , 
define







Computing B
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• Given G = (V, E ) with |V| = n and |E| = m, 
define







Computing B
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Computing B
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Computing B
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Algorithm: computeB
Input: a graph G
Output: non-backtracking matrix B of G


P, Q ← incidence matrices
C ← PT x Q


for each positive entry Ck→l,u→v:
if Cu→v,k→l==0:


Bk→l,u→v = 1


Runtime
complexity for
computing B
is O(m+n⟨k2⟩)
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• How should we compare these two histograms?
• Recall that the height of each bar is the number of 


NBCs of a certain length
• The histograms can be generated using only the 


eigenvalues of B


Graph distance
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• Given two graphs G and H
• Let Λ and M be the CDFs of the respective spectral 


densities of the largest r eigenvalues.
– Note they are functions of two variables since they 


are defined on the complex plane.
• Then, the Non-Backtracking Distance, NBD, is


The NBD of two graphs
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Computing the NBD graph distance
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Algorithm: NBD
Input: two graphs G, H, integer r
Output: real number d, the NBD between G, H


G’, H’ ← shave(G), shave(H)
B1 , B2 ← computeB(G’), computeB(H’)
λ , µ ← eigs(B1,r), eigs(B2,r)


d ← EMD(λ, µ)


https://github.com/leotrs/sunbeam



https://github.com/leotrs/sunbeam





Koutra, Danai, et al. “DeltaCon: A Principled Massive-Graph Similarity 
Function.” SIAM SDM 2013.


NBD is a pseudo-metric
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[A1] Identity:


[A2] Symmetry:


[A3] Triangle Inequality: 


[A4] Id. of indiscernibles: 


[A5] Divergence*: as  







• NBD does not satisfy [A4] because of cospectrality: 
sometimes different graphs have the same eigenvalues


• This can occur w.r.t. the adjacency matrix, the 
Laplacian, or the non-backtracking matrix


Cospectrality
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Smallest cospectral graphs w.r.t. the non-backtracking matrix







• Almost all trees are cospectral.
– Schwenk, A. J., Almost all trees are cospectral. In New 


Directions in the Theory of Graphs (Proc. Third Ann Arbor 
Conf), pp. 275-307. 


• Open problem: How many graphs are cospectral?
– Godsil, C. D., McKay, B. D. Constructing cospectral graphs. 


Aequationes Math. 25 (1982), no. 2-3, 257–268.
• Conjecture: The number of graphs that are cospectral


goes to 0 as the number of nodes goes to infinity.
– Durfee, C., Martin, K., Distinguishing graphs with zeta 


functions and generalized spectra. Linear Algebra Appl. 481 
(2015), 54–82. 


Cospectrality
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Properties of B’s spectrum: hubs
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Configuration Model with power law deg. dist. 
N = 10k, �k�= 10, γ = 2.1


Fewer hubs







Properties of B’s spectrum: hubs
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Configuration Model with power law deg. dist. 
N = 10k, �k�= 10, γ = 2.1


Fewer hubs







Properties of B’s spectrum: triangles
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Erdos-Renyi Graph 
N = 10k, �k�= 10, γ = 2.1


More triangles







Properties of B’s spectrum: triangles
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Erdos-Renyi Graph 
N = 10k, �k�= 10, γ = 2.1


More triangles







Data sets
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Choosing number of eigenvalues r
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r0 is the number of 
eigenvalues whose 
magnitude is larger 
than ! = #$.







Choosing number of eigenvalues r
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r0 is the number of 
eigenvalues whose 
magnitude is larger 
than ! = #$.







Application: clustering
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• 1 dot = 1 eigenvalue
• r = 200; 50 graphs per model







Application: clustering (UMAP)


54


• 1 dot = 1 graph
• Correctly separates WS, HG, ER
• Mistakes BA, CM, KR


• 1 dot = 1 eigenvalue
• r = 200; 50 graphs per model







Application: clustering (NBD)
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• AS = autonomous systems
• P2P = peer to peer


• CA = co-authorship
• social = facebook, twitter, 


Slashdot, epinions, wiki-
vote







Application: clustering (comparison)
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• NBD-ρ: NBD using as r0 eigenvalues
• NBD-300: NBD using 300 eigenvalues
• GCD: graphlet correlation distance


Yaveroglu et. al., Scientific reports 4, 4547 (2014)


• Lap: 300 eigenvalues of Laplacian
• ESCAPE: motif counts


Pinar et. al., WWW'17, pp. 1431–1440 (2017)


• S: Schieber et al's distance
Schieber et. al., Nature communications 8, 13928 (2017)







Application: pattern recognition
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• Enron email network
• 1 network per day
• Comparing all other days to day 0 (Sunday)  







Application: anomaly detection
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• Enron email network
• 1 network per week
• Comparing each week to the previous week







Summary of part 1: graphs as metric spaces
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• The length spectrum characterizes the 
2-core of a graph


• The eigenvalues of B account for the image 
of the length spectrum


• NBD is a pseudo-metric, which can be 
interpreted in terms of triangles & degrees


• Applications: cluster graphs, pattern 
recognition, anomaly detection


• Paper: arXiv:1807.09592


• Code: https://github.com/leotrs/sunbeam
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Vectorization
• Given a graph G=(V, E), find a d-dimensional feature 


vector for each node or edge
• Geometry: similar nodes are close to each other
• Useful for link prediction, node classification, etc.


Vectorization vs. pattern recognition
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Vectorization vs. pattern recognition
Vectorization
• Given a graph G=(V, E), find a d-dimensional feature 


vector for each node or edge
• Geometry: similar nodes are close to each other
• Useful for link prediction, node classification, etc.


Pattern Recognition
• Given a graph G=(V, E), find a d-dimensional location 


for each node/edge
• Geometry: shape reveals relationships between nodes
• Useful for visualization, anomaly detection, etc.
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“Perhaps the most famous example is that the 
embedded representation of the word queen can 
be roughly recovered from the representations of 
king, man, and woman.”


!"##$ ≈ &'$( −*+$ + -.*+$
– Omer Levy, Yoav Goldberg, Linguistic Regularities in Sparse 


and Explicit Word Representations. CoNLL 2014: 171-180.


Example of pattern recognition


63







Many approaches of graph embedding
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Name Definition Common
Approach Properties Unique 


solution?


Graph 
embedding


Low rank representation 
of the nodes


Matrix 
factorization Distance No


Isometric 
embedding


Embedding preserves 
distances exactly


Randomized
algorithm Distance No


Nearly isometric 
embedding


Embedding preserves 
distances with global distortion


Randomized
algorithm Distance No


Simplex 
embedding


Embed nodes based on the 
eigenvectors of the Laplacian


Eigen 
decomposition


Vector space 
(convexity, linear 


indep., …)
Yes


Graph planarity Place nodes on a plane such 
that edges don’t cross Edge additions Adjacency 


(relaxed distance) No







• The length spectrum


• Modifying the length 
spectrum


• Detour: Non-backtracking 
matrix (NBM)


• Graph distance


• Properties & examples


Part 2. 
Geometry of graph embeddings


Leo Torres, Kevin Chan, & 
Tina Eliassi-Rad


• Vectorization vs. pattern 
recognition


• Literature review


• GLEE: Geometric Laplacian 
Eigenmap Embedding


• Examples


65


Outline
Part 1. 


Graphs as metric spaces
Leo Torres, Pablo Suárez Serrato, & 
Tina Eliassi-Rad (arXiv:1807.09592)



https://arxiv.org/abs/1807.09592





• Popular in the literature is the distance-minimization assumption: 
if two nodes are close (in the graph), their embeddings must be 
close (in embedding space).


GLEE: Geometric Laplacian Eigenmap Embedding
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• Popular in the literature is the distance-minimization assumption: 
if two nodes are close (in the graph), their embeddings must be 
close (in embedding space).


• Let’s dispose of the distance-minimization assumption and build an 
embedding with geometric properties by leveraging the so-called 
simplex geometry of graphs. 


GLEE: Geometric Laplacian Eigenmap Embedding
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• Popular in the literature is the distance-minimization assumption: 
if two nodes are close (in the graph), their embeddings must be 
close (in embedding space).


• Let’s dispose of the distance-minimization assumption and build an 
embedding with geometric properties by leveraging the so-called 
simplex geometry of graphs. 


• Advantages of this approach:
– Deterministic and interpretable.
– Great performance, especially in the case of  low average 


clustering coefficient
– Robust to noise: it can recover graph structure in the presence 


of a high percentage of noisy edges.


GLEE: Geometric Laplacian Eigenmap Embedding
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GLEE: Geometric Laplacian Eigenmap Embedding
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• Node embedding based on the geometric properties of 
the spectral decomposition of the Laplacian


! = # Λ #%







GLEE: Geometric Laplacian Eigenmap Embedding
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• Node embedding based on the geometric properties of 
the spectral decomposition of the Laplacian


• ! = # Λ #%


• ! = # Λ Λ #%







GLEE: Geometric Laplacian Eigenmap Embedding
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• Node embedding based on the geometric properties of 
the spectral decomposition of the Laplacian


• ! = # Λ #% → ! = # Λ Λ #% → ! = ' '%







GLEE: Geometric Laplacian Eigenmap Embedding
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• Node embedding based on the geometric properties of 
the spectral decomposition of the Laplacian


• ! = # Λ #% → ! = # Λ Λ #% → ! = ' '%







GLEE: Geometric Laplacian Eigenmap Embedding
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• Node embedding based on the geometric properties of 
the spectral decomposition of the Laplacian


• ! = # Λ #% → ! = # Λ Λ #% → ! = ' '%
The rows of S form a simplex.







GLEE: Geometric Laplacian Eigenmap Embedding
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• Node embedding based on the geometric properties of 
the spectral decomposition of the Laplacian


• ! = # Λ #% → ! = # Λ Λ #% → ! = ' '%


• The d-dimensional GLEE embedding of node i is the 
first d columns of the ith row of S.


The rows of S 
form a simplex.







GLEE: Geometric Laplacian Eigenmap Embedding
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Problem: find     
optimal value of    .


• Graph reconstruction: a classification problem with 
extreme class imbalance


Can we trust the first d columns of L?
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! !"


!# !#" Problem: Find an optimal value for $.







Can we trust the first d columns?
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! = # #$! ≈ #& #&$


'( ) '*


C
ou


nt







Can we trust the first d columns?
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...plus subsampling
to deal with class 


imbalance.


Three solutions:


1. Constant


2. Gaussian
Mixtures


3. Density
Estimation







GLEE: graph reconstruction
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GLEE’s 
performance 
increases as 
dimension 
increases and 
clustering 
decreases.







Lemma: Given a graph G and its GLEE embedding S,
consider two disjoint node sets V1 and V2. Then, the
number of edges with one endpoint in V1 and one
endpoint in V2, is given by − "# "$ %&'( ) %&*
Proof. By linearity of the dot product, we have 


− "# "$ %&'( ) %&* = ∑-∈&' ∑/∈&* 0- ) 0/( = − ∑-∈&' ∑/∈&* 1-/
The expression on the right is exactly the number of edges
with one endpoint inside V1 and the other inside V2.


GLEE: link prediction with geometry of embeddings
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K. Devriendt and P. Van Mieghem. The simplex geometry of graphs. The Journal of Complex Networks, 2019.







• GLEE link prediction with # of common neighbors (CN)
!" #, % = −deg # !+ ,


- . /0 = −deg % !+ 0
- . /,


GLEE: link prediction with geometry of embeddings
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GLEE (number of common neighbors, CN):


GLEE-L3 (number of paths of length 3, L3):


is the center of 
mass of neighbors of 


is the center of 
mass of neighbors of 


!+ ,
- is the center of mass 


of neighbors of i
!+ 0
- is the center of mass 


of neighbors of j







GLEE: link prediction with geometry of embeddings
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• GLEE link prediction with # of paths of length 3 (L3)







GLEE: link prediction results
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0.04 0.14 0.56
Average clustering coefficient







GLEE: robustness to rewiring
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0.04 0.14 0.56
Average clustering coefficient







Summary of part 2: geometry of graph embeddings
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• Replace distance-minimization with the 
direct encoding of graph structure in the 
geometry of the embedding space


• The simplex geometry of the Laplacian 
allows for interpretable dimensionality 
reduction


• These embeddings can be interpreted in 
terms of their shape


• Useful for networks with low average 
clustering coefficient







• Geometric data analysis of graphs:
graphs as metric spaces, metric spaces of 
graphs, metric embedding spaces, simplex 
geometry


• Topological data analysis of graphs:
the length spectrum, the non-backtracking 
matrix, its eigenvalues and eigenvectors


Summary
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