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Talk outline

Graph Metric Spaces!

1.  Quick	review	about	graphs	
	
2.  Applica3ons	where	comparing	graphs	is	important	

3.  Graph	distances	

4.  Why	a	metric?	

5.  Scalable	alignment	algorithms	
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Graphs, their comparison, and applications

Graph Metric Spaces!

Protein	1	

Protein	2	
Protein	3	

interac3on	

Protein	i	and	j	interact	transiently	
,	or	in	a	stable	form	

(i, j) 2 E ,

Unlabeled,	undirected,	non-weighted	

G = (V, E) V = [n]
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Labeled,	undirected,	non-weighted	

V ⇢ Possible	amino	acid	sequences	G = (V, E)

Protein	1	[R	G	N	I	L	….]	

Protein	2	[E	R	H	D	…]	
Protein	3	

6=
Protein	1	[E	G	H	I	L	….]	

Protein	2	[A	R	N	D	…]	
Protein	3	
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Graph Metric Spaces!

Protein	1	

Protein	j 
Protein	i !i,j

How	confident	are	we	that	i	and j	will	interact?	

G = (V, E ,W) V = [n]
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Graphs, their comparison, and applications

Graph Metric Spaces! Boston college 5	

All	of	these	types	of	graphs,	and	other	combina3ons,	
can	be	described	by	an	adjacency	matrix.	
	
	
	
	

•  Non-weighted	graphs	have	0/1	entries	in	A 
•  Undirected	graphs	have	symmetric	A 
•  																iff	node	i	and	j	are	not	connected	

 

A =

2

4
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

3

5

ai,j 6= 0
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Graphs, their comparison, and applications

Graph Metric Spaces!

Graph	comparison	methods	
	
	
	

•  Alignment-based	

•  Alignment-free	

	 		
	

(although	this	dis3nc3on	might	not	always	be	clear)	
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Graphs, their comparison, and applications

Graph Metric Spaces!

Example	of	alignment-based	method	in	biology:	
Alignment	of	protein-protein	interac3on	(PPI)	networks	

Network	1	 Network	2	
a

b

i
j

[A	R	N	D	…]	

We	want	to	maximize	the	#	of																			such	that	
									are	evolu3onarily	related,	and										are	too,	and	
the	interac3on	between											and										is	the	same.		

(a, b, i, j)
(a, i) (b, j)

(a, b) (i, j)(a, b) (i, j)

Boston college 7	
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Graph Metric Spaces!

Network	1	 Network	2	
a

b

i
j

[A	R	N	D	…]	

•  Do	we	give	more	importance	to	the	labels	
(matching	nodes	with	similar	sequences)	or	to	the	
topology?	

•  How	do	we	get	a	score	from	the	alignment	between	
the	two	graphs?	
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Graphs, their comparison, and applications

Graph Metric Spaces!

The	alignment	of	PPI	networks	(or	networks	in	general)	
allows	us	to	
	
1.  	Transfer	knowledge	from	one	graph	into	another	
	
	
	

	
p1 p2 p3 p4 p5

p1 p2 p3 p4 p5p1 p2 p3 p4 p5

p1 p2 p3 p4 p5p1 p2 p3 p4 p5 p01 p02 p03 p04 p05

p01 p02 p03 p04 p05

p01 p02 p03 p04 p05p
0
1 p02 p03 p04 p05

p01 p02 p03 p04 p05

known	func3on	for	p1 inferred	func3on	for	p’5 
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Graph Metric Spaces!

The	alignment	of	PPI	networks	(or	networks	in	general)	
allows	us	to	
	
2.  Get	a	score	of	how	similar,	or		dissimilar,	two	

graphs	are	
	
3.  How	well	is	a	sub	network	of	proteins	found	in	a	

large	network	of	proteins?	
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Graphs, their comparison, and applications

Graph Metric Spaces!

Alignment-free	methods	facilitate	comparing	graphs	
from	different	domains.	
	
We	can	compare	networks	from	different	domains	
using,	e.g.,	degree	distribuDon,	and	a	method	to	
compare	distribu3ons.	
	
For	example,	several	networks	from	different	domains	
are	similar	in	the	sense	that	they	have	heavy	tail	
degree	distribu3ons:	e.g.	social	networks	[e.g.	Ahn	et	
al.	2007],	WWW	[e.g.	Crovella	et	al.	1998],	PPI	[e.g.	
Hormozdiari	et	al.	2007].	
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Graphs, their comparison, and applications

Graph Metric Spaces!

There	are	many	other	kinds	of	networks	that,	if	
compared,	bring	more	knowledge	than	the	sum	of	
their	parts.	
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Graph Metric Spaces!

There	are	many	other	kinds	of	networks	that,	if	
compared,	bring	more	knowledge	than	the	sum	of	
their	parts.	
	
In	biology	
	

•  PPI	networks,	e.g.	[Rohit	et	al.	2008]	
•  Gene	regulatory	networks	
•  Metabolic	networks,	e.g.		[Pinter	et	al.	2005]	
•  Signaling	networks			
•  Neural	networks	(of	the	real	kind),	
	e.g.	[Milano	et	al.	2017]	
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Graphs, their comparison, and applications

Graph Metric Spaces!

In	computer	vision,	comparing	graphs,	known	usually	as	
graph	matching,	is	useful	in	several	tasks.	
	
1.   Locate	objects	from	features,	
e.g.	[Gold	&	Rangarajan	96]	
	
2.   Transfer	knowledge,	e.g.	
[Zhang	et	al.	2010]	

3.   Find	matches	in	database,	
e.g.	[Kisku	et	al.	2007]	

Supervised Label Transfer for Semantic Segmentation of Street Scenes 565
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Fig. 2. KNN-MRF Matching between an input image (a) and an image set that consists
of (b) and (c): for each super pixel P in (a), candidate label set for P in the energy
function (1) consists of the K nearest neighbor of P , {Ni} in (b) and (c); for neighboring
super pixels A and B, matching to neighboring super pixel C and D will be given more
preference by setting the smoothness term of the energy function (1) properly

of mismatch(LTj ̸= LSj), we train some matching correspondences classifica-
tion models with the extremely randomized forest [19] to classify the obtained
matching correspondences and discard those semantically incorrect matching
correspondences, or mismatches.

For each matching correspondence ⟨Tj , DTj , LTj , Sj, DSj , LSj⟩, LSj is known
from the annotation associated with {Ai}N

i=1, so to distinguish whether it is a
mismatch, we can reduce the problem to distinguish whether it is a mismatch
for the certain category LSj . Therefore, instead of training a general classi-
fication model for all matching correspondences, we train a unary matching
correspondences classification model for each category. The main advantage of
training multiple matching correspondences classification models is improved
performance, since certain cues and features are important for some categories
and not for others.

To generate training samples for the matching correspondences classification
model of a certain category L, we randomly select some image pairs {⟨Am, An⟩}
with annotation from the database, with both Am and An containing L. Then
for each super pixel in Am, we find a nearest neighbor in An. By doing this,
we can obtain many matching correspondences {⟨Tk, DTk , LTk , Sk, DSk , LSk⟩},
where LTk and LSk have already been known. For a matching correspondence
⟨Tk, DTk , LTk , Sk, DSk , LSk⟩, it is taken as a positive training sample, if LTk =
LSk = L , and a negative training sample if LTk ̸= LSk , LTk = L or LTk ̸=
LSk , LSk = L. In detail, given a correspondence ⟨Tk, DTk , LTk , Sk, DSk , LSk⟩, an
appearance difference vector

V = |DTk − DSk |

combined with a position feature, the offset of their centers normalized with
respect to the image width and height respectively.

offset = (|XTk − XSk |, |YTk − YSk |)

⟨V, offset⟩ is used as the feature vector for the training samples of the matching
correspondences classification model of category L.
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matches due to one way assignments are eliminated by 
removing the links which do not have any corresponding 
assignment from the other side. Examples showing the matches 
before and after applying the reduced point based match 
constraints are given in Figure 4(a) and 4(b). 

4(a) 

4(b) 

Figure 4.  An example of reduced point based match constraint. (a) All 
matches computed from the left to the right image. (b) The resulting complete 

graphs with a few numbers of false matches. 

 

In this graph matching strategy, the same approach is 
followed which is described in section 3.B.1 for the gallery 
image based match constraint. False matches, due to multiple 
assignments, are removed by choosing the match with the 
minimum distance between two face images. The dissimilarity 
scores on reduced points between two face images for nodes 
and edges, is computed in the same way as for the gallery 
based constraint. 

Lastly, the average weighted score is computed. This graph 
matching technique is more efficient than gallery image based 
match constraint, since the matching is done on a very small 
number of feature points with very few floating feature points. 

3) Weighting the score reliability: The quality of the 
features has a significant impact on the performance of any 
learning based recognition algorithm. How to improve the 
quality of features has been one of the critical issues 
concerned with the instance-based learning.           

Various approaches have been proposed in the past to 
address this issue. These approaches can be mainly divided into 
feature selection and feature weighting [12]. 

This work proposes a feature weighting method that is 
based on the Gaussian empirical rule. In this method, the 
relevance of a feature is determined by assigning a weight 
using the Gaussian empirical rule. The rationale behind this 
idea is that a relevant feature should have strong impact on 
classification. One advantage of using the Gaussian empirical 
rule for feature weighting is its rich expressiveness in 
representing hypotheses. In order to determine the weighted 
distance between two graphs, the weights value can be 
assigned by applying the Gaussian empirical rule in which 
three properties defined: 

• 68% of the observations fall within 1 standard 
deviation of the mean, i.e. between µ-σ and µ+σ. 

• 95% of the observations fall within 2 standard 
deviations of the mean, i.e. between µ-2σ and µ+2σ. 

• 99.7% of the observations fall within 3 standard 
deviations of the mean, i.e. between µ-3σ and µ+3σ. 

Before generating the weighted dissimilarity scores, for 
each pair of face images, the mean and standard deviation are 
computed for a set of nodes and for a set of edges on the face 
graph. 

If the node and edge values lie within one, two and three 
times the standard deviation of the mean, they are multiplied 
by 0.075 or 0.05 or 0.025 respectively. These values have been 
determined by a through testing on the BANCA database. 

IV. EXPERIMENTAL RESULTS 
The proposed graph matching technique is tested on the 

BANCA database [7]. For this experiment, the Matched 
Controlled (MC) protocol is followed, where the images from 
the first session are used for training, whereas second, third, 
and fourth sessions are used for testing and generating client 
and impostor scores. The testing images are divided into two 
groups, G1 and G2, of 26 subjects each. The error rate was 
computed using the following procedure [7]: 

• For getting G1 scores, perform the experiment on G1. 

• Perform the experiment on G2, getting G2 scores. 

• Compute the ROC curve using G1 scores; determine 
the Prior Equal Error Rate and the corresponding 
client-specific threshold for each subject or each 
individual from several instances.  

• Use the threshold TG1 to compute False Acceptance 
Rate (FARG2(TG1)) and False Rejection Rate 
(FRRG2(TG1)) on the G2 scores. The threshold is client-
specific i.e, computed specifically for each individual 
from the several instances of his/her images. 

• Compute the weighted Error Rate (WER(R)) on G2: 

Boston college 14	
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with annotation from the database, with both Am and An containing L. Then
for each super pixel in Am, we find a nearest neighbor in An. By doing this,
we can obtain many matching correspondences {⟨Tk, DTk , LTk , Sk, DSk , LSk⟩},
where LTk and LSk have already been known. For a matching correspondence
⟨Tk, DTk , LTk , Sk, DSk , LSk⟩, it is taken as a positive training sample, if LTk =
LSk = L , and a negative training sample if LTk ̸= LSk , LTk = L or LTk ̸=
LSk , LSk = L. In detail, given a correspondence ⟨Tk, DTk , LTk , Sk, DSk , LSk⟩, an
appearance difference vector

V = |DTk − DSk |

combined with a position feature, the offset of their centers normalized with
respect to the image width and height respectively.

offset = (|XTk − XSk |, |YTk − YSk |)

⟨V, offset⟩ is used as the feature vector for the training samples of the matching
correspondences classification model of category L.
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matches due to one way assignments are eliminated by 
removing the links which do not have any corresponding 
assignment from the other side. Examples showing the matches 
before and after applying the reduced point based match 
constraints are given in Figure 4(a) and 4(b). 

4(a) 

4(b) 

Figure 4.  An example of reduced point based match constraint. (a) All 
matches computed from the left to the right image. (b) The resulting complete 

graphs with a few numbers of false matches. 

 

In this graph matching strategy, the same approach is 
followed which is described in section 3.B.1 for the gallery 
image based match constraint. False matches, due to multiple 
assignments, are removed by choosing the match with the 
minimum distance between two face images. The dissimilarity 
scores on reduced points between two face images for nodes 
and edges, is computed in the same way as for the gallery 
based constraint. 

Lastly, the average weighted score is computed. This graph 
matching technique is more efficient than gallery image based 
match constraint, since the matching is done on a very small 
number of feature points with very few floating feature points. 

3) Weighting the score reliability: The quality of the 
features has a significant impact on the performance of any 
learning based recognition algorithm. How to improve the 
quality of features has been one of the critical issues 
concerned with the instance-based learning.           

Various approaches have been proposed in the past to 
address this issue. These approaches can be mainly divided into 
feature selection and feature weighting [12]. 

This work proposes a feature weighting method that is 
based on the Gaussian empirical rule. In this method, the 
relevance of a feature is determined by assigning a weight 
using the Gaussian empirical rule. The rationale behind this 
idea is that a relevant feature should have strong impact on 
classification. One advantage of using the Gaussian empirical 
rule for feature weighting is its rich expressiveness in 
representing hypotheses. In order to determine the weighted 
distance between two graphs, the weights value can be 
assigned by applying the Gaussian empirical rule in which 
three properties defined: 

• 68% of the observations fall within 1 standard 
deviation of the mean, i.e. between µ-σ and µ+σ. 

• 95% of the observations fall within 2 standard 
deviations of the mean, i.e. between µ-2σ and µ+2σ. 

• 99.7% of the observations fall within 3 standard 
deviations of the mean, i.e. between µ-3σ and µ+3σ. 

Before generating the weighted dissimilarity scores, for 
each pair of face images, the mean and standard deviation are 
computed for a set of nodes and for a set of edges on the face 
graph. 

If the node and edge values lie within one, two and three 
times the standard deviation of the mean, they are multiplied 
by 0.075 or 0.05 or 0.025 respectively. These values have been 
determined by a through testing on the BANCA database. 

IV. EXPERIMENTAL RESULTS 
The proposed graph matching technique is tested on the 

BANCA database [7]. For this experiment, the Matched 
Controlled (MC) protocol is followed, where the images from 
the first session are used for training, whereas second, third, 
and fourth sessions are used for testing and generating client 
and impostor scores. The testing images are divided into two 
groups, G1 and G2, of 26 subjects each. The error rate was 
computed using the following procedure [7]: 

• For getting G1 scores, perform the experiment on G1. 

• Perform the experiment on G2, getting G2 scores. 

• Compute the ROC curve using G1 scores; determine 
the Prior Equal Error Rate and the corresponding 
client-specific threshold for each subject or each 
individual from several instances.  

• Use the threshold TG1 to compute False Acceptance 
Rate (FARG2(TG1)) and False Rejection Rate 
(FRRG2(TG1)) on the G2 scores. The threshold is client-
specific i.e, computed specifically for each individual 
from the several instances of his/her images. 

• Compute the weighted Error Rate (WER(R)) on G2: 

Boston college 14	



Graphs, their comparison, and applications

Graph Metric Spaces!

Comparing	social	networks	is	very	important.	
	
E.g.	it	allows	us	to	uncover	idenDDes,	or	communi3es	
[Kong	et	al.	2013]	
	
	 John	 starlord	

Facebook	 TwiVer	

Boston college 15	



Graphs, their comparison, and applications

Graph Metric Spaces!

In	chemistry,	compounds	are	represented	by	graphs:	
ver3ces	are	atoms	and	edges	are	chemical	bounds.	
Both	atoms	and	edges	can	be	labeled	by	atom	type	
and	bound	type.	
	
In	chemistry,	comparing	graphs	is	important	to	
answer	the	following	ques3ons	[Akutsu	et	al.	2013]:	
	

•  Are	two	chemicals	iden3cal?	
•  Is	one	compound	part	of	another	compound?	
•  What	is	the	maximum	common	part	of	two	

chemicals?	
Boston college 16	
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Graphs, their comparison, and applications

Graph Metric Spaces!

In	general,	most	of	these	tasks	are	hard	to	complete	
exactly/op3mally.	However,	domain	knowledge	can	
make	tasks	tractable.		
	
For	example,	in	chemistry,	most	graphs	have	
maximum	degree	8,	which	simplifies	many	of	these	
tasks.	

Boston college 17	



Graphs, their comparison, and applications

Graph Metric Spaces!

Alignment-based	methods:	usually	chosen	for	tasks	
such	as	
•  Transfer	knowledge	
•  Sub	graph	matching	

	
Alignment-free	methods:	more	flexible	in	terms	of	
what	kinds	of	graphs	can	be	compared	
	
Is	there	a	family	of	methods	that	encompass	both	
alignment-free	and	alignment-based	methods?	

	
(stay	tuned	for	Part	II)	

Boston college 18	
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Graph Metric Spaces!
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Talk outline

Graph Metric Spaces!

1.  Quick	review	about	graphs	
	
2.  Applica3ons	where	comparing	graphs	is	important	

3.  Graph	distances	

4.  Why	a	metric?	

5.  Scalable	alignment	algorithms	

Boston college 



Notions to compare graphs

Graph Metric Spaces!

Exact	graph	comparisons	(output	a	“yes”	or	“no”)	
	
	
•  Graph	isomorphism:	given	two	graphs	

	is	there	a	permuta3on																											such	that	
	
	
	
(this	problem	belongs	to	NP	but	it	is	not	known	if	it	
belongs	to	P	or	NP-complete)	

G1 = ([n], E1),G2 = ([n], E2)
P : [n] 7! [n]

(i, j) 2 E1 i↵ (P (i), P (j)) 2 E2

Boston college 19	



Notions to compare graphs

Graph Metric Spaces!

Exact	graph	comparisons	(output	a	“yes”	or	“no”)	
	
	
•  Sub	graph	isomorphism:	given	two	graphs	

is	there	a	sub-graph	of						,	i.e.																													s.t.	
																																																						,	s.t.																		?		
	
	
	

G1 G0 = (V0, E0)
V0 ✓ [n], E0 ✓ E1 [ V0 ⇥ V0 G0

⇠= G2

Boston college 20	
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Notions to compare graphs

Graph Metric Spaces!

Inexact	graph	comparison	(output	a	closeness	score):	
	
•  Matching:	1-to-1;	1-to-many;	many-to-many;	

•  Score:	edge	overlap;	spectrum	overlap;	etc.	

	
	

Boston college 21	



Inexact graph comparisons

Graph Metric Spaces!

•  Chemical	distance	(alignment-based)	

Let								and								be	the	adjacency	matrices	of	two	
graphs	of	equal	size.	
	
	

•  Chartramd-Kubicki-Schultz	dist.	(alignment-based)	
	
Same	as	chemical	distance	but	with							and								equal	
to	the	hop	distance	between	each	two	nodes	in	each	
of	the	two	graphs.	

A1 A2

A1 A2

Boston college 22	
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Inexact graph comparisons

Graph Metric Spaces!

•  Chemical	distance	(alignment-based)	

Let								and								be	the	adjacency	matrices	of	two	
graphs	of	equal	size.	
	
	

•  Chartramd-Kubicki-Schultz	dist.	(alignment-based)	
	
Same	as	chemical	distance	but	with							and								
containing	the	hop	distances	between	each	two	nodes	
in	each	of	the	two	graphs.	

A1 A2

A1 A2
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Inexact graph comparisons

Graph Metric Spaces!

•  Edit	distance	(alignment-free)	
Given	two	graphs,	not	necessarily	of	equal	size,	and	a	
set	of	opera3ons,	e.g.							
	
	
	
,	and	a	cost	func3on																				,		we	want	to	find	the	
cheapest	sequence	of	opera3ons	that	take						into						.		
	
	
	
For	certain				and					this	reduces	to	the	Chemical	dist.	

c : O 7! R

O ={vertex/edge/label
insertion/deletion/substitution}

G1 G2

min
{ei}k

i=12Ok:G2=(ek�···�e1)�G1

kX

i=1

c(ek)

c O
Boston college 23	



Inexact graph comparisons

Graph Metric Spaces!

•  Spectral	distance	(alignment-free)	
Given	two	graphs	of	equal	size	with	adjacency	
matrices							and							,	let																													and		
																												be	the	spectrum	of							and							.		
		
	
	

•  Zelinks	distance,	common	sub	graph	distance	
(alignment-based)	is:		

	

A1 A2 µ1 � · · · � µn
⌫1 � · · · � ⌫n A1 A2

nX

i=1

|µi � ⌫i|

max{|V1|, |V2|}� n(G1,G2)

Boston college 24	
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•  Spectral	distance	(alignment-free)	
Given	two	graphs	of	equal	size	with	adjacency	
matrices							and							,	let																													and		
																												be	the	spectrum	of							and							.	The	
spectral	distance	is		
	
	

•  Zelinks	distance,	common	sub	graph	distance	
(alignment-based):		
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Inexact graph comparisons

Graph Metric Spaces!

•  Bunke-Shearer	metric	(alignment-based)	
	
Using	the	same	setup	as	the	common	sub	graph	
distance,	this	is		
	
	
•  Common	super	graph	distance	(alignment-based)	
	
where	

1� n(G1,G2)

max{|V1|, |V2|}

N(G1,G2) = min |V| s.t. G = (V, E), S1, S2 ✓ V,
G(S1) ⇠= G1,G(S2) ⇠= G2

N(G1,G2)�min{|V1|, |V2|}
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Inexact graph comparisons

Graph Metric Spaces!

•  Edge	distance	

•  Fernández-Valiente	metric	

If						and								are	the	sizes	of	the	maximum	common	
sub	graph	and	minimum	common	super	graph,	then	
														is	a	metric.	

|E1|+ |E2|� 2E(G1,G2) + ||V1|� |V2||

n m

m� n
Boston college 26	
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Talk outline

Graph Metric Spaces!

1.  Quick	review	about	graphs	
	
2.  Applica3ons	where	comparing	graphs	is	important	

3.  Graph	distances	

4.  Why	a	metric?	

5.  Scalable	alignment	algorithms	
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Metrics

Graph Metric Spaces!

All	of	the	no3ons	of	comparing	graphs	just	men3oned	
are	metrics	(if	we	consider	an	appropriate	quo3ent	
space,	where	the	equivalence	classes	are	the	graphs	
for	which	the	respec3ve	distance	is	zero).	
	

Metric:																																		such	that		
	
	
	
	
	
	

The	pair												is	called	a	metric	space.	

d : ⌦⇥ ⌦ 7! R 8A,B,C 2 ⌦
d(A,B) � 0 (non-negativity)

d(A,B) = 0 i↵ A = B (identity of indescernibles)

d(A,B) = d(B,A) (symmetry)

d(A,B) + d(B,C) � d(A,C) (triangle inequality)

(⌦, d)

Boston college 



27	

Metrics

Graph Metric Spaces!

All	of	the	no3ons	of	comparing	graphs	just	men3oned	
are	metrics	(if	we	consider	an	appropriate	quo3ent	
space,	where	the	equivalence	classes	are	the	graphs	
for	which	the	respec3ve	distance	is	zero).	
	

Metric:																																		such	that		
	
	
	
	
	
	

The	pair												is	called	a	metric	space.	

d : ⌦⇥ ⌦ 7! R 8A,B,C 2 ⌦
d(A,B) � 0 (non-negativity)

d(A,B) = 0 i↵ A = B (identity of indescernibles)

d(A,B) = d(B,A) (symmetry)

d(A,B) + d(B,C) � d(A,C) (triangle inequality)

(⌦, d)

Boston college 



27	

Metrics

Graph Metric Spaces!

All	of	the	no3ons	of	comparing	graphs	just	men3oned	
are	metrics	(if	we	consider	an	appropriate	quo3ent	
space,	where	the	equivalence	classes	are	the	graphs	
for	which	the	respec3ve	distance	is	zero).	
	

Metric:																																		such	that		
	
	
	
	
	
	

The	pair												is	called	a	metric	space.	

d : ⌦⇥ ⌦ 7! R 8A,B,C 2 ⌦
d(A,B) � 0 (non-negativity)

d(A,B) = 0 i↵ A = B (identity of indescernibles)

d(A,B) = d(B,A) (symmetry)

d(A,B) + d(B,C) � d(A,C) (triangle inequality)

(⌦, d)

Boston college 



28	

Pseudo-metrics and quasi-metrics

Graph Metric Spaces!

A	pseudo-metric	relaxes	the	condi3on	
	
to	
	

Given	a	pseudo-metric,	we	can	obtain	a	metric	if	we	
define	the	equivalence	rela3on		
and	define	the	metric																																																				
such	that																																										.	
	

A	quasi-metric	removes	the	symmetry	condi3on	from	
the	defini3on	of	metrics.	From	a	quasi-metric					we	
can	obtain	a	metric	as		

d(A,B) � 0 (non-negativity)

d(A,B) = 0 i↵ A = B (identity of indescernibles)

d(A,B) = d(B,A) (symmetry)

d(A,B) + d(B,C) � d(A,C) (triangle inequality)

d(A,A) = 0

A ⇠ B i↵ d(A,B) = 0
d̃ : (⌦\ ⇠)⇥ (⌦\ ⇠) 7! R

d
d̃(A,B) = d(A,B) + d(B,A)

Boston college 
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Why a metric?

Graph Metric Spaces!

Metrics	allow	fast	algorithms	for	several	tasks	
	
•  Diameter	esDmaDon:	Given	a	set	S	with	n	elements,	

we	want	to	find	
	

[Indyk	1999]	1/2-approxima3on	
algorithm	with												expected	
run	3me.	Idea:	if	there	exists	two	
points	with	dist.	≥	Δ		then	there	
are	at	least	n – 1 pairs	of	points	with	dist.	≥	Δ /2.	
	
Hence,	sampling											pairs	is	enough	on	average.

max

x,y2S

d(x, y)

O(n)

Boston college 
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Why a metric?

Graph Metric Spaces!

Metrics	allow	fast	algorithms	for	several	tasks	
	
•  Nearest	neighbor	search:	For	a	set	S	with	n	elements	

and	query	point	q drawn	randomly	from	V in							
[Kenneth	&	Clarkson	1999]	propose	a	data	structure	
with	the	following	expected	run	3mes 
•  Preprocessing	:																																											where				is	
the	ra3o	of	the	maximum	to	minimum	distance	
between	points	
•  Query:		

•  Space:		

Rk

O(n)(log n)O(log log �) �

O((log n)O(1)+2 log log �
)

O(n(log n)O(1)+2 log log �
)
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Why a metric?

31	Graph Metric Spaces!

Metrics	allow	fast	algorithms	for	several	tasks	
	
•  Fast	NN	algorithms	can	be	used	to	derive	fast	outlier	

detecDon	algorithms.	E.g.	[Angiulli	&	Pizzu3	2002]	
	do	this	with	the	following	defini3on	of	outlier	p 

	 weightk(p) =
X

s2k-NN(p)

d(s, p)

outlier = large wk

Boston college 
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Why a metric?

Graph Metric Spaces!

Metrics	allow	fast	algorithms	for	several	tasks	
	
•  Clustering	(k-means	clustering):	Given	a	set	P	of	

size	n,	find	

In	arbitrary	metric	spaces	this	problem	is	NP-hard.	
Approxima3on	algorithms	are	possible.	E.g.	in							
[Badiou	et	al.	2002/2003]	get	an	(1 + ε)-approx.	in	
3me		

Rd

O(dO(1)n(logO(k) n)2(
k
✏ )

O(1)

)

min
C✓P :|C|=k

n

X

p2P

min
c2C

d(p, c)
o
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Why a metric?

Graph Metric Spaces!

Metrics	allow	fast	algorithms	for	several	tasks	
	
•  Clustering	(k-means	clustering):	Given	a	set	P	of	

size	n,	find	

Arbitrary	metrics:		[Ackermann,	Blomer	&	Sohler	
2008]:	If	the	1-median	can	be	solved	in	linear	3me	
then	there	exists	an		(1 + ε)-approxima3on	algorithm	
with	run	3me	

	

min
C✓P :|C|=k

n

X

p2P

min
c2C

d(p, c)
o

O(n2(
k
✏ )

O(1)

)
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Why a metric?

34	Graph Metric Spaces!

Metrics	allow	fast	algorithms	for	several	tasks	
	
•  Clustering	(k-means	clustering):	Given	a	set	P	of	

size	n,	find	

Arbitrary	dissimilarity:	There	are	a	few	results	for	the	
Kullback	Leibler	divergence	and	Bergman	divergence.	
But,	in	general,	results	are	rare	for	non-metrics.	
	

min
C✓P :|C|=k

n

X

p2P

min
c2C

d(p, c)
o
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Talk outline

Graph Metric Spaces!

1.  Quick	review	about	graphs	
	
2.  Applica3ons	where	comparing	graphs	is	important	

3.  Graph	distances	

4.  Why	a	metric?	

5.  Scalable	alignment	algorithms	
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Scalable algorithms for graph aligment

Graph Metric Spaces!

Many	of	the	metrics	just	men3oned	cannot	be	
computed	easily.	We	now	go	over	a	few	efficient	
algorithms	that	try	to	find	globally-op3mal	alignment	
between	two	graphs.	
	
Any	alignment	algorithms	can	be	transformed	into	
distance	func3ons.	For	example,	given	an	alignment			
between	two	graphs,	with	adjacency	matrices	
we	can	compute																																	.	

	
These	distances	osen	do	not	result	in	metrics.	

(Stay	tuned	for	Part	II)	

kA1P � PA2kF

kA1P � PA2kF
A1, A2

Boston college 
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V1 V2

i i0 j j0i i0 j j0

i i0 j j0

i i0 j j0

Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square

Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square

L

L = possible node matches

G1 G2
Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square through L,G1 and G2

max

8
<

:↵

X

(i,i0)2L

wi,i0xi,i0 +

X

(i,i0),(j,j0)2L

xi,i0xj,j0Si,i0,j,j0

9
=

;

subject to

X

i0:(i,i0)2L

xi,i0  1, 8i;
X

i:(i,i0)2L

xi,i0  1, 8i0;

xi,i0 2 {0, 1}, 8(i, i0) 2 L
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V1 V2

i i0 j j0i i0 j j0

i i0 j j0
Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square

Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square

L

L = possible node matches

G1 G2
Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square through L,G1 and G2

If	L	is	the	complete	graph,	and	w = 0,	this	reduced	to		
maximum	common	sub	graph	distance,	which	is	NP-
hard,	even	NP-hard	to	approximate.	
	
Several	relaxa3ons	of	this	IQP	lead	to	scalable	
algorithms	for	matching	to	graphs.	

i i0 j j0



Quadratic formulation: linear relaxation
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•  Linear	relaxa3on:	Replace	

by		
	
	
	

	
This	LP	relaxa3on	requires	a	final	rounding	scheme.	

max

8
<

:↵

X

(i,i0)2L

wi,i0xi,i0 +

X

(i,i0),(j,j0)2L

xi,i0xj,j0Si,i0,j,j0

9
=

;

subject to

X

i0:(i,i0)2L

xi,i0  1, 8i;
X

i:(i,i0)2L

xi,i0  1, 8i0;

xi,i0 2 {0, 1}, 8(i, i0) 2 L

max

8
<

:↵

X

(i,i0)2L

wi,i0xi,i0 +

X

(i,i0),(j,j0)2L

xi,i0xj,j0Si,i0,j,j0

9
=

;

subject to

X

i0:(i,i0)2L

xi,i0  1, 8i;
X

i:(i,i0)2L

xi,i0  1, 8i0;

xi,i0 2 {0, 1}, 8(i, i0) 2 Ls.t. (...) and

(...) +

X

(i,i0),(j,j0)2L

yi,i0,j,j0Si,i0,j,j0

yi,i0,j,j0 = yj,j0,i,i0 , yi,i0,j,j0  xi,i0 , xi,i0 2 [0, 1], 8(i, i0), (j, j0) 2 L

(...) + s.t. (...) and



Quadratic formulation: Klau’s algorithm & Natalie 2.0
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•  [Klau	2009]	First,	move	the	symmetry	constraint	in	
the	linear	relaxa3on	into	the	objec3ve	as	

	
	and	add	the	constraint	that		

	
For	any	U,	this	problem	upper	bounds	the	linear	
relaxa3on.	The	resul3ng	LP	has	the	form	of	a	
maximum	weight	matching,	hence	produces	0/1	sols.	

(...) +
X

(i,i0),(j,j0)2L

Ui,i0,j,j0(yi,i0,j,j0 � yj,j0,i,i0)

X

j:(j,j0)2L

yi,i0,j,j0  18j0,
X

j0:(j,j0)2L

yi,i0,j,j0  1, 8j, 8(i, i0) 2 L
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Quadratic formulation: Klau’s algorithm & Natalie 2.0

Graph Metric Spaces! Boston college 

	Second,	use	sub	gradient	descent	to	op3mize	over	
	U.		This	algorithm	does	not	require	a	final	
	rounding	scheme.	

	Natalie	2.0	[El-Kebir	2015]	is	an	improvement	on	
	Klau’s	algorithm,		where	the	sub	gradient	descent	is	
	combined	with	a	dual	descent	step.	
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Quadratic formulation: Belief propagation [Bayati et al 09]

Graph Metric Spaces! Boston college 

Write	the	quadra3c	problem	(w = 0	for	simplicity)	as	
	
	
	
	
	
	
	

Build	the	probability	distribu3on	

max

X

i,i0,j,j02⇤(L)

xi,i0,j,j0

subject to

X

i0:(i,i0)2L

xi,i0  1, 8i;
X

i:(i,i0)2L

xi,i0  1, 8i0;

xi,i0,j,j0 = xi,i0xj,j08i, i0, j, j0 2 ⇤(L),

xi,i0 2 {0, 1}, 8(i, i0) 2 L

⇤(L) = potential square in L

P({x
i,i

0}, {x
i,i

0
,j,j

0}) = 1

Z

⇣
e

�
2

P
i,i0,j,j02⇤(L))xi,i0,j,j0

⌘Y

i

0

 
� X

i:(i,i0)2L

x

i,i

0  1
�

Y

i

 
� X

i

0:(i,i0)2L

x

i,i

0  1
� Y

i,i

0
,j,j

022⇤(L)

 
�
x

i,i

0
,j,j

0 = x

i,i

0
x

j,j

0)
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Quadratic formulation: Belief propagation [Bayati et al 09]
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The	support	of																																									is	the	set	of	
feasible	solu3on	to	the	original	IQP.	
	
We	can	use	max-product	BP,	a	message-passing	
algorithm	over	the	factor-graph	associated	to	this	
distribu3on,	to	find	
	
		
	
With	a	rounding	scheme,	we	can	then	extract	an	
approximate	solu3on	to	the	original	problem		from	
the	maximizers	of	the	marginal	probabili3es.	

P({xi,i0}, {xi,i0,j,j0})

argmaxP(xi,i0) or argmaxP(xi,i0,j,j0)
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Isorank [Singh et al. 2008]
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1 

2 
3 

4 

a 

b c 

d e 

G1 ⇥ G2 = (V1 ⇥ V2, {((i, j), (u, v)) : (i, u) 2 E1, (j, v) 2 E2})
Let	A	be	the	adjacency	matrix	of	the	product	graph	

G1 = (V1, E1) G2 = (V2, E2)

1a 

3d 

Isorank:	(1)	Find	R: R =A R and	(2)	
then	use							                	as	weights	
in	a	maximum	matching	problem	
to	match	nodes	of						and							. 

R 2 R|V1||V2|

G1 G2

deg(3b) = deg(3)⇥ deg(b)
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Isorank [Singh et al. 2008]
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Note	that	R = A R	corresponds	to	finding	the	
sta3onary	distribu3on	of	a	random	walk	on	
 
This	sta3onary	distribu3on	is		
	
The	equa3on	R = A R	can	be	generalized	to	include	
node-similarity	informa3on	as	R = αAR	+	(1 – α)E,	
where	E	is	normalized	to	sum	to	1	and	α	is	in	[0, 1].	
	
We	can	solve	R = αAR	+	(1 – α)E	using	a	PageRank-
like	method.	A	match	then	can	be	produced	using	a	
maximum	weight	matching	with	R	as	weights. 

G1 ⇥ G2 = (V1 ⇥ V2, {((i, j), (u, v)) : (i, u) 2 E1, (j, v) 2 E2})

Ri,j =
deg(i)deg(j)

2|E1||E2|



Isorank [Singh et al. 2008]

44	Graph Metric Spaces! Boston college 

Note	that	R = A R	corresponds	to	finding	the	
sta3onary	distribu3on	of	a	random	walk	on	
 
This	sta3onary	distribu3on	is		
	
The	equa3on	R = A R	can	be	generalized	to	include	
node-similarity	informa3on	as	R = αAR	+	(1 – α)E,	
where	E	is	normalized	to	sum	to	1	and	α	is	in	[0, 1].	
	
We	can	solve	R = αAR	+	(1 – α)E	using	a	PageRank-
like	method.	A	match	then	can	be	produced	using	a	
maximum	weight	matching	with	R	as	weights. 

G1 ⇥ G2 = (V1 ⇥ V2, {((i, j), (u, v)) : (i, u) 2 E1, (j, v) 2 E2})

Ri,j =
deg(i)deg(j)

2|E1||E2|



44	

Isorank [Singh et al. 2008]

Graph Metric Spaces! Boston college 

Note	that	R = A R	corresponds	to	finding	the	
sta3onary	distribu3on	of	a	random	walk	on	
 
This	sta3onary	distribu3on	is		
	
The	equa3on	R = A R	can	be	generalized	to	include	
node-similarity	informa3on	as	R = αAR	+	(1 – α)E,	
where	E	is	normalized	to	sum	to	1	and	α	is	in	[0, 1].	
	
We	can	solve	R = αAR	+	(1 – α)E	using	a	PageRank-
like	method.	A	match	then	can	be	produced	using	a	
maximum	weight	matching	with	R	as	weights. 

G1 ⇥ G2 = (V1 ⇥ V2, {((i, j), (u, v)) : (i, u) 2 E1, (j, v) 2 E2})

Ri,j =
deg(i)deg(j)

2|E1||E2|



45	

Sparse Isorank [Bayati et al 09]

Graph Metric Spaces! Boston college 

Let																																									be	as	in	the	original	IQP	for	
a	complete	L. Recall	that		
 
 
 
We	can	write	the	adjacency	matrix	of	the	product	
graph																as																									where			
 
 
Hence,	we	can	generalize	the	Isorank	to	sparse-
Isorank	as																																																								where	S,	
now,	can	be	sparse	and	allow	only	some	matches. 

Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a squareSi,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square
Si,i0,j,j0 = 1 i↵ i, i0, j, j0 make a square through L,G1 and G2

S 2 R|V1||V2|⇥|V1||V2|

G1 ⇥ G2 = (V1 ⇥ V2, {((i, j), (u, v)) : (i, u) 2 E1, (j, v) 2 E2})A = D�1
S S>, where DS = diag(rowsum(S))

A = D�1
S S>, where DS = diag(rowsum(S))

↵D�1
S S>R+ (1� ↵)E = R
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Inner [Lyzinski et al. 2014]
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Start	with	the	Chemical	distance	defini3on.	Then	do,	
	
	
	
	
Theorem:	For	several	families	of	random	graphs,	with	
high	probability,	solving	(2)	gives	a	solu3on	to	(1).	
	
	
(2)	Can	be	approx.	solved	easily	using,	e.g.,	projected	
gradient	descent.	When	(2)	does	not	return	a	
permuta3on,	we	use	rounding	methods.	

(1) arg min

P2⇧

kAP � PBk2F = arg min

P2⇧

kAPk2F + kPBk2F � 2hAP,PBi

= argmax

P2⇧

hAP,PBi ! (2) arg max

P2Doubly stochastic

hAP,PBi
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Weisfeiler-Lehman algorithm [Weisfeiler & Lehman 1968]
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This	alg.	can,	some3mes,	determine	if	two	graphs	are	
non-isomorphic:	
1.  Color	the	two	graphs	with	nodes	of	equal	color	
2.  For	each	graph	do,	for	each	node	I 
 
3.  Once	colors	are	stable,	compare	the	distribu3ons	

of	the	colors	in	the	two	graphs.	If	they	are	
different,	output	non-isomorphic.	

The	final	colors	can	be	use	to	find	an	(inexact)	
matching.	Find	a	cost	func3on	to	compare	colors,	and	
use	a	maximum	weight	matching	to	match	nodes. 

color

t+1
i

= hash(sort({colort
j

}
j2neig.ofi

)
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Scalability
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These	algorithms	can	align	large	graphs	(~300k	nodes	
per	graph,	and	~20M	possible	matches	between	
nodes	[Baya3	et	al.	2009]).	
 
A	few	can	be	solved	using	distributed	message	passing	
schemes	and	hence,	at	least	in	principle,	can	scale	to	
very	large	graphs:	WL	alg.,	NetAlignBP,	Isorank.	
	
Op3miza3on-based	algs.,	e.g.	the	LP	relaxa3on,	Klau’s	
alg.,	Natalie	2.0,	and	Inner	alg.,	can	be	solved	using	
standard	distributed	op3miza3on	methods. 
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Scalability
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Among	exis3ng	methods	for	large	scale	distributed	
op3miza3on,	worth	no3ng	is	the	AlternaDng	
DirecDon	Method	of	MulDpliers.	
	
1.  Can	deal	with	non-smooth	func3ons	
2.  Easily	distributed	and	parallelized	
3.  Good	convergence	proper3es,	and	empirically	

good	performance	in	several	non-convex	problems	
4.  Fastest	possible	first-order	method	among	strongly	

convex	func3ons	with	Lipschitz	gradients	[França	&	
Bento	2016]	



Scalability
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Unfortunately,	if	we	use	the	alignment	produced	by	
these	algorithms	to	produce	a	distance	between	
graphs,	e.g.	using	an	alignment’s	permuta3on	matrix	
to	compute		
	
	
,	the	resul3ng	distances	are	not	metrics.	This	is	the	
case	for	Natalie	2.0,	Klau’s	alg.,	IsoRank,	
SparseIsoRank	and	Inner	alg.		

kAP � PBk



Scalability
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Can	we	find	a	rich	set	of	scalable	graph	comparison	
methods	that	result	in	metrics?	
	
	

(part	II	of	this	tutorial)	

Boston college 
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Part II:
A Family of Tractable Graph Metrics

 Grants IIS-1741197 & IIS-1741129	



A Highly Desirable Property

A Family of Tractable Graph Metrics !1

symmetric) binary matrices A œ {0, 1}n◊n, and weighted

graphs by real matrices A œ Rn◊n.
Matrix Norms. Given a matrix A = [a

ij

]
i,jœ[n]

œ
Rn◊n and a p œ N

+

fi {Œ}, its induced or operator p-

norm is defined in terms of the vector p-norm through
ÎAÎ

p

= sup
xœRn

:ÎxÎp=1

ÎAxÎ
p

, while its entry-wise p-

norm is given by ÎAÎ
p

= (
q

n

i=1

q
n

j=1

|a
ij

|p)1/p

, for
p œ N

+

, and ÎAÎŒ = max
i,j

|a
i,j

|. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as Î · Î

F

.
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as Pn = {P œ {0, 1}n◊n : P1 = 1, P

€1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkho� polytope)
as Wn = {W œ [0, 1]n◊n : W1 = 1, W

€1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as On = {U œ Rn◊n : UU

€ = U

€
U = I}. Note that

Pn = WnflOn. Moreover, the Birko�-von Neumann The-
orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of Pn.
Metrics. Given a set �, a function d : � ◊ � æ R is
called a metric, and the pair (�, d) is called a metric

space, if for all x, y, z œ �:

d(x, y) Ø 0 (non-negativity)(2.3a)
d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)

A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:

d(x, x) = 0 for all x œ �.(2.3e)

If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥

d

y over �. A pseudometric
is then a metric over �/ ≥

d

, the quotient space of ≥
d

.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.

Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs G

A

and G

B

. Then, G

A

and G

B

are isomor-

phic if and only if there exists P œ Pn s.t. P

€
AP = B

or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define d

S

: � ◊ � æ R
+

as:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ,(2.4)

where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d

S

is the chemical

distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
F

.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn

and Î·Î is an arbitrary entry-

wise norm, then d

S

given by (2.4) is a pseudometric

over � = Sn◊n

. If Î · Î is an arbitrary entry-wise or

operator norm, then its symmetric extension d̄

S

(A, B) =
d

S

(A, B) + d

S

(B, A) is a pseudometric over � = Rn◊n

.

Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected

graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d

S

is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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Abstract
Important data mining problems such as nearest-
neighbor search and clustering admit theoretical guar-
antees when restricted to objects embedded in a metric
space. Graphs are ubiquitous, and clustering and classi-
fication over graphs arise in diverse areas, including, e.g.,
image processing and social networks. Unfortunately,
popular distance scores used in these applications, that
scale over large graphs, are not metrics and thus come
with no guarantees. Classic graph distances such as,
e.g., the chemical and the CKS distance are arguably
natural and intuitive, and are indeed also metrics, but
they are intractable: as such, their computation does
not scale to large graphs. We define a broad family of
graph distances, that includes both the chemical and the
CKS distance, and prove that these are all metrics. Cru-
cially, we show that our family includes metrics that are
tractable. Moreover, we extend these distances by incor-
porating auxiliary node attributes, which is important
in practice, while maintaining both the metric property
and tractability.

1 Introduction
Graph similarity and the related problem of graph
isomorphism have a long history in data mining, machine
learning, and pattern recognition [21, 43, 38]. Graph

distances naturally arise in this literature: intuitively,
given two (unlabeled) graphs, their distance is a score
quanitifying their structural di�erences. A highly
desirable property for such a score is that it is a
metric, i.e., it is non-negative, symmetric, positive-
definite, and, crucially, satisfies the triangle inequality.
Metrics exhibit significant computational advantages
over non-metrics. For example, operations such as
nearest-neighbor search [20, 19, 11], clustering [3], outlier
detection [7], and diameter computation [31] admit
fast algorithms precisely when performed over objects
embedded in a metric space. To this end, proposing
tractable graph metrics is of paramount importance in
applying such algorithms to graphs.

Unfortunately, graph metrics of interest are often
computationally expensive. A well-known example is
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the chemical distance [40]. Formally, given graphs
G

A

and G

B

, represented by their adjacency matrices
A, B œ {0, 1}n◊n, the chemical distance is dPn(A, B) is
defined in terms of a mapping between the two graphs
that minimizes their edge discrepancies, i.e.:

dPn(A, B) = min
P œPn ÎAP ≠ PBÎ

F

,(1.1)

where Pn is the set of permutation matrices of size n and
Î · Î

F

, is the Frobenius norm (see Sec. 2 for definitions).
The Chartrand-Kubiki-Shultz (CKS) [18] distance is an
alternative: CKS is again given by (1.1) but, instead of
edges, matrices A and B contain the pairwise shortest
path distances between any two nodes.

The chemical and CKS distances have important
properties. First, they are zero if and only if the
graphs are isomorphic, which appeals to both intuition
and practice; second, as desired, they are metrics;
third, they have a natural interpretation, capturing
global structural similarities between graphs. However,
finding an optimal permutation P is notoriously hard;
graph isomorphism, which is equivalent to deciding if
there exists a permutation P s.t. AP = PB (for both
adjacency and path matrices), is famously a problem
that is neither known to be in P nor shown to be NP-
hard [8]. There is a large and expanding literature on
scalable heuristics to estimate the optimal permutation P

[34, 9, 42, 23]. Despite their computational advantages,
unfortunately, using them to approximate dPn(A, B)
breaks the metric property.

This significantly degrades the performance of many
important tasks that rely on computing distances be-
tween graphs. For example, there is a clear separation
on the approximability of clustering over metric and non-
metric spaces [3]. We also demonstrate this empirically
in Section 5 (c.f. Fig. 1): attempting to cluster graphs
sampled from well-known families based on non-metric
distances significantly increases the misclassification rate,
compared to clustering using metrics.

An additonal issue that arises in practice is that
nodes often have attributes not associated with adja-
cency. For example, in social networks, nodes may con-
tain profiles with a user’s age or gender; similarly, nodes
in molecules may be labeled by atomic numbers. Such
attributes are not captured by the chemical or CKS
distances. However, in such cases, only label-preserving
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where

is the set of permutation matrices and            is the Frobenius norm.

symmetric) binary matrices A œ {0, 1}n◊n, and weighted

graphs by real matrices A œ Rn◊n.
Matrix Norms. Given a matrix A = [a

ij

]
i,jœ[n]

œ
Rn◊n and a p œ N

+

fi {Œ}, its induced or operator p-

norm is defined in terms of the vector p-norm through
ÎAÎ

p

= sup
xœRn

:ÎxÎp=1

ÎAxÎ
p

, while its entry-wise p-

norm is given by ÎAÎ
p

= (
q

n

i=1

q
n

j=1

|a
ij

|p)1/p

, for
p œ N

+

, and ÎAÎŒ = max
i,j

|a
i,j

|. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as Î · Î

F

.
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as Pn = {P œ {0, 1}n◊n : P1 = 1, P

€1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkho� polytope)
as Wn = {W œ [0, 1]n◊n : W1 = 1, W

€1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as On = {U œ Rn◊n : UU

€ = U

€
U = I}. Note that

Pn = WnflOn. Moreover, the Birko�-von Neumann The-
orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of Pn.
Metrics. Given a set �, a function d : � ◊ � æ R is
called a metric, and the pair (�, d) is called a metric

space, if for all x, y, z œ �:

d(x, y) Ø 0 (non-negativity)(2.3a)
d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)

A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:

d(x, x) = 0 for all x œ �.(2.3e)

If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥

d

y over �. A pseudometric
is then a metric over �/ ≥

d

, the quotient space of ≥
d

.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.

Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs G

A

and G

B

. Then, G

A

and G

B

are isomor-

phic if and only if there exists P œ Pn s.t. P

€
AP = B

or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define d

S

: � ◊ � æ R
+

as:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ,(2.4)

where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d

S

is the chemical

distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
F

.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn

and Î·Î is an arbitrary entry-

wise norm, then d

S

given by (2.4) is a pseudometric

over � = Sn◊n

. If Î · Î is an arbitrary entry-wise or

operator norm, then its symmetric extension d̄

S

(A, B) =
d

S

(A, B) + d

S

(B, A) is a pseudometric over � = Rn◊n

.

Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected

graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d

S

is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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Pn = WnflOn. Moreover, the Birko�-von Neumann The-
orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of Pn.
Metrics. Given a set �, a function d : � ◊ � æ R is
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d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)

A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:

d(x, x) = 0 for all x œ �.(2.3e)

If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥

d

y over �. A pseudometric
is then a metric over �/ ≥

d

, the quotient space of ≥
d

.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.

Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs G

A

and G

B

. Then, G

A

and G

B

are isomor-

phic if and only if there exists P œ Pn s.t. P

€
AP = B

or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define d

S
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as:
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S
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where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d
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distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
F

.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn

and Î·Î is an arbitrary entry-

wise norm, then d

S

given by (2.4) is a pseudometric

over � = Sn◊n

. If Î · Î is an arbitrary entry-wise or

operator norm, then its symmetric extension d̄

S

(A, B) =
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(A, B) + d

S

(B, A) is a pseudometric over � = Rn◊n

.

Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected

graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d

S

is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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Abstract
Important data mining problems such as nearest-
neighbor search and clustering admit theoretical guar-
antees when restricted to objects embedded in a metric
space. Graphs are ubiquitous, and clustering and classi-
fication over graphs arise in diverse areas, including, e.g.,
image processing and social networks. Unfortunately,
popular distance scores used in these applications, that
scale over large graphs, are not metrics and thus come
with no guarantees. Classic graph distances such as,
e.g., the chemical and the CKS distance are arguably
natural and intuitive, and are indeed also metrics, but
they are intractable: as such, their computation does
not scale to large graphs. We define a broad family of
graph distances, that includes both the chemical and the
CKS distance, and prove that these are all metrics. Cru-
cially, we show that our family includes metrics that are
tractable. Moreover, we extend these distances by incor-
porating auxiliary node attributes, which is important
in practice, while maintaining both the metric property
and tractability.

1 Introduction
Graph similarity and the related problem of graph
isomorphism have a long history in data mining, machine
learning, and pattern recognition [21, 43, 38]. Graph

distances naturally arise in this literature: intuitively,
given two (unlabeled) graphs, their distance is a score
quanitifying their structural di�erences. A highly
desirable property for such a score is that it is a
metric, i.e., it is non-negative, symmetric, positive-
definite, and, crucially, satisfies the triangle inequality.
Metrics exhibit significant computational advantages
over non-metrics. For example, operations such as
nearest-neighbor search [20, 19, 11], clustering [3], outlier
detection [7], and diameter computation [31] admit
fast algorithms precisely when performed over objects
embedded in a metric space. To this end, proposing
tractable graph metrics is of paramount importance in
applying such algorithms to graphs.

Unfortunately, graph metrics of interest are often
computationally expensive. A well-known example is
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the chemical distance [40]. Formally, given graphs
G

A

and G

B

, represented by their adjacency matrices
A, B œ {0, 1}n◊n, the chemical distance is dPn(A, B) is
defined in terms of a mapping between the two graphs
that minimizes their edge discrepancies, i.e.:

dPn(A, B) = min
P œPn ÎAP ≠ PBÎ

F

,(1.1)

where Pn is the set of permutation matrices of size n and
Î · Î

F

, is the Frobenius norm (see Sec. 2 for definitions).
The Chartrand-Kubiki-Shultz (CKS) [18] distance is an
alternative: CKS is again given by (1.1) but, instead of
edges, matrices A and B contain the pairwise shortest
path distances between any two nodes.

The chemical and CKS distances have important
properties. First, they are zero if and only if the
graphs are isomorphic, which appeals to both intuition
and practice; second, as desired, they are metrics;
third, they have a natural interpretation, capturing
global structural similarities between graphs. However,
finding an optimal permutation P is notoriously hard;
graph isomorphism, which is equivalent to deciding if
there exists a permutation P s.t. AP = PB (for both
adjacency and path matrices), is famously a problem
that is neither known to be in P nor shown to be NP-
hard [8]. There is a large and expanding literature on
scalable heuristics to estimate the optimal permutation P

[34, 9, 42, 23]. Despite their computational advantages,
unfortunately, using them to approximate dPn(A, B)
breaks the metric property.

This significantly degrades the performance of many
important tasks that rely on computing distances be-
tween graphs. For example, there is a clear separation
on the approximability of clustering over metric and non-
metric spaces [3]. We also demonstrate this empirically
in Section 5 (c.f. Fig. 1): attempting to cluster graphs
sampled from well-known families based on non-metric
distances significantly increases the misclassification rate,
compared to clustering using metrics.

An additonal issue that arises in practice is that
nodes often have attributes not associated with adja-
cency. For example, in social networks, nodes may con-
tain profiles with a user’s age or gender; similarly, nodes
in molecules may be labeled by atomic numbers. Such
attributes are not captured by the chemical or CKS
distances. However, in such cases, only label-preserving
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symmetric) binary matrices A œ {0, 1}n◊n, and weighted

graphs by real matrices A œ Rn◊n.
Matrix Norms. Given a matrix A = [a

ij

]
i,jœ[n]

œ
Rn◊n and a p œ N

+

fi {Œ}, its induced or operator p-

norm is defined in terms of the vector p-norm through
ÎAÎ

p

= sup
xœRn

:ÎxÎp=1

ÎAxÎ
p

, while its entry-wise p-

norm is given by ÎAÎ
p

= (
q

n

i=1

q
n

j=1

|a
ij

|p)1/p

, for
p œ N

+

, and ÎAÎŒ = max
i,j

|a
i,j

|. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as Î · Î

F

.
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as Pn = {P œ {0, 1}n◊n : P1 = 1, P

€1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkho� polytope)
as Wn = {W œ [0, 1]n◊n : W1 = 1, W

€1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as On = {U œ Rn◊n : UU

€ = U

€
U = I}. Note that

Pn = WnflOn. Moreover, the Birko�-von Neumann The-
orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of Pn.
Metrics. Given a set �, a function d : � ◊ � æ R is
called a metric, and the pair (�, d) is called a metric

space, if for all x, y, z œ �:

d(x, y) Ø 0 (non-negativity)(2.3a)
d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)

A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:

d(x, x) = 0 for all x œ �.(2.3e)

If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥

d

y over �. A pseudometric
is then a metric over �/ ≥

d

, the quotient space of ≥
d

.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.

Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs G

A

and G

B

. Then, G

A

and G

B

are isomor-

phic if and only if there exists P œ Pn s.t. P

€
AP = B

or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define d

S

: � ◊ � æ R
+

as:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ,(2.4)

where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d

S

is the chemical

distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
F

.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn

and Î·Î is an arbitrary entry-

wise norm, then d

S

given by (2.4) is a pseudometric

over � = Sn◊n

. If Î · Î is an arbitrary entry-wise or

operator norm, then its symmetric extension d̄

S

(A, B) =
d

S

(A, B) + d

S

(B, A) is a pseudometric over � = Rn◊n

.

Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected

graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d

S

is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing

Copyright

c• 2018 by SIAM

Unauthorized reproduction of this article is prohibited

 their CKS distance is:

Intractable

A,B 2 Rn⇥n
+



q  Inexact solution: approximate optimal matrix

Tractable Approaches

A Family of Tractable Graph Metrics !4

A Family of Tractable Graph Distances

Jose Bento

ú
Stratis Ioannidis

†

Abstract
Important data mining problems such as nearest-
neighbor search and clustering admit theoretical guar-
antees when restricted to objects embedded in a metric
space. Graphs are ubiquitous, and clustering and classi-
fication over graphs arise in diverse areas, including, e.g.,
image processing and social networks. Unfortunately,
popular distance scores used in these applications, that
scale over large graphs, are not metrics and thus come
with no guarantees. Classic graph distances such as,
e.g., the chemical and the CKS distance are arguably
natural and intuitive, and are indeed also metrics, but
they are intractable: as such, their computation does
not scale to large graphs. We define a broad family of
graph distances, that includes both the chemical and the
CKS distance, and prove that these are all metrics. Cru-
cially, we show that our family includes metrics that are
tractable. Moreover, we extend these distances by incor-
porating auxiliary node attributes, which is important
in practice, while maintaining both the metric property
and tractability.

1 Introduction
Graph similarity and the related problem of graph
isomorphism have a long history in data mining, machine
learning, and pattern recognition [21, 43, 38]. Graph

distances naturally arise in this literature: intuitively,
given two (unlabeled) graphs, their distance is a score
quanitifying their structural di�erences. A highly
desirable property for such a score is that it is a
metric, i.e., it is non-negative, symmetric, positive-
definite, and, crucially, satisfies the triangle inequality.
Metrics exhibit significant computational advantages
over non-metrics. For example, operations such as
nearest-neighbor search [20, 19, 11], clustering [3], outlier
detection [7], and diameter computation [31] admit
fast algorithms precisely when performed over objects
embedded in a metric space. To this end, proposing
tractable graph metrics is of paramount importance in
applying such algorithms to graphs.

Unfortunately, graph metrics of interest are often
computationally expensive. A well-known example is

úBoston College, jose.bento@bc.edu

†Northeastern University, ioannidis@ece.neu.edu

the chemical distance [40]. Formally, given graphs
G

A

and G

B

, represented by their adjacency matrices
A, B œ {0, 1}n◊n, the chemical distance is dPn(A, B) is
defined in terms of a mapping between the two graphs
that minimizes their edge discrepancies, i.e.:

dPn(A, B) = min
P œPn ÎAP ≠ PBÎ

F

,(1.1)

where Pn is the set of permutation matrices of size n and
Î · Î

F

, is the Frobenius norm (see Sec. 2 for definitions).
The Chartrand-Kubiki-Shultz (CKS) [18] distance is an
alternative: CKS is again given by (1.1) but, instead of
edges, matrices A and B contain the pairwise shortest
path distances between any two nodes.

The chemical and CKS distances have important
properties. First, they are zero if and only if the
graphs are isomorphic, which appeals to both intuition
and practice; second, as desired, they are metrics;
third, they have a natural interpretation, capturing
global structural similarities between graphs. However,
finding an optimal permutation P is notoriously hard;
graph isomorphism, which is equivalent to deciding if
there exists a permutation P s.t. AP = PB (for both
adjacency and path matrices), is famously a problem
that is neither known to be in P nor shown to be NP-
hard [8]. There is a large and expanding literature on
scalable heuristics to estimate the optimal permutation P

[34, 9, 42, 23]. Despite their computational advantages,
unfortunately, using them to approximate dPn(A, B)
breaks the metric property.

This significantly degrades the performance of many
important tasks that rely on computing distances be-
tween graphs. For example, there is a clear separation
on the approximability of clustering over metric and non-
metric spaces [3]. We also demonstrate this empirically
in Section 5 (c.f. Fig. 1): attempting to cluster graphs
sampled from well-known families based on non-metric
distances significantly increases the misclassification rate,
compared to clustering using metrics.

An additonal issue that arises in practice is that
nodes often have attributes not associated with adja-
cency. For example, in social networks, nodes may con-
tain profiles with a user’s age or gender; similarly, nodes
in molecules may be labeled by atomic numbers. Such
attributes are not captured by the chemical or CKS
distances. However, in such cases, only label-preserving
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Closed & Bounded Set Matrix Norm 

S, k · k dSq  Conditions on               under which         is a metric

S = Doubly Stochastic Matrices,        or S = Orthogonal Matrices

permutations P may make sense (e.g., mapping females
to females, oxygens to oxygens, etc.). Incorporating
attributes while preserving the metric property is thus
important from a practical perspective.
Contributions. We seek generalization of the chemical
and CKS distances that (a) satisfy the metric property

and (b) are tractable: by this, we mean that they can
be computed either by solving a convex optimization
problem, or by a polynomial time algorithm. Specifically,
we study generalizations of (1.1) of the form:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ(1.2)

where S µ Rn◊n is closed and bounded, Î · Î is a matrix
norm, and A, B œ Rn◊n are arbitrary real matrices
(representing adjacency, path distances, weights, etc.).
We make the following contributions:
• We prove su�cient conditions on S and norm Î · Î for

which (1.2) is a metric. In particular, we show that
d

S

is a so-called pseudo-metric (see Sec. 2) when:
(i) S = Pn and Î ·Î is any entry-wise or operator norm;
(ii) S = Wn, the set of doubly stochastic matrices,

Î · Î is an arbitrary entry-wise norm, and A, B are
symmetric; a modification on d

S

extends this result
to both operator norms as well as arbitrary matrices
(capturing, e.g., directed graphs); and

(iii) S = On, the set of orthogonal matrices, and Î · Î
is the operator or entry-wise 2-norm.

Relaxations (ii) and (iii) are very important from a
practical standpoint. For all matrix norms, computing
(1.2) with S = Wn is tractable, as it is a convex
optimization. For S = On, (1.2) is non-convex but is
still tractable, as it reduces to a spectral decomposition.
This was known for the Frobenius norm [56]; we prove
this is the case for the operator 2-norm also.

• We include node attributes in a natural way in the
definition of d

S

as both soft (i.e., penalties in the
objective) or hard constraints in Eq. (1.2). Crucially,
we do this without a�ecting the metric property and

tractability. This allows us to explore label or feature
preserving permutations, that incorporate both (a)
exogenous node attributes, such as, e.g., user age or
gender in a social network, as well as (b) endogenous,
structural features of each node, such as its degree
or the number of triangles that pass through it. We
numerically show that adding these constraints can
speed up the computation of d

S

.
From an experimental standpoint, we extensively

compare our tractable metrics to several existing heuris-
tic approximations. We also demonstrate the tractability
of our metrics by parallelizing their execution using the
alternating method of multipliers [15], which we imple-
ment over a compute cluster using Apache Spark [62].

Related Work. Graph distance (or similarity) scores
find applications in varied fields such as in image
processing [21], chemistry [6, 40], and social network
analysis [43, 38]. Graph distances are easy to define
when, contrary to our setting, the correspondence
between graph nodes is known, i.e., graphs are labeled

[46, 38, 55]. Beyond the chemical distance, classic
examples of distances between unlabeled graphs are
the edit distance [28, 51] and the maximum common

subgraph distance [17, 16], both of which also have
versions for labeled graphs. Both are metrics and are
hard to compute, while existing heuristics [48, 26] are
not metrics. The reaction distance [36] is also a metric
directly related to the chemical distance [40] when edits
are restricted to edge additions and deletions. Jain [32]
also considers an extension of the chemical distance,
limited to the Frobenius norm, that incorporates edge
attributes. However, it is not immediately clear how to
relax the above metrics [32, 36] to attain tractability.

A metric can also be induced by embedding graphs
in a metric space and measuring the distance of these
embeddings [50, 27, 49]. Several works follow such an
approach, mapping graphs, e.g., to spaces determined by
their spectral decomposition [63, 60, 24]. In general,
in contrast to our metrics, such approaches are not
as discriminative, as embeddings summarize graph
structure. Continuous relaxations of graph isomorphism,
both convex and non-convex [42, 4, 56], have found
applications in a variety of contexts, including social
networks [37], computer vision [52], shape detection
[53, 30], and neuroscience [57]. None of the above works
focus on metric properties of resulting relaxations, which
several fail to satisfy [57, 37, 53, 30].

Metrics naturally arise in data mining tasks, includ-
ing clustering [61, 29], NN search [20, 19, 11], and outlier
detection [7]. Some of these tasks become tractable or
admit formal guarantees precisely when performed over
a metric space. For example, finding the nearest neigh-
bor [20, 19, 11] or the diameter of a dataset [31] become
polylogarithimic under metric assumptions; similarly,
approximation algorithms for clustering (which is NP-
hard) rely on metric assumptions, whose absence leads
to a deterioration on known bounds [3]. Our search for
metrics is motivated by these considerations.

2 Notation and Preliminaries
Graphs. We represent an undirected graph G(V, E)
with node set V = [n] © {1, . . . , n} and edge set
E ™ [n] ◊ [n] by its adjacency matrix, i.e. A =
[a

i,j

]
i,jœ[n]

œ {0, 1}n◊n s.t. a

ij

= a

ji

= 1 if and only if
(i, j) œ E. In particular, A is symmetric, i.e. A = A

€.
We denote the set of all real, symmetric matrices by
Sn. Directed graphs are represented by (possibly non-
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GA Aadjacency matrix 

1 

2 3 

4 

5 6 

7 8 

9 

10 

2

666666666666664

0 1 0 0 0 1 0 0 1 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
0 0 0 1 0 1 1 0 0 0
1 0 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 0 0 1
0 0 1 0 0 1 0 0 0 1
1 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1 1

3

777777777777775

⌦ = Sn (real, symmetric) q  Weighted, undirected graphs:  

⌦ = Rn⇥n (real) q  Weighted, directed graphs: 

⌦ = {0, 1}n⇥n \ Sn (binary, symmetric) q  Undirected graphs:  
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tic approximations. We also demonstrate the tractability
of our metrics by parallelizing their execution using the
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2 Notation and Preliminaries
Graphs. We represent an undirected graph G(V, E)
with node set V = [n] © {1, . . . , n} and edge set
E ™ [n] ◊ [n] by its adjacency matrix, i.e. A =
[a

i,j

]
i,jœ[n]

œ {0, 1}n◊n s.t. a

ij

= a

ji

= 1 if and only if
(i, j) œ E. In particular, A is symmetric, i.e. A = A

€.
We denote the set of all real, symmetric matrices by
Sn. Directed graphs are represented by (possibly non-
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A,B 2 ⌦q For                : 

q        =    e.g., binary, binary symmetric, real symmetric, real ⌦

q       =  S

doubly-stochastic matrices 
(a.k.a. the Birkhoff Polytope) 

orthogonal matrices 
(a.k.a. the Stiefler Manifold) 

permutation matrices Pn = {P 2 {0, 1}n⇥n : P1 = P>1 = 1}

Wn = {P 2 [0, 1]n⇥n : P1 = P>1 = 1}

On = {P 2 Rn⇥n : PP> = P>P = I}
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Wn = {P 2 [0, 1]n⇥n : P1 = P>1 = 1}

On = {P 2 Rn⇥n : PP> = P>P = I}

Wn
= conv(Pn

)

Pn = Wn \On

(Birkhoff-von Neumann Theorem) 
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satisfies the following properties: 
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d : ⌦⇥ ⌦ ! R ⌦

symmetric) binary matrices A œ {0, 1}n◊n, and weighted

graphs by real matrices A œ Rn◊n.
Matrix Norms. Given a matrix A = [a

ij

]
i,jœ[n]

œ
Rn◊n and a p œ N

+

fi {Œ}, its induced or operator p-

norm is defined in terms of the vector p-norm through
ÎAÎ

p

= sup
xœRn

:ÎxÎp=1

ÎAxÎ
p

, while its entry-wise p-

norm is given by ÎAÎ
p

= (
q

n

i=1

q
n

j=1

|a
ij

|p)1/p

, for
p œ N

+

, and ÎAÎŒ = max
i,j

|a
i,j

|. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as Î · Î

F

.
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as Pn = {P œ {0, 1}n◊n : P1 = 1, P

€1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkho� polytope)
as Wn = {W œ [0, 1]n◊n : W1 = 1, W

€1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as On = {U œ Rn◊n : UU

€ = U

€
U = I}. Note that

Pn = WnflOn. Moreover, the Birko�-von Neumann The-
orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of Pn.
Metrics. Given a set �, a function d : � ◊ � æ R is
called a metric, and the pair (�, d) is called a metric

space, if for all x, y, z œ �:

d(x, y) Ø 0 (non-negativity)(2.3a)
d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)

A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:

d(x, x) = 0 for all x œ �.(2.3e)

If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥

d

y over �. A pseudometric
is then a metric over �/ ≥

d

, the quotient space of ≥
d

.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.

Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs G

A

and G

B

. Then, G

A

and G

B

are isomor-

phic if and only if there exists P œ Pn s.t. P

€
AP = B

or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define d

S

: � ◊ � æ R
+

as:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ,(2.4)

where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d

S

is the chemical

distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
F

.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn

and Î·Î is an arbitrary entry-

wise norm, then d

S

given by (2.4) is a pseudometric

over � = Sn◊n

. If Î · Î is an arbitrary entry-wise or

operator norm, then its symmetric extension d̄

S

(A, B) =
d

S

(A, B) + d

S

(B, A) is a pseudometric over � = Rn◊n

.

Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected

graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d

S

is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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A

and G

B

. Then, G

A

and G

B

are isomor-

phic if and only if there exists P œ Pn s.t. P

€
AP = B

or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define d

S

: � ◊ � æ R
+

as:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ,(2.4)

where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d

S

is the chemical

distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
F

.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn

and Î·Î is an arbitrary entry-

wise norm, then d

S

given by (2.4) is a pseudometric

over � = Sn◊n

. If Î · Î is an arbitrary entry-wise or

operator norm, then its symmetric extension d̄

S

(A, B) =
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S

(A, B) + d

S

(B, A) is a pseudometric over � = Rn◊n

.

Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected

graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d

S

is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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contribution is determining general conditions on S and
Î · Î under which d
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is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].
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Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:
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CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
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given by (2.4) is a
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graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
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is a quasimetric over the quotient space �/≥
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, and
symmetry is attained via the symmetric extension d̄
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.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d
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given
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optimization can be solved exactly when Î · Î = Î · Î
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or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define d

S

: � ◊ � æ R
+

as:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ,(2.4)

where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d

S

is the chemical

distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
F

.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn

and Î·Î is an arbitrary entry-

wise norm, then d

S

given by (2.4) is a pseudometric

over � = Sn◊n

. If Î · Î is an arbitrary entry-wise or

operator norm, then its symmetric extension d̄

S

(A, B) =
d

S

(A, B) + d

S

(B, A) is a pseudometric over � = Rn◊n

.

Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected

graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d

S

is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:
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A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.
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In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d
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given by (2.4) is a
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Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
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an operator norm or graphs are directed. In either case,
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, and
symmetry is attained via the symmetric extension d̄
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.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d
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given
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optimization can be solved exactly when Î · Î = Î · Î

F
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is then a metric over �/ ≥
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, the quotient space of ≥
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.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.
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and G
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. Then, G
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and G
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are isomor-

phic if and only if there exists P œ Pn s.t. P
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or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
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where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d
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distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
F

.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
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norm, then (2.4) defines a pseudometric over undirected

graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d
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is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define d

S

: � ◊ � æ R
+

as:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ,(2.4)

where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d

S

is the chemical

distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
F

.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn

and Î·Î is an arbitrary entry-

wise norm, then d

S

given by (2.4) is a pseudometric

over � = Sn◊n

. If Î · Î is an arbitrary entry-wise or

operator norm, then its symmetric extension d̄

S

(A, B) =
d

S

(A, B) + d

S

(B, A) is a pseudometric over � = Rn◊n

.

Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected

graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d

S

is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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d
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q  Weighted, directed graphs
q  Equivalence relation=Isomorphism
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permutations P may make sense (e.g., mapping females
to females, oxygens to oxygens, etc.). Incorporating
attributes while preserving the metric property is thus
important from a practical perspective.
Contributions. We seek generalization of the chemical
and CKS distances that (a) satisfy the metric property

and (b) are tractable: by this, we mean that they can
be computed either by solving a convex optimization
problem, or by a polynomial time algorithm. Specifically,
we study generalizations of (1.1) of the form:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ(1.2)

where S µ Rn◊n is closed and bounded, Î · Î is a matrix
norm, and A, B œ Rn◊n are arbitrary real matrices
(representing adjacency, path distances, weights, etc.).
We make the following contributions:
• We prove su�cient conditions on S and norm Î · Î for

which (1.2) is a metric. In particular, we show that
d

S

is a so-called pseudo-metric (see Sec. 2) when:
(i) S = Pn and Î ·Î is any entry-wise or operator norm;
(ii) S = Wn, the set of doubly stochastic matrices,

Î · Î is an arbitrary entry-wise norm, and A, B are
symmetric; a modification on d

S

extends this result
to both operator norms as well as arbitrary matrices
(capturing, e.g., directed graphs); and

(iii) S = On, the set of orthogonal matrices, and Î · Î
is the operator or entry-wise 2-norm.

Relaxations (ii) and (iii) are very important from a
practical standpoint. For all matrix norms, computing
(1.2) with S = Wn is tractable, as it is a convex
optimization. For S = On, (1.2) is non-convex but is
still tractable, as it reduces to a spectral decomposition.
This was known for the Frobenius norm [56]; we prove
this is the case for the operator 2-norm also.

• We include node attributes in a natural way in the
definition of d

S

as both soft (i.e., penalties in the
objective) or hard constraints in Eq. (1.2). Crucially,
we do this without a�ecting the metric property and

tractability. This allows us to explore label or feature
preserving permutations, that incorporate both (a)
exogenous node attributes, such as, e.g., user age or
gender in a social network, as well as (b) endogenous,
structural features of each node, such as its degree
or the number of triangles that pass through it. We
numerically show that adding these constraints can
speed up the computation of d

S

.
From an experimental standpoint, we extensively

compare our tractable metrics to several existing heuris-
tic approximations. We also demonstrate the tractability
of our metrics by parallelizing their execution using the
alternating method of multipliers [15], which we imple-
ment over a compute cluster using Apache Spark [62].

Related Work. Graph distance (or similarity) scores
find applications in varied fields such as in image
processing [21], chemistry [6, 40], and social network
analysis [43, 38]. Graph distances are easy to define
when, contrary to our setting, the correspondence
between graph nodes is known, i.e., graphs are labeled

[46, 38, 55]. Beyond the chemical distance, classic
examples of distances between unlabeled graphs are
the edit distance [28, 51] and the maximum common

subgraph distance [17, 16], both of which also have
versions for labeled graphs. Both are metrics and are
hard to compute, while existing heuristics [48, 26] are
not metrics. The reaction distance [36] is also a metric
directly related to the chemical distance [40] when edits
are restricted to edge additions and deletions. Jain [32]
also considers an extension of the chemical distance,
limited to the Frobenius norm, that incorporates edge
attributes. However, it is not immediately clear how to
relax the above metrics [32, 36] to attain tractability.

A metric can also be induced by embedding graphs
in a metric space and measuring the distance of these
embeddings [50, 27, 49]. Several works follow such an
approach, mapping graphs, e.g., to spaces determined by
their spectral decomposition [63, 60, 24]. In general,
in contrast to our metrics, such approaches are not
as discriminative, as embeddings summarize graph
structure. Continuous relaxations of graph isomorphism,
both convex and non-convex [42, 4, 56], have found
applications in a variety of contexts, including social
networks [37], computer vision [52], shape detection
[53, 30], and neuroscience [57]. None of the above works
focus on metric properties of resulting relaxations, which
several fail to satisfy [57, 37, 53, 30].

Metrics naturally arise in data mining tasks, includ-
ing clustering [61, 29], NN search [20, 19, 11], and outlier
detection [7]. Some of these tasks become tractable or
admit formal guarantees precisely when performed over
a metric space. For example, finding the nearest neigh-
bor [20, 19, 11] or the diameter of a dataset [31] become
polylogarithimic under metric assumptions; similarly,
approximation algorithms for clustering (which is NP-
hard) rely on metric assumptions, whose absence leads
to a deterioration on known bounds [3]. Our search for
metrics is motivated by these considerations.

2 Notation and Preliminaries
Graphs. We represent an undirected graph G(V, E)
with node set V = [n] © {1, . . . , n} and edge set
E ™ [n] ◊ [n] by its adjacency matrix, i.e. A =
[a

i,j

]
i,jœ[n]

œ {0, 1}n◊n s.t. a

ij

= a

ji

= 1 if and only if
(i, j) œ E. In particular, A is symmetric, i.e. A = A

€.
We denote the set of all real, symmetric matrices by
Sn. Directed graphs are represented by (possibly non-
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Theorem:	If														and								is	an	arbitrary	entry-wise	or	operator	
matrix	norm,	then								is	a	pseudo-metric	over															.		

S = Pn

dS

k · k
⌦ = Rn⇥n

Pn = {P 2 {0, 1}n⇥n : P1 = P>1 = 1}

(⇤)

S =



Theorem:	If															and								is	an	arbitrary	entry-wise	matrix	norm,	
then								is	a	pseudo-metric	over															.		dS

k · k
⌦ = Sn

S = Wn

q  Weighted, undirected graphs + entry-wise norms o.k.
q  Operator norms/directed graphs break symmetry
q  Equivalence classes characterized by Weisfeiler-Lehman algorithm.
q  Tractable:     is a convex optimization problem!
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permutations P may make sense (e.g., mapping females
to females, oxygens to oxygens, etc.). Incorporating
attributes while preserving the metric property is thus
important from a practical perspective.
Contributions. We seek generalization of the chemical
and CKS distances that (a) satisfy the metric property

and (b) are tractable: by this, we mean that they can
be computed either by solving a convex optimization
problem, or by a polynomial time algorithm. Specifically,
we study generalizations of (1.1) of the form:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ(1.2)

where S µ Rn◊n is closed and bounded, Î · Î is a matrix
norm, and A, B œ Rn◊n are arbitrary real matrices
(representing adjacency, path distances, weights, etc.).
We make the following contributions:
• We prove su�cient conditions on S and norm Î · Î for

which (1.2) is a metric. In particular, we show that
d

S

is a so-called pseudo-metric (see Sec. 2) when:
(i) S = Pn and Î ·Î is any entry-wise or operator norm;
(ii) S = Wn, the set of doubly stochastic matrices,

Î · Î is an arbitrary entry-wise norm, and A, B are
symmetric; a modification on d

S

extends this result
to both operator norms as well as arbitrary matrices
(capturing, e.g., directed graphs); and

(iii) S = On, the set of orthogonal matrices, and Î · Î
is the operator or entry-wise 2-norm.

Relaxations (ii) and (iii) are very important from a
practical standpoint. For all matrix norms, computing
(1.2) with S = Wn is tractable, as it is a convex
optimization. For S = On, (1.2) is non-convex but is
still tractable, as it reduces to a spectral decomposition.
This was known for the Frobenius norm [56]; we prove
this is the case for the operator 2-norm also.

• We include node attributes in a natural way in the
definition of d

S

as both soft (i.e., penalties in the
objective) or hard constraints in Eq. (1.2). Crucially,
we do this without a�ecting the metric property and

tractability. This allows us to explore label or feature
preserving permutations, that incorporate both (a)
exogenous node attributes, such as, e.g., user age or
gender in a social network, as well as (b) endogenous,
structural features of each node, such as its degree
or the number of triangles that pass through it. We
numerically show that adding these constraints can
speed up the computation of d

S

.
From an experimental standpoint, we extensively

compare our tractable metrics to several existing heuris-
tic approximations. We also demonstrate the tractability
of our metrics by parallelizing their execution using the
alternating method of multipliers [15], which we imple-
ment over a compute cluster using Apache Spark [62].

Related Work. Graph distance (or similarity) scores
find applications in varied fields such as in image
processing [21], chemistry [6, 40], and social network
analysis [43, 38]. Graph distances are easy to define
when, contrary to our setting, the correspondence
between graph nodes is known, i.e., graphs are labeled

[46, 38, 55]. Beyond the chemical distance, classic
examples of distances between unlabeled graphs are
the edit distance [28, 51] and the maximum common

subgraph distance [17, 16], both of which also have
versions for labeled graphs. Both are metrics and are
hard to compute, while existing heuristics [48, 26] are
not metrics. The reaction distance [36] is also a metric
directly related to the chemical distance [40] when edits
are restricted to edge additions and deletions. Jain [32]
also considers an extension of the chemical distance,
limited to the Frobenius norm, that incorporates edge
attributes. However, it is not immediately clear how to
relax the above metrics [32, 36] to attain tractability.

A metric can also be induced by embedding graphs
in a metric space and measuring the distance of these
embeddings [50, 27, 49]. Several works follow such an
approach, mapping graphs, e.g., to spaces determined by
their spectral decomposition [63, 60, 24]. In general,
in contrast to our metrics, such approaches are not
as discriminative, as embeddings summarize graph
structure. Continuous relaxations of graph isomorphism,
both convex and non-convex [42, 4, 56], have found
applications in a variety of contexts, including social
networks [37], computer vision [52], shape detection
[53, 30], and neuroscience [57]. None of the above works
focus on metric properties of resulting relaxations, which
several fail to satisfy [57, 37, 53, 30].

Metrics naturally arise in data mining tasks, includ-
ing clustering [61, 29], NN search [20, 19, 11], and outlier
detection [7]. Some of these tasks become tractable or
admit formal guarantees precisely when performed over
a metric space. For example, finding the nearest neigh-
bor [20, 19, 11] or the diameter of a dataset [31] become
polylogarithimic under metric assumptions; similarly,
approximation algorithms for clustering (which is NP-
hard) rely on metric assumptions, whose absence leads
to a deterioration on known bounds [3]. Our search for
metrics is motivated by these considerations.

2 Notation and Preliminaries
Graphs. We represent an undirected graph G(V, E)
with node set V = [n] © {1, . . . , n} and edge set
E ™ [n] ◊ [n] by its adjacency matrix, i.e. A =
[a

i,j

]
i,jœ[n]

œ {0, 1}n◊n s.t. a

ij

= a

ji

= 1 if and only if
(i, j) œ E. In particular, A is symmetric, i.e. A = A

€.
We denote the set of all real, symmetric matrices by
Sn. Directed graphs are represented by (possibly non-
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q  Weighted, directed graphs
q  Restricted to 2-norms
q  Equivalence classes characterized by co-spectrality.
q  Tractable:     is not convex, but can be solved via a spectral 

decomposition.
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permutations P may make sense (e.g., mapping females
to females, oxygens to oxygens, etc.). Incorporating
attributes while preserving the metric property is thus
important from a practical perspective.
Contributions. We seek generalization of the chemical
and CKS distances that (a) satisfy the metric property

and (b) are tractable: by this, we mean that they can
be computed either by solving a convex optimization
problem, or by a polynomial time algorithm. Specifically,
we study generalizations of (1.1) of the form:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ(1.2)

where S µ Rn◊n is closed and bounded, Î · Î is a matrix
norm, and A, B œ Rn◊n are arbitrary real matrices
(representing adjacency, path distances, weights, etc.).
We make the following contributions:
• We prove su�cient conditions on S and norm Î · Î for

which (1.2) is a metric. In particular, we show that
d

S

is a so-called pseudo-metric (see Sec. 2) when:
(i) S = Pn and Î ·Î is any entry-wise or operator norm;
(ii) S = Wn, the set of doubly stochastic matrices,

Î · Î is an arbitrary entry-wise norm, and A, B are
symmetric; a modification on d

S

extends this result
to both operator norms as well as arbitrary matrices
(capturing, e.g., directed graphs); and

(iii) S = On, the set of orthogonal matrices, and Î · Î
is the operator or entry-wise 2-norm.

Relaxations (ii) and (iii) are very important from a
practical standpoint. For all matrix norms, computing
(1.2) with S = Wn is tractable, as it is a convex
optimization. For S = On, (1.2) is non-convex but is
still tractable, as it reduces to a spectral decomposition.
This was known for the Frobenius norm [56]; we prove
this is the case for the operator 2-norm also.

• We include node attributes in a natural way in the
definition of d

S

as both soft (i.e., penalties in the
objective) or hard constraints in Eq. (1.2). Crucially,
we do this without a�ecting the metric property and

tractability. This allows us to explore label or feature
preserving permutations, that incorporate both (a)
exogenous node attributes, such as, e.g., user age or
gender in a social network, as well as (b) endogenous,
structural features of each node, such as its degree
or the number of triangles that pass through it. We
numerically show that adding these constraints can
speed up the computation of d

S

.
From an experimental standpoint, we extensively

compare our tractable metrics to several existing heuris-
tic approximations. We also demonstrate the tractability
of our metrics by parallelizing their execution using the
alternating method of multipliers [15], which we imple-
ment over a compute cluster using Apache Spark [62].

Related Work. Graph distance (or similarity) scores
find applications in varied fields such as in image
processing [21], chemistry [6, 40], and social network
analysis [43, 38]. Graph distances are easy to define
when, contrary to our setting, the correspondence
between graph nodes is known, i.e., graphs are labeled

[46, 38, 55]. Beyond the chemical distance, classic
examples of distances between unlabeled graphs are
the edit distance [28, 51] and the maximum common

subgraph distance [17, 16], both of which also have
versions for labeled graphs. Both are metrics and are
hard to compute, while existing heuristics [48, 26] are
not metrics. The reaction distance [36] is also a metric
directly related to the chemical distance [40] when edits
are restricted to edge additions and deletions. Jain [32]
also considers an extension of the chemical distance,
limited to the Frobenius norm, that incorporates edge
attributes. However, it is not immediately clear how to
relax the above metrics [32, 36] to attain tractability.

A metric can also be induced by embedding graphs
in a metric space and measuring the distance of these
embeddings [50, 27, 49]. Several works follow such an
approach, mapping graphs, e.g., to spaces determined by
their spectral decomposition [63, 60, 24]. In general,
in contrast to our metrics, such approaches are not
as discriminative, as embeddings summarize graph
structure. Continuous relaxations of graph isomorphism,
both convex and non-convex [42, 4, 56], have found
applications in a variety of contexts, including social
networks [37], computer vision [52], shape detection
[53, 30], and neuroscience [57]. None of the above works
focus on metric properties of resulting relaxations, which
several fail to satisfy [57, 37, 53, 30].

Metrics naturally arise in data mining tasks, includ-
ing clustering [61, 29], NN search [20, 19, 11], and outlier
detection [7]. Some of these tasks become tractable or
admit formal guarantees precisely when performed over
a metric space. For example, finding the nearest neigh-
bor [20, 19, 11] or the diameter of a dataset [31] become
polylogarithimic under metric assumptions; similarly,
approximation algorithms for clustering (which is NP-
hard) rely on metric assumptions, whose absence leads
to a deterioration on known bounds [3]. Our search for
metrics is motivated by these considerations.

2 Notation and Preliminaries
Graphs. We represent an undirected graph G(V, E)
with node set V = [n] © {1, . . . , n} and edge set
E ™ [n] ◊ [n] by its adjacency matrix, i.e. A =
[a

i,j

]
i,jœ[n]

œ {0, 1}n◊n s.t. a

ij

= a

ji

= 1 if and only if
(i, j) œ E. In particular, A is symmetric, i.e. A = A

€.
We denote the set of all real, symmetric matrices by
Sn. Directed graphs are represented by (possibly non-
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Theorem:	If															and								is	a	either	the	operator	or	the	entry-
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k · k
⌦ = Rn⇥n

S = On

S = On = {P 2 Rn⇥n : PP> = P>P = I}



q  We can construct pseudo-metrics for
              ,       , and     .

q  In the latter two cases, computing
is tractable.

Summary
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S = Pn Wn On

dS(A,B)
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(c) TIVs, n = 50(b) TIVs, n = 10

Description

Bd Barabasi Albert of degree d [5]
Ep Erd�s-Rényi with probability p [25]
P Power Law Tree [44]

Rd Regular Graph of degree d [13]
S Small World [35]

Wd Watts Strogatz of degree d [58]

(d) Synthetic Graph Classes

1 2 3 4 5 6 7 8 9 10 11
0

0.02

0.04

0.06

0.08
1 - InnerDSL2
2 - NetAlignBP
3 - IsoRank
4 - SparseIsoRank
5 - NetAlignMR
6 - Natalie
7 - DSL1
8 - DSL2
9 - InnerPerm
10 - InnerDSL1
11 - EXACT
12 - ORTHOP
13 - ORTHFR

(e) TIVs, small graphs

Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for di�erent algorithms on the small graphs dataset of all 7-node graphs.

map nodes in one graph to nodes of the same color.
Theorem 4.2 therefore implies that such constraints
can thus be added to the optimization problem, while
maintaining the metric property. In practice, as the
number of variables in optimization problem (2.4) is
n

2, incorporating such hard constraints can significantly
reduce the problem’s computation time; we illustrate
this in the next section. Note that adding (4.5) to dOn

does not preserve the metric propery.

5 Experiments
Graphs. We use synthetic graphs from six classes
summarized in the table in Fig. 1(d). In addition, we use
a dataset of small graphs, comprising all 853 connected
graphs of 7 nodes [45]. Finally, we use a collaboration

graph with 5242 nodes and 14496 edges representing
author collaborations [41].
Algorithms. We compare our metrics to several
competitors outlined in Table 1 (see also [10] for
additional details). All receive only two unlabeled
undirected simple graphs A and B and output a
matching a matrix P̂ either in Wn or in Pn estimating
P

ú. If P̂ œ Pn, we compute ÎAP̂ ≠ P̂BÎ
1

. If P̂ œ Wn,
then we compute both ÎAP̂ ≠ P̂BÎ

1

and ÎAP̂ ≠ P̂BÎ
F

;
all norms are entry-wise. We also implement our two
relaxations dW and dOn , for two di�erent matrix norm
combinations.

(Non-metric) Distance Score Algorithms
NetAlignBP Network Alignment using Belief Propagation [9, 33]

IsoRank Neighborhood Topology Isomorphism using Page Rank
[54, 33]

SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page
Rank [9, 33]

InnerPerm Inner Product Matching with Permutations [42]
InnerDSL1 Inner Product Matching with Matrices in Wn and entry-

wise 1-norm [42]
InnerDSL2 Inner Product Matching with Matrices in Wn and Frobe-

nius norm [42]
NetAlignMR Iterative Matching Relaxation [34, 33]

Natalie (V2.0) Improved Iterative Matching Relaxation [23, 22]
Metrics from our Family (2.4)

EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dWn with entry-

wise 1-norm
DSL2 Doubly Stochastic Chemical Distance dWn with Frobe-

nius norm
ORTHOP Orthogonal Relaxation of Chemical Distance dOn with

operator 2-norm
ORTHFR Orthogonal Relaxation of Chemical Distance dOn with

Frobenius norm

Table 1: Competitor Distance Scores & Our Metrics

k ÎP Î0 ÎAP≠P AÎ0 ·
1 3,747,960 100.569 133s
2 239,048 3,004 104s
3 182,474 2,036 136s
4 182,016 2,030 169s
5 182,006 2,030 200s

(a) Coloring Constraints

(b) Convergence of ADMM

Figure 3: (a) E�ect of coloring/hard constraints on the numbers
of variables (ÎP Î0) and terms of objective (ÎAP ≠ P AÎ0) using k

iterations of the WL coloring algorithm. The last column shows
the execution time of WL on a 40 CPU machine using Apache
Spark [62]. (b) Convergence of ADMM algorithm [15] computing
DSL2 on two copies of the collaboration graph as a function of
time, implemented using Apache Spark [62] on a 40 CPU machine.
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(c) TIVs, n = 50(b) TIVs, n = 10

Description

Bd Barabasi Albert of degree d [5]
Ep Erd�s-Rényi with probability p [25]
P Power Law Tree [44]

Rd Regular Graph of degree d [13]
S Small World [35]

Wd Watts Strogatz of degree d [58]

(d) Synthetic Graph Classes
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0.08
1 - InnerDSL2
2 - NetAlignBP
3 - IsoRank
4 - SparseIsoRank
5 - NetAlignMR
6 - Natalie
7 - DSL1
8 - DSL2
9 - InnerPerm
10 - InnerDSL1
11 - EXACT
12 - ORTHOP
13 - ORTHFR

(e) TIVs, small graphs

Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for di�erent algorithms on the small graphs dataset of all 7-node graphs.

map nodes in one graph to nodes of the same color.
Theorem 4.2 therefore implies that such constraints
can thus be added to the optimization problem, while
maintaining the metric property. In practice, as the
number of variables in optimization problem (2.4) is
n

2, incorporating such hard constraints can significantly
reduce the problem’s computation time; we illustrate
this in the next section. Note that adding (4.5) to dOn

does not preserve the metric propery.

5 Experiments
Graphs. We use synthetic graphs from six classes
summarized in the table in Fig. 1(d). In addition, we use
a dataset of small graphs, comprising all 853 connected
graphs of 7 nodes [45]. Finally, we use a collaboration

graph with 5242 nodes and 14496 edges representing
author collaborations [41].
Algorithms. We compare our metrics to several
competitors outlined in Table 1 (see also [10] for
additional details). All receive only two unlabeled
undirected simple graphs A and B and output a
matching a matrix P̂ either in Wn or in Pn estimating
P

ú. If P̂ œ Pn, we compute ÎAP̂ ≠ P̂BÎ
1

. If P̂ œ Wn,
then we compute both ÎAP̂ ≠ P̂BÎ

1

and ÎAP̂ ≠ P̂BÎ
F

;
all norms are entry-wise. We also implement our two
relaxations dW and dOn , for two di�erent matrix norm
combinations.

(Non-metric) Distance Score Algorithms
NetAlignBP Network Alignment using Belief Propagation [9, 33]

IsoRank Neighborhood Topology Isomorphism using Page Rank
[54, 33]

SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page
Rank [9, 33]

InnerPerm Inner Product Matching with Permutations [42]
InnerDSL1 Inner Product Matching with Matrices in Wn and entry-

wise 1-norm [42]
InnerDSL2 Inner Product Matching with Matrices in Wn and Frobe-

nius norm [42]
NetAlignMR Iterative Matching Relaxation [34, 33]

Natalie (V2.0) Improved Iterative Matching Relaxation [23, 22]
Metrics from our Family (2.4)

EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dWn with entry-

wise 1-norm
DSL2 Doubly Stochastic Chemical Distance dWn with Frobe-

nius norm
ORTHOP Orthogonal Relaxation of Chemical Distance dOn with

operator 2-norm
ORTHFR Orthogonal Relaxation of Chemical Distance dOn with

Frobenius norm

Table 1: Competitor Distance Scores & Our Metrics

k ÎP Î0 ÎAP≠P AÎ0 ·
1 3,747,960 100.569 133s
2 239,048 3,004 104s
3 182,474 2,036 136s
4 182,016 2,030 169s
5 182,006 2,030 200s

(a) Coloring Constraints

(b) Convergence of ADMM

Figure 3: (a) E�ect of coloring/hard constraints on the numbers
of variables (ÎP Î0) and terms of objective (ÎAP ≠ P AÎ0) using k

iterations of the WL coloring algorithm. The last column shows
the execution time of WL on a 40 CPU machine using Apache
Spark [62]. (b) Convergence of ADMM algorithm [15] computing
DSL2 on two copies of the collaboration graph as a function of
time, implemented using Apache Spark [62] on a 40 CPU machine.
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(c) TIVs, n = 50(b) TIVs, n = 10

Description

Bd Barabasi Albert of degree d [5]
Ep Erd�s-Rényi with probability p [25]
P Power Law Tree [44]

Rd Regular Graph of degree d [13]
S Small World [35]

Wd Watts Strogatz of degree d [58]

(d) Synthetic Graph Classes
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2 - NetAlignBP
3 - IsoRank
4 - SparseIsoRank
5 - NetAlignMR
6 - Natalie
7 - DSL1
8 - DSL2
9 - InnerPerm
10 - InnerDSL1
11 - EXACT
12 - ORTHOP
13 - ORTHFR

(e) TIVs, small graphs

Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for di�erent algorithms on the small graphs dataset of all 7-node graphs.

map nodes in one graph to nodes of the same color.
Theorem 4.2 therefore implies that such constraints
can thus be added to the optimization problem, while
maintaining the metric property. In practice, as the
number of variables in optimization problem (2.4) is
n

2, incorporating such hard constraints can significantly
reduce the problem’s computation time; we illustrate
this in the next section. Note that adding (4.5) to dOn

does not preserve the metric propery.

5 Experiments
Graphs. We use synthetic graphs from six classes
summarized in the table in Fig. 1(d). In addition, we use
a dataset of small graphs, comprising all 853 connected
graphs of 7 nodes [45]. Finally, we use a collaboration

graph with 5242 nodes and 14496 edges representing
author collaborations [41].
Algorithms. We compare our metrics to several
competitors outlined in Table 1 (see also [10] for
additional details). All receive only two unlabeled
undirected simple graphs A and B and output a
matching a matrix P̂ either in Wn or in Pn estimating
P

ú. If P̂ œ Pn, we compute ÎAP̂ ≠ P̂BÎ
1

. If P̂ œ Wn,
then we compute both ÎAP̂ ≠ P̂BÎ

1

and ÎAP̂ ≠ P̂BÎ
F

;
all norms are entry-wise. We also implement our two
relaxations dW and dOn , for two di�erent matrix norm
combinations.

(Non-metric) Distance Score Algorithms
NetAlignBP Network Alignment using Belief Propagation [9, 33]

IsoRank Neighborhood Topology Isomorphism using Page Rank
[54, 33]

SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page
Rank [9, 33]

InnerPerm Inner Product Matching with Permutations [42]
InnerDSL1 Inner Product Matching with Matrices in Wn and entry-

wise 1-norm [42]
InnerDSL2 Inner Product Matching with Matrices in Wn and Frobe-

nius norm [42]
NetAlignMR Iterative Matching Relaxation [34, 33]

Natalie (V2.0) Improved Iterative Matching Relaxation [23, 22]
Metrics from our Family (2.4)

EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dWn with entry-

wise 1-norm
DSL2 Doubly Stochastic Chemical Distance dWn with Frobe-

nius norm
ORTHOP Orthogonal Relaxation of Chemical Distance dOn with

operator 2-norm
ORTHFR Orthogonal Relaxation of Chemical Distance dOn with

Frobenius norm

Table 1: Competitor Distance Scores & Our Metrics

k ÎP Î0 ÎAP≠P AÎ0 ·
1 3,747,960 100.569 133s
2 239,048 3,004 104s
3 182,474 2,036 136s
4 182,016 2,030 169s
5 182,006 2,030 200s

(a) Coloring Constraints

(b) Convergence of ADMM

Figure 3: (a) E�ect of coloring/hard constraints on the numbers
of variables (ÎP Î0) and terms of objective (ÎAP ≠ P AÎ0) using k

iterations of the WL coloring algorithm. The last column shows
the execution time of WL on a 40 CPU machine using Apache
Spark [62]. (b) Convergence of ADMM algorithm [15] computing
DSL2 on two copies of the collaboration graph as a function of
time, implemented using Apache Spark [62] on a 40 CPU machine.
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(c) TIVs, n = 50(b) TIVs, n = 10

Description

Bd Barabasi Albert of degree d [5]
Ep Erd�s-Rényi with probability p [25]
P Power Law Tree [44]

Rd Regular Graph of degree d [13]
S Small World [35]

Wd Watts Strogatz of degree d [58]

(d) Synthetic Graph Classes
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3 - IsoRank
4 - SparseIsoRank
5 - NetAlignMR
6 - Natalie
7 - DSL1
8 - DSL2
9 - InnerPerm
10 - InnerDSL1
11 - EXACT
12 - ORTHOP
13 - ORTHFR

(e) TIVs, small graphs

Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for di�erent algorithms on the small graphs dataset of all 7-node graphs.

Theorem 4.2 therefore implies that such constraints
can thus be added to the optimization problem, while
maintaining the metric property. In practice, as the
number of variables in optimization problem (2.4) is
n

2, incorporating such hard constraints can significantly
reduce the problem’s computation time; we illustrate
this in the next section. Note that adding (4.5) to dOn

does not preserve the metric propery.

5 Experiments
Graphs. We use synthetic graphs from six classes
summarized in the table in Fig. 1(d). In addition, we use
a dataset of small graphs, comprising all 853 connected
graphs of 7 nodes [45]. Finally, we use a collaboration

graph with 5242 nodes and 14496 edges representing
author collaborations [41].
Algorithms. We compare our metrics to several
competitors outlined in Table 1 (see also [10] for
additional details). All receive only two unlabeled
undirected simple graphs A and B and output a
matching a matrix P̂ either in Wn or in Pn estimating
P

ú. If P̂ œ Pn, we compute ÎAP̂ ≠ P̂BÎ
1

. If P̂ œ Wn,
then we compute both ÎAP̂ ≠ P̂BÎ

1

and ÎAP̂ ≠ P̂BÎ
F

;
all norms are entry-wise. We also implement our two
relaxations dW and dOn , for two di�erent matrix norm
combinations.
Clustering Graphs. The di�erence between our met-

(Non-metric) Distance Score Algorithms
NetAlignBP Network Alignment using Belief Propagation [9, 33]

IsoRank Neighborhood Topology Isomorphism using Page Rank
[54, 33]

SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page
Rank [9, 33]

InnerPerm Inner Product Matching with Permutations [42]
InnerDSL1 Inner Product Matching with Matrices in Wn and entry-

wise 1-norm [42]
InnerDSL2 Inner Product Matching with Matrices in Wn and Frobe-

nius norm [42]
NetAlignMR Iterative Matching Relaxation [34, 33]

Natalie (V2.0) Improved Iterative Matching Relaxation [23, 22]
Metrics from our Family (2.4)

EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dWn with entry-

wise 1-norm
DSL2 Doubly Stochastic Chemical Distance dWn with Frobe-

nius norm
ORTHOP Orthogonal Relaxation of Chemical Distance dOn with

operator 2-norm
ORTHFR Orthogonal Relaxation of Chemical Distance dOn with

Frobenius norm

Table 1: Competitor Distance Scores & Our Metrics

rics and non-metrics is striking when clustering graphs.
This is illustrated by the clustering experiment shown
in Fig. 1(a). Graphs of size n = 50 from the 6 classes in
Fig. 1(d) are clustered together through hierarchical ag-
glomerative clustering. We compute distances between
them using nine di�erent algorithms; only the distances
in our family (DSL1, DSL2, ORTHOP, and ORTHFR)
are metrics. The quality of clusters induced by our
metrics are far superior than clusters induced by non-
metrics; in fact, ORTHOP and ORTHFR can lead to
no misclassifications. This experiment strongly suggests
our produced metrics correctly capture the topology of
the metric space between these larger graphs.
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(c) TIVs, n = 50(b) TIVs, n = 10
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Bd Barabasi Albert of degree d [5]
Ep Erd�s-Rényi with probability p [25]
P Power Law Tree [44]

Rd Regular Graph of degree d [13]
S Small World [35]

Wd Watts Strogatz of degree d [58]

(d) Synthetic Graph Classes
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11 - EXACT
12 - ORTHOP
13 - ORTHFR

(e) TIVs, small graphs

Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for di�erent algorithms on the small graphs dataset of all 7-node graphs.

Theorem 4.2 therefore implies that such constraints
can thus be added to the optimization problem, while
maintaining the metric property. In practice, as the
number of variables in optimization problem (2.4) is
n

2, incorporating such hard constraints can significantly
reduce the problem’s computation time; we illustrate
this in the next section. Note that adding (4.5) to dOn

does not preserve the metric propery.

5 Experiments
Graphs. We use synthetic graphs from six classes
summarized in the table in Fig. 1(d). In addition, we use
a dataset of small graphs, comprising all 853 connected
graphs of 7 nodes [45]. Finally, we use a collaboration

graph with 5242 nodes and 14496 edges representing
author collaborations [41].
Algorithms. We compare our metrics to several
competitors outlined in Table 1 (see also [10] for
additional details). All receive only two unlabeled
undirected simple graphs A and B and output a
matching a matrix P̂ either in Wn or in Pn estimating
P

ú. If P̂ œ Pn, we compute ÎAP̂ ≠ P̂BÎ
1

. If P̂ œ Wn,
then we compute both ÎAP̂ ≠ P̂BÎ

1

and ÎAP̂ ≠ P̂BÎ
F

;
all norms are entry-wise. We also implement our two
relaxations dW and dOn , for two di�erent matrix norm
combinations.
Clustering Graphs. The di�erence between our met-

(Non-metric) Distance Score Algorithms
NetAlignBP Network Alignment using Belief Propagation [9, 33]

IsoRank Neighborhood Topology Isomorphism using Page Rank
[54, 33]

SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page
Rank [9, 33]

InnerPerm Inner Product Matching with Permutations [42]
InnerDSL1 Inner Product Matching with Matrices in Wn and entry-

wise 1-norm [42]
InnerDSL2 Inner Product Matching with Matrices in Wn and Frobe-

nius norm [42]
NetAlignMR Iterative Matching Relaxation [34, 33]

Natalie (V2.0) Improved Iterative Matching Relaxation [23, 22]
Metrics from our Family (2.4)

EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dWn with entry-

wise 1-norm
DSL2 Doubly Stochastic Chemical Distance dWn with Frobe-

nius norm
ORTHOP Orthogonal Relaxation of Chemical Distance dOn with

operator 2-norm
ORTHFR Orthogonal Relaxation of Chemical Distance dOn with

Frobenius norm

Table 1: Competitor Distance Scores & Our Metrics

rics and non-metrics is striking when clustering graphs.
This is illustrated by the clustering experiment shown
in Fig. 1(a). Graphs of size n = 50 from the 6 classes in
Fig. 1(d) are clustered together through hierarchical ag-
glomerative clustering. We compute distances between
them using nine di�erent algorithms; only the distances
in our family (DSL1, DSL2, ORTHOP, and ORTHFR)
are metrics. The quality of clusters induced by our
metrics are far superior than clusters induced by non-
metrics; in fact, ORTHOP and ORTHFR can lead to
no misclassifications. This experiment strongly suggests
our produced metrics correctly capture the topology of
the metric space between these larger graphs.
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Description

Bd Barabasi Albert of degree d [5]
Ep Erd�s-Rényi with probability p [25]
P Power Law Tree [44]

Rd Regular Graph of degree d [13]
S Small World [35]

Wd Watts Strogatz of degree d [58]

(d) Synthetic Graph Classes

1 2 3 4 5 6 7 8 9 10 11
0

0.02

0.04

0.06

0.08
1 - InnerDSL2
2 - NetAlignBP
3 - IsoRank
4 - SparseIsoRank
5 - NetAlignMR
6 - Natalie
7 - DSL1
8 - DSL2
9 - InnerPerm
10 - InnerDSL1
11 - EXACT
12 - ORTHOP
13 - ORTHFR

(e) TIVs, small graphs

Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for di�erent algorithms on the small graphs dataset of all 7-node graphs.

Theorem 4.2 therefore implies that such constraints
can thus be added to the optimization problem, while
maintaining the metric property. In practice, as the
number of variables in optimization problem (2.4) is
n

2, incorporating such hard constraints can significantly
reduce the problem’s computation time; we illustrate
this in the next section. Note that adding (4.5) to dOn

does not preserve the metric propery.

5 Experiments
Graphs. We use synthetic graphs from six classes
summarized in the table in Fig. 1(d). In addition, we use
a dataset of small graphs, comprising all 853 connected
graphs of 7 nodes [45]. Finally, we use a collaboration

graph with 5242 nodes and 14496 edges representing
author collaborations [41].
Algorithms. We compare our metrics to several
competitors outlined in Table 1 (see also [10] for
additional details). All receive only two unlabeled
undirected simple graphs A and B and output a
matching a matrix P̂ either in Wn or in Pn estimating
P

ú. If P̂ œ Pn, we compute ÎAP̂ ≠ P̂BÎ
1

. If P̂ œ Wn,
then we compute both ÎAP̂ ≠ P̂BÎ

1

and ÎAP̂ ≠ P̂BÎ
F

;
all norms are entry-wise. We also implement our two
relaxations dW and dOn , for two di�erent matrix norm
combinations.
Clustering Graphs. The di�erence between our met-

(Non-metric) Distance Score Algorithms
NetAlignBP Network Alignment using Belief Propagation [9, 33]

IsoRank Neighborhood Topology Isomorphism using Page Rank
[54, 33]

SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page
Rank [9, 33]

InnerPerm Inner Product Matching with Permutations [42]
InnerDSL1 Inner Product Matching with Matrices in Wn and entry-

wise 1-norm [42]
InnerDSL2 Inner Product Matching with Matrices in Wn and Frobe-

nius norm [42]
NetAlignMR Iterative Matching Relaxation [34, 33]

Natalie (V2.0) Improved Iterative Matching Relaxation [23, 22]
Metrics from our Family (2.4)

EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dWn with entry-

wise 1-norm
DSL2 Doubly Stochastic Chemical Distance dWn with Frobe-

nius norm
ORTHOP Orthogonal Relaxation of Chemical Distance dOn with

operator 2-norm
ORTHFR Orthogonal Relaxation of Chemical Distance dOn with

Frobenius norm

Table 1: Competitor Distance Scores & Our Metrics

rics and non-metrics is striking when clustering graphs.
This is illustrated by the clustering experiment shown
in Fig. 1(a). Graphs of size n = 50 from the 6 classes in
Fig. 1(d) are clustered together through hierarchical ag-
glomerative clustering. We compute distances between
them using nine di�erent algorithms; only the distances
in our family (DSL1, DSL2, ORTHOP, and ORTHFR)
are metrics. The quality of clusters induced by our
metrics are far superior than clusters induced by non-
metrics; in fact, ORTHOP and ORTHFR can lead to
no misclassifications. This experiment strongly suggests
our produced metrics correctly capture the topology of
the metric space between these larger graphs.
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6 - Natalie
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Figure 2: (a) E�ect of introducing TIVs on the performance of di�erent algorithms on the clustering experiment of Figure 1(a)
when using the Ward method. (b) Cosine similarity between the Laplacian of distances produced by each algorithm and the one by
EXACT. (c) Distance between nearest neighbor (NN) graphs induced by di�erent algorithms and NN graph induced by EXACT.

k ÎP Î0 ÎAP≠P AÎ0 ·
1 3,747,960 100.569 133s
2 239,048 3,004 104s
3 182,474 2,036 136s
4 182,016 2,030 169s
5 182,006 2,030 200s

(a) Coloring Constraints

(b) Convergence of ADMM

Figure 3: (a) E�ect of coloring/hard constraints on the numbers
of variables (ÎP Î0) and terms of objective (ÎAP ≠ P AÎ0) using k

iterations of the WL coloring algorithm. The last column shows
the execution time of WL on a 40 CPU machine using Apache
Spark [62]. (b) Convergence of ADMM algorithm [15] computing
DSL2 on two copies of the collaboration graph as a function of
time, implemented using Apache Spark [62] on a 40 CPU machine.

Triangle Inequality Violations (TIV). Given
graphs A, B and C and a distance d, a TIV occurs
when d(A, C) > d(A, B) + d(B, C). Being metrics, none
of our distances induce TIVs; this is not the case for the
remaining algorithms in Table 1. Fig. 1(b) and (c) show
the TIV fraction across the synthetic graphs of Fig. 1(d),
while Fig. 1(e) shows the fraction of TIVs found on the
853 small graphs (n = 7). NetAlignMR also produces
no TIVs on the small graphs, but it does induce TIVs
in synthetic graphs. We observe that it is easier to find
TIVs when graphs are close: in synthetic graphs, TIVs
abound for n = 10. No algorithm performs well across
all categories of graphs.
E�ect of TIVs on Clustering. Next, to investigate
the e�ect of TIVs on clustering, we artificially introduced
triangle inequality violations into the pairs of distances
between graphs. We then re-evaluated clustering per-
formance for hierarchical agglomerative clustering using
the Ward method, which performed best in Fig. 1(a).
Fig. 2(a) shows the fraction of misclassified graphs as the
fraction of TIVs introduced increases. To incur as small
a perturmbation on distances as possible, we introduce
TIVs as follows: For every three graphs, A, B, C, with
probability p, we set d(A, C) = d(A, B) + d(B, C). Al-
though this does not introduce a TIV w.r.t. A,B, and C,
this distortion does introduce TIVs w.r.t. other triplets

involving A and C. We repeat this 20 times for each
algorithm and each value of p, and compute the average
fraction of TIVs, shown in the x-axis, and the average
fraction of misclassified graphs, shown in the y-axis. As
little as 1% TIVs significantly deteriorate clustering per-
formance. We also see that, even after introducing TIVs,
clustering based on metrics outperforms clustering based
on non-metrics.
Comparison to Chemical Distance. We compare
how di�erent distance scores relate to the chemical
distance EXACT through two experiments on the small
graphs (computation on larger graphs is prohibitive). In
Figure 2(b), we compare the distances between small
graphs with 7 nodes produced by the di�erent algorithms
and EXACT using the DISTATIS method of [1]. Let
D œ R835◊835

+

be the matrix of distances between graphs
under an algorithm. DISTATIS computes the normalized
Laplacian of this matrix, given by L = ≠UDU/ÎUDUÎ

2

where U = I ≠ 11€

n

. The DISTATIS score is the cosine
similarity of such Laplacians (vectorized). We see that
our metrics produce distances attaining high similarity
with EXACT, though NetAlignBP has the highest
similarity. We measure proximity to EXACT with
an additional test. Given D, we compute the nearest
neighbor (NN) meta-graph by connecting a graph in D

to every graph at distance less than its average distance
to other graps. This results in a (labeled) meta-graph,
which we can compare to the NN meta-graph induced
by other algorithms, measuring the fraction of distinct
edges. Fig. 2(c) shows that our algorithms perform quite
well, though Natalie yields the smallest distance to
EXACT.
Incorporating Constraints. Computation costs can
be reduced through metric embeddings, as in (4.6).
To show this, we produce a copy of the 5242 node
collaboration graph with permuted node labels. We
then run the WL algorithm [59] to produce structural
colors, which induce coloring constraints on P œ Wn.
The support of P (i.e., the number of variables in
the optimization (2.4)), the support of AP ≠ PA
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q Relaxations of Chemical & CKS distances

q Incorporating Metric Embeddings

q Distributed Computation

Outline

A Family of Tractable Graph Metrics !20



q  Nodes often have attributes

Node Attributes

A Family of Tractable Graph Metrics !21

q Exogenous (gender, age, in social network, atomic number in molecule, etc.) 

70K 20ys 
xv =

q Endogenous (degree, number of triangles, pagerank, etc.) 

1 0.46 
xv = 3 

Find mappings that map 
"similar" nodes to each other 



Metric Embeddings

A Family of Tractable Graph Metrics !22

(⌦̃, d̃)

(⌦̃, d̃)q  Metric embedding: Mapping of nodes to metric space          . 

70K 20ys 
xv =

E.g. : 
⌦̃ = Rd d̃ = Euclidian distance , 



Incorporating Node Attributes

A Family of Tractable Graph Metrics !23

(⌦̃, d̃)

(⌦̃, d̃)q  Consider two graphs embedded in the same metric space          . 

q  Seek permutations that map nodes to other nearby/proximal nodes. 

Pairwise distances between 
nodes in   (⌦̃, d̃)

Theorem:	If														or														,		then								is	a	pseudo-
metric	over		graphs	embedded	in											.		

S = WnS = Pn dS
(⌦̃, d̃)

q  For            , optimization is convex! S = Wn

dS(A,B) = min
P2S

tr(P>D̃A,B)

D̃A,B 2 Rn⇥n

q  For            , optimization is polytime-solvable!  
                           (Hungarian algorithm) 

S = Pn



Incorporating Node Attributes

A Family of Tractable Graph Metrics !24

(⌦̃, d̃)

(⌦̃, d̃)q  Consider two graphs embedded in the same metric space          . 

q  Seek permutations that map nodes to other nearby/proximal nodes. 

Pairwise distances between 
nodes in   (⌦̃, d̃)

dS(A,B) = min
P2S

⇣
kAP � PBk+ tr(P>D̃A,B)

⌘

Theorem:	If														or														,		then								is	a	pseudo-
metric	over		graphs	embedded	in											.		

S = WnS = Pn dS
(⌦̃, d̃)

q  For            , optimization is still tractable! S = Wn



Important Practical Implications

A Family of Tractable Graph Metrics !25

(⌦̃, d̃)

dS(A,B) = min
P2S

⇣
kAP � PBk+ tr(P>D̃A,B)

⌘

q  Endogenous features in       : degree, 
pagerank, etc. 
q  Speed up convergence 

Rd

q  Constraints 
q  Map nodes of degree k only to nodes of degree k 
q  Map females to females, oxygens to oxygens, etc. 

Constraints maintain metric property!! 

q  Reduces # variables in optimization  

⌦̃ = {0, 1, 2, 3, . . .} (degrees, atomic numbers, …) 

d̃(x, y) =

(
0, if x = y,

1, if x 6= y.

(Dirac distance) 



q  Embedding must place nodes in the same metric space.
q  Mapping must be unique (in particular, deterministic)
q  Preferred property: embedding is permutation invariant.

q  Possible Example Embeddings
q  Local/node centric features

q  WL counts, degrees, cycles, k-hop neighborhoods
q  Laplacian Eigenmaps [Hoffman and Buchanan 94, Balasubramanian and Swartz 02, He and Nyogi 03]

q  Eigenmaps of Non-Backtracking Walks [See Part III of tutorial!!!]

q  Non-Examples:
q  Nearly-isometric embeddings [Linial et al. 96, Matousek 99, Bourgain 86, Rao 95]

q  Matrix factorization [Nikoletzos et al. 17, Ou et al 16, Shaw and Jebara  09]

q  Path-NLP based methods [DeepWalk, node2vec, etc.]

How to Pick an Embedding?

A Family of Tractable Graph Metrics !26

(⌦̃, d̃)

Need for 
research on how 

to co-embed 

More on Embeddings: T6/44: 
Modeling Data With Networks + Network Embedding: Problems, Methodologies and Frontiers  
Peng Cui (Tsinghua University), Jian Pei (SFU), Wenwu Zhu (Tsinghua University),  
Tanya Berger-Wolf (UIC), Ivan Brugere (UIC) Bryan Perozzi (Google)  
ICC Capital Suite Room 11 (Level 3), 1:00 PM - 5:00 PM  



q Relaxations of Chemical & CKS distances

q Incorporating Metric Embeddings

q Distributed Computation
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q Objective can be written as sum of convex functions
q Solution can be parallelized via consensus ADMM

Distributing Computation

A Family of Tractable Graph Metrics !28

||AP � PB||1 + tr(P>D̃A,B) =
nX

i=1

nX

j=1

�����
X

k

aikpkj �
X

k

pikbkj

�����+
nX

i=1

nX

j=1

pij d̃ij

nX

i=1

pij = 1
nX

j=1

pij = 1

Boyd, Stephen, et al. "Distributed optimization and statistical learning via the 
alternating direction method of multipliers." Foundations and Trends® in 
Machine learning 3.1 (2011): 1-122. 



q Objective cannot be written as sum of convex 
functions

q Solution can still be parallelized through map and 
reduce operations+ADMM

Distributing Computation

A Family of Tractable Graph Metrics !29

nX

i=1

pij = 1
nX

j=1

pij = 1

||AP � PB||p + tr(P>D̃A,B) =

p
vuut
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Parallel Implementation
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Figure 2: Computing the distance be-
tween two isomorphic graphs with
82,168 nodes and 948,464 edges, rep-
resenting Slashdot posts [91], using
hard constraints imposed by the WL al-
gorithm [136] with k = 5. This is a con-
strained optimization problem involv-
ing 3,184,682 unknowns and an objec-
tive with 1,389,824 terms. Our ADMM
Spark code solves this problem by par-
allelizing it over a cluster of 8 ma-
chines with 56 cores each; additional
speedups are attainable over a Google-
scale cluster.

Transformative Potential & Applicability: If successful, our
project will provide a general family of graph metrics across var-
ious domains with the purpose of narrowing down on canonical
distances and geometries for practical uses. Scalable, discrim-
inative, interpretable, statistically robust, metric distances over
graphs have wide applicability because distance (or, conversely,
similarity) is a ubiquitous function in many domains such as bi-
ology, social network analysis, and crystallography. We intend
to demonstrate this applicability by studying metrics specifically
applied to these domains.
Research Thrusts: The project is organized across three re-
search thrusts.
Thrust 1: Multi-scale Graph Embeddings in Metric Spaces. This
thrust studies how to embed a graph into a metric space. There
are no canonical ways of doing this at the moment. To find
distances, we need to scale up counting of cycles in a graph.
Also, to find statistically robust metric spaces and interpretable
results, we need to sample from this metric space, which also
does not have a canonical form.
Thrust 2: Large Scale Study of Graph Metrics and their Induced
Topology. Here we use large synthetic and real-life graphs to
see how different properties of our family of metrics compare to
that of other distances, and the chemical distance in particular.
Guided by this large scale study, we plan to explore our family in several important directions while
keeping properties (1)-(6).
Thrust 3: Scalability Via ADMM. We propose a massively distributed implementation of metrics in
our family through the Alternating Directions Method of Multipliers. We have created a preliminary
implementation over C, as well as one over Apache Spark, that can be readily deployed on Google
Cloud. The goal of this thrust is to incorporate, scale, and test the metrics produced by Thrusts 1 & 2
using this massively parallel implementation.

2 Literature Survey

Symbol Description

d, dS Graph distance, metric or pseudometric
W Metric space over which distance d is defined

GA, GB Graphs
A, B Adjacency matrices

G = (V,E) A graph with vertex set V and edge set E
fi(u) The ith feature of node u
P,P> Relaxed association matrix and its transpose
eu,v The edge connecting nodes u and v
S Set of values for P
Pn Permutations on n elements
Wn Set of doubly stochastic matrices of dimension n
On Set of orthogonal matrices of dimension n
k ·k Matrix norm
y Graph embedding map

D,DyA ,yB Matrix of embedded distances by maps yA,yB
1 Vector of all ones

Table 1: Common notation used.

Graph similarity and the related problem of
graph matching have a long history in image
processing [41], chemistry [10, 90], and so-
cial network analysis [95, 85]. Distances are
easy to define when the correspondence between
nodes in the two graphs is known (i.e., graphs
are labeled) [104, 85, 122]. Beyond the chem-
ical distance [90], classic examples of distances
between unlabeled graphs are the edit distance
[60, 113] and the maximum common subgraph
distance [32, 31], both of which also have ver-
sions for labeled graphs. Both are metrics and
hard to compute, while known approximation
algorithms [109, 51] do not maintain the met-
ric property. Additional alternatives include the
Chartrand-Kubiki-Shultz (CKS) distance [35] and the reaction distance [82]. There are strong con-
nections between these metrics and the chemical distance [90], including that all three are defined

D–2

q  Apache Spark 
q  ADMM 

 Slashdot graph 
q  n = 82,168 nodes 
q  |E| = 948,464 edges 

q  Constraints: WL-coloring 
algorithm 
 

k # vars exec. time
0 27,478,564 0s
1 3,747,960 133s
2 239,048 104s
3 182,474 136s
4 182,016 169s
5 182,006 200s

Table 4: Effect of structural constraints
on problem complexity. A graph with
5242 nodes and 14496 edges, repre-
senting author collaborations [91] was
colored using k iterations of the WL al-
gorithm [136]. Unconstrained, find-
ing an isomorphism between the graph
and a permutation of its nodes involves
5242

2 ⇡ 27.4M variables. Restricting
maps to nodes of the same color re-
duces the number of variables in (3.4)
significantly. For k  5, the execution
time of the WL algorithm over a single
machine with 40 cores using our Spark
implementation is less than 4 mins.

Preliminary Implementation: We have produced an imple-
mentation of both (a) a C-based solver for (3.4), that runs on a
single multi-core machine with a GPU card, and (b) a Python-
based Apache Spark solver. Currently these solve (3.4) under
doubly stochastic constraints, using `

1

and `
2

entry-wise matrix
norms. Also, to test linear penalties, we have implemented sev-
eral standard methods for producing topology-related numeric
attributes, including the size of k-hop neighborhood, the num-
ber of cycles passing through a node k, and a node’s page-rank.
We have also implemented the Weisfeiler-Lehman (WL) color-
ing algorithm [136], which colors nodes identically if their k-
hop neighborhoods are isomorphic. We have parallelized all of
the above node attribute and coloring algorithms through map-
reduce in our Apache Spark implementation (see Fig. 2) This
allows us to readily deploy and test our solver on hundreds of
machines and thousands of computing cores. It also seamlessly
interfaces with the Google cloud computing infrastructure, al-
lowing us to scale and deploy our experiments on Google cloud
to more machines at almost no additional coding overhead.
Task 3.1: Scaling through Colors/Hard Constraints: In general, computing dS involves O(n2) vari-
ables. However, by introducing hard constraints through node colors, we can significantly reduce
the number of free variables and computation complexity. This color constraints might enforce, for
example, that when comparing two molecules, represented as graphs, oxygen atoms in one molecule
are only mapped to oxygen atoms in the other molecule. Most importantly, our Theorem 3 guaran-
tees that such constraints do not violate the metric property. In Fig. 4 we illustrate how introducing
structural color restrictions, using the WL algorithm, can reduce the number of variables (and thus
the convergence time) of ADMM, by several orders of magnitude. We intend to investigate means of
introducing different coloring constraints, and characterizing the effect on convergence performance,
as well as the resulting metric space they induce over graphs. We will explore both exogenous, domain
specific hard constraints, as well as structural constraints developed in combination with Thrust 1.
We will characterize the trade-offs between the pre-computation of constraints and the convergence
time of the algorithm.
Task 3.2: Scaling through Penalty Terms: Our preliminary implementation only supports dS when
S = Wn and using `

1

and `
2

entry-wise matrix norms. We will extend our framework so that users
can include many other useful terms in the objective function of (3.4), as developed in Thrusts 1
and 2. Structural node attributes and their embeddings also improve scalability, not by reducing the
number of free variables but by improving the rate of convergence: well-designed node attributes
penalize sub-optimal solutions. In this task, we will leverage the structural local metrics designed
in Thrusts 1 and 2 and quantify their effect on the convergence of ADMM. We will develop code for
the parallel implementation of these metric embeddings, as well as the computation of the distances
between nodes. We will also consider combinations of soft and hard constraints, and characterize the
tradeoffs between the computational cost of producing embeddings, computing pairwise distances
and the convergence time of the algorithm.
Task 3.3: Optimal Partitioning: The convergence of ADMM is affected in four different ways when
we alter how we partition the data across multiple machines: the communication cost, the number of
iterations to convergence, the cost per iteration and the choice of good ADMM parameters. To mini-
mize communication during the consensus phase, one needs to solve a balanced partitioning problem
over a bipartite graph that encodes the connection between terms in the objective and variables. The
balanced partitioning is an NP-hard problem, with a long history in distributed computing and data

D–12

q  448 CPUs = 8 machines x 56 cores each 
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Graph Distances & Graph Similarity
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q  Given two graphs as input, how similar are they? 
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Graph Distances & Graph Similarity

A Family of Tractable Graph Metrics !33

q  Given two graphs as input, how similar are they? 

q "Labeled" setting: correspondence between nodes given.   
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Graph Distances & Graph Similarity

A Family of Tractable Graph Metrics !34

q  Given two graphs as input, how similar are they? 

q "Unlabeled" setting: no prior correspondence between nodes.  
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Applications of Graph Distances

A Family of Tractable Graph Metrics !35

q  Key in many Graph Mining 
Tasks
q  Graph De-anonymization
q  k-Nearest Neighbors Search
q  Clustering
q  …

q  Graphs are Ubiquitous
q  Social Networks
q  Computer Vision
q  Chemistry
q  Computer Networks
q …

friendship graph phone-call graph 



A Highly Desirable Property

A Family of Tractable Graph Metrics !36

symmetric) binary matrices A œ {0, 1}n◊n, and weighted

graphs by real matrices A œ Rn◊n.
Matrix Norms. Given a matrix A = [a

ij

]
i,jœ[n]

œ
Rn◊n and a p œ N

+

fi {Œ}, its induced or operator p-

norm is defined in terms of the vector p-norm through
ÎAÎ

p

= sup
xœRn

:ÎxÎp=1

ÎAxÎ
p

, while its entry-wise p-

norm is given by ÎAÎ
p

= (
q

n

i=1

q
n

j=1

|a
ij

|p)1/p

, for
p œ N

+

, and ÎAÎŒ = max
i,j

|a
i,j

|. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as Î · Î

F

.
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as Pn = {P œ {0, 1}n◊n : P1 = 1, P

€1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkho� polytope)
as Wn = {W œ [0, 1]n◊n : W1 = 1, W

€1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as On = {U œ Rn◊n : UU

€ = U

€
U = I}. Note that

Pn = WnflOn. Moreover, the Birko�-von Neumann The-
orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of Pn.
Metrics. Given a set �, a function d : � ◊ � æ R is
called a metric, and the pair (�, d) is called a metric

space, if for all x, y, z œ �:

d(x, y) Ø 0 (non-negativity)(2.3a)
d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)

A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:

d(x, x) = 0 for all x œ �.(2.3e)

If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥

d

y over �. A pseudometric
is then a metric over �/ ≥

d

, the quotient space of ≥
d

.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.

Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs G

A

and G

B

. Then, G

A

and G

B

are isomor-

phic if and only if there exists P œ Pn s.t. P

€
AP = B

or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define d

S

: � ◊ � æ R
+

as:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ,(2.4)

where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d

S

is the chemical

distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
F

.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn

and Î·Î is an arbitrary entry-

wise norm, then d

S

given by (2.4) is a pseudometric

over � = Sn◊n

. If Î · Î is an arbitrary entry-wise or

operator norm, then its symmetric extension d̄

S

(A, B) =
d

S

(A, B) + d

S

(B, A) is a pseudometric over � = Rn◊n

.

Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected

graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d

S

is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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q  Poly-time Algorithms with provable guarantees: 
q  k-NN 
q  Clustering 
q  Dataset diameter 
q … 

q Work very well in practice. 



q Function                             is a metric over set       if it 
satisfies the following properties: 

Metrics
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d : ⌦⇥ ⌦ ! R ⌦

symmetric) binary matrices A œ {0, 1}n◊n, and weighted

graphs by real matrices A œ Rn◊n.
Matrix Norms. Given a matrix A = [a

ij

]
i,jœ[n]

œ
Rn◊n and a p œ N

+

fi {Œ}, its induced or operator p-

norm is defined in terms of the vector p-norm through
ÎAÎ

p

= sup
xœRn

:ÎxÎp=1

ÎAxÎ
p

, while its entry-wise p-

norm is given by ÎAÎ
p

= (
q

n

i=1

q
n

j=1

|a
ij

|p)1/p

, for
p œ N

+

, and ÎAÎŒ = max
i,j

|a
i,j

|. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as Î · Î

F

.
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as Pn = {P œ {0, 1}n◊n : P1 = 1, P

€1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkho� polytope)
as Wn = {W œ [0, 1]n◊n : W1 = 1, W

€1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as On = {U œ Rn◊n : UU

€ = U

€
U = I}. Note that

Pn = WnflOn. Moreover, the Birko�-von Neumann The-
orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of Pn.
Metrics. Given a set �, a function d : � ◊ � æ R is
called a metric, and the pair (�, d) is called a metric

space, if for all x, y, z œ �:

d(x, y) Ø 0 (non-negativity)(2.3a)
d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)

A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:

d(x, x) = 0 for all x œ �.(2.3e)

If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥

d

y over �. A pseudometric
is then a metric over �/ ≥

d

, the quotient space of ≥
d

.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.

Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs G

A

and G

B

. Then, G

A

and G

B

are isomor-

phic if and only if there exists P œ Pn s.t. P

€
AP = B

or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define d

S

: � ◊ � æ R
+

as:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ,(2.4)

where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d

S

is the chemical

distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
F

.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn

and Î·Î is an arbitrary entry-

wise norm, then d

S

given by (2.4) is a pseudometric

over � = Sn◊n

. If Î · Î is an arbitrary entry-wise or

operator norm, then its symmetric extension d̄

S

(A, B) =
d

S

(A, B) + d

S

(B, A) is a pseudometric over � = Rn◊n

.

Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected

graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d

S

is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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U = I}. Note that
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A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:

d(x, x) = 0 for all x œ �.(2.3e)

If d is a pseudometric, then d(x, y) = 0 defines an
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y over �. A pseudometric
is then a metric over �/ ≥
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, the quotient space of ≥
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.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.

Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs G

A

and G

B

. Then, G

A

and G

B

are isomor-

phic if and only if there exists P œ Pn s.t. P

€
AP = B

or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
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as:
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where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d
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distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
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.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn

and Î·Î is an arbitrary entry-
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graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d
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is a quasimetric over the quotient space �/≥
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, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d
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given

by (2.4) is a pseudometric over � = Rn◊n
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Though (2.4) is not a convex problem when S = On,
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d

S

is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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symmetric) binary matrices A œ {0, 1}n◊n, and weighted

graphs by real matrices A œ Rn◊n.
Matrix Norms. Given a matrix A = [a

ij

]
i,jœ[n]

œ
Rn◊n and a p œ N

+

fi {Œ}, its induced or operator p-

norm is defined in terms of the vector p-norm through
ÎAÎ

p

= sup
xœRn

:ÎxÎp=1

ÎAxÎ
p

, while its entry-wise p-

norm is given by ÎAÎ
p

= (
q

n

i=1

q
n

j=1

|a
ij

|p)1/p

, for
p œ N

+

, and ÎAÎŒ = max
i,j

|a
i,j

|. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as Î · Î

F

.
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as Pn = {P œ {0, 1}n◊n : P1 = 1, P

€1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkho� polytope)
as Wn = {W œ [0, 1]n◊n : W1 = 1, W

€1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as On = {U œ Rn◊n : UU

€ = U

€
U = I}. Note that

Pn = WnflOn. Moreover, the Birko�-von Neumann The-
orem [12] states that Wn = conv(Pn), i.e., the Birko�
polytope is the convex hull of Pn.
Metrics. Given a set �, a function d : � ◊ � æ R is
called a metric, and the pair (�, d) is called a metric

space, if for all x, y, z œ �:

d(x, y) Ø 0 (non-negativity)(2.3a)
d(x, y)=0 i� x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)Æd(x, z)+d(z, y) (triangle inequality)(2.3d)

A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:

d(x, x) = 0 for all x œ �.(2.3e)

If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ≥

d

y over �. A pseudometric
is then a metric over �/ ≥

d

, the quotient space of ≥
d

.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : �◊� æ R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over �.

Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A, B œ Rn◊n be the adjacency matrices of
two graphs G

A

and G

B

. Then, G

A

and G

B

are isomor-

phic if and only if there exists P œ Pn s.t. P

€
AP = B

or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let Î · Î be a matrix norm in
Rn◊n. For some � ™ Rn◊n, define d

S

: � ◊ � æ R
+

as:

d

S

(A, B) = min
P œS

ÎAP ≠ PBÎ,(2.4)

where S µ Rn◊n is a closed and bounded set, so that the
infimum is indeed attained. Note that d

S

is the chemical

distance (1.1) when � = Rn◊n, S = Pn and Î ·Î = Î ·Î
F

.
In CKS distance [18], matrices A, B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
Î · Î under which d

S

is a metric over �, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when Î · Î is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn

and Î · Î is an arbitrary

entry-wise or operator norm, then d

S

given by (2.4) is a

pseudometric over � = Rn◊n

.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn

and Î·Î is an arbitrary entry-

wise norm, then d

S

given by (2.4) is a pseudometric

over � = Sn◊n

. If Î · Î is an arbitrary entry-wise or

operator norm, then its symmetric extension d̄

S

(A, B) =
d

S

(A, B) + d

S

(B, A) is a pseudometric over � = Rn◊n

.

Hence, if S = Wn and Î · Î is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected

graphs. The symmetry property (2.3c) breaks if Î · Î is
an operator norm or graphs are directed. In either case,
d

S

is a quasimetric over the quotient space �/≥
d

, and
symmetry is attained via the symmetric extension d̄

S

.
Theorem 3.2 has significant practical implications.

In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On

and Î ·Î is either the operator

or the entry-wise (i.e., Frobenius) 2-norm, then d

S

given

by (2.4) is a pseudometric over � = Rn◊n

.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when Î · Î = Î · Î

F

and � = Sn (i.e., for undirected graphs) by performing
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Pair           is then called a metric space. (⌦, d)
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Graphs as metric spaces
Leo Torres, Pablo Suárez Serrato, & 
Tina Eliassi-Rad (arXiv:1807.09592)

https://arxiv.org/abs/1807.09592


Isometry in metric spaces

Two metric spaces (Ω1, d1) and (Ω2, d2) are called

isometric when there exists a function:
!: Ω$ → Ω& such that -$ ., 0 = -& ! . , !(0)

2



Isometry and graphs as metric spaces

Two metric spaces (Ω1, d1) and (Ω2, d2) are called
isometric when there exists a function:

!: Ω$ → Ω& such that -$ ., 0 = -& ! . , !(0)

Graphs as metric spaces
• Graph G
– Ω1 = node set of G and d1 = a distance function on Ω1

• Graph H
– Ω2 = node set of H and d2 = a distance function on Ω2

• f = a node-correspondence function

3



From isometry to isomorphism

• Given a graph G = (V, E), the set of nodes is a 
metric space under the shortest path distance

• If two unweighted graphs are isometric with the 
shortest path distance, then they are isomorphic

4



The length spectrum of a graph 
characterizes its 2-core uniquely 
up to isometry.
– Constantine, David, and Jean-François Lafont. 

“Marked Length Rigidity for One-Dimensional 
Spaces.” Journal of Topology and Analysis, 2018.

The length spectrum

5

1-Core

2-Core



The length spectrum of a graph 
characterizes its 2-core uniquely 
up to isometry.
– Constantine, David, and Jean-François Lafont. 

“Marked Length Rigidity for One-Dimensional 
Spaces.” Journal of Topology and Analysis, 2018.

è If two graphs have the same length spectrum, 
then their 2-cores are isometric.

The length spectrum

6

1-Core

2-Core



• Given a graph G = (V, E) and a node v ...

How to construct the length spectrum?

7



• ... consider the set of all closed walks that start 
and end at node v

Closed walks

8



• Closed walks are equivalent if they differ by 
tree-like parts that don’t go through the 
basepoint ...

Equivalence of closed walks

9

equivalence 
class



• Retain the shortest closed walk in each subset

10

A representative from each equivalence class

equivalence 
class



• The set of representatives is the fundamental 
group of G with basepoint v – a.k.a. !" #, %

The fundamental group

11



• Closed walks are equivalent if they differ by 
tree-like parts that don’t go through the 
basepoint

Modifying equivalence of closed walks

12



• Under this new equivalence definition, we get the 
set of non-backtracking cycles (NBCs) of G

Non-backtracking cycles

13

NBCs of G



Back to the length spectrum

14

NBCs

• The length spectrum, ℒ, assigns to each closed 
walk the length of its shaved version

ℒ = 3



Back to the length spectrum
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NBCs

• The length spectrum, ℒ, assigns to each closed 
walk the length of its shaved version

ℒ = 3



Back to the length spectrum

16

NBCs

• The length spectrum, ℒ, assigns to each closed 
walk the length of its shaved version

ℒ = 3



Back to the length spectrum

17

NBCs

• The length spectrum, ℒ, assigns to each closed 
walk the length of its shaved version

ℒ = 3



How can we measure distance between graphs 
with the length spectrum?

18

! ",$ = !(ℒ(, ℒ))



How can we measure distance between graphs 
with the length spectrum?

19

! ",$ = !(ℒ(, ℒ))

Two 
assumptions

Two 
problems

Two 
solutions

How to compute? Image instead of 
domain

How to compare? Partition the image!(ℒ(, ℒ))

" → ℒ(



How can we measure distance between graphs 
with the length spectrum?

20

G H
Partition the image

Domain

Image



G H

How can we measure distance between graphs 
with the length spectrum?

21
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G H

How can we measure distance between graphs 
with the length spectrum?

22

3 34 4

Partition the image

Domain

Image
length

co
un
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co
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t

length



G H

How can we measure distance between graphs 
with the length spectrum?

23

3 35 54 4

Partition the image

Domain

Image
length

co
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length



G H

How can we measure distance between graphs 
with the length spectrum?

24

... ...

3 35 54 46 7 6 7

Partition the image

Domain

Image

length
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length



• How should we compare these two histograms?
• Observe the height of each bar is the number of 

NBCs of a certain length
• We can compute this using the non-backtracking 

matrix

From length spectrum to histogram of NBCs

25

... ...

3 35 54 46 7 6 7
length
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• Graph distance
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Detour: Non-Backtracking matrix B

27



Detour: non-backtracking matrix B

28

0 1 1



Detour: non-backtracking matrix B

29

0 1 1

!"# = %0 if ) ≠ +
1 if ) = +



Detour: non-backtracking matrix B

30

0 1 1

• Similar to an adjacency 
matrix of the set of 
directed edges

• Entries of the powers 
store the number of 
non-backtracking walks

• !"#"$% = # of non-
backtracking walks 
starting at e1 and 
ending at e2



Detour: non-backtracking matrix B

31

0 1 1

• Similar to an adjacency 
matrix of the set of 
directed edges

• Entries of the powers 
store the number of 
non-backtracking walks

• ∑" #$%$%& = # of non-
backtracking cycles 
(NBCs) of length k



Detour: non-backtracking matrix B

32

0 1 1

• Similar to an adjacency 
matrix of the set of 
directed edges

• Entries of the powers 
store the number of 
non-backtracking walks

• !"($%) = # of NBCs of 
length k



Detour: non-backtracking matrix B

33

0 1 1

• Similar to an adjacency 
matrix of the set of 
directed edges

• Entries of the powers 
store the number of 
non-backtracking walks

• ∑" #"$ = # of NBCs of 
length k



Computing B

34

• Given G = (V, E ) with |V| = n and |E| = m, 
define

• Q and P are n × 2m matrices, so C is a 
2m × 2m matrix

Given                     with               , 
define



Computing B

35

• Given G = (V, E ) with |V| = n and |E| = m, 
define



Computing B

36



Computing B

37



Computing B

38

Algorithm: computeB
Input: a graph G
Output: non-backtracking matrix B of G

P, Q ← incidence matrices
C ← PT x Q

for each positive entry Ck→l,u→v:
if Cu→v,k→l==0:

Bk→l,u→v = 1

Runtime
complexity for
computing B
is O(m+n⟨k2⟩)
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• How should we compare these two histograms?
• Recall that the height of each bar is the number of 

NBCs of a certain length
• The histograms can be generated using only the 

eigenvalues of B

Graph distance

40
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• Given two graphs G and H 

• Let !" be the kth eigenvalue of G’s non-backtracking matrix

• Let #" be the kth eigenvalue of H’s non-backtracking matrix

• Consider the top r eigenvalues of G and H

– !$ ≥ !& ≥ ⋯ ≥ !(
– #$ ≥ #& ≥ ⋯ ≥ #(

• Then, the Non-Backtracking Distance, NBD, is

The NBD of two graphs

41



Computing the NBD graph distance

42

Algorithm: NBD
Input: two graphs G, H, integer r
Output: real number d, the NBD between G, H

G’, H’ ← shave(G), shave(H)
B1 , B2 ← computeB(G’), computeB(H’)
λ , µ ← eigs(B1,r), eigs(B2,r)

d ← Euc(λ, µ)

https://github.com/leotrs/sunbeam

https://github.com/leotrs/sunbeam


Koutra, Danai, et al. “DeltaCon: A Principled Massive-Graph Similarity 
Function.” SIAM SDM 2013.

NBD is a pseudo-metric

43

[A1] Identity:

[A2] Symmetry:

[A3] Triangle Inequality: 

[A4] Id. of indiscernibles: 

[A5] Divergence*: as  



• NBD does not satisfy [A4] because of cospectrality: 
sometimes different graphs have the same eigenvalues

• This can occur w.r.t. the adjacency matrix, the 
Laplacian, or the non-backtracking matrix

Cospectrality

44

Smallest cospectral graphs w.r.t. the non-backtracking matrix



• Almost all trees are cospectral.
– Schwenk, A. J., Almost all trees are cospectral. In New 

Directions in the Theory of Graphs (Proc. Third Ann Arbor 
Conf), pp. 275-307. 

• Open problem: How many graphs are cospectral?
– Godsil, C. D., McKay, B. D. Constructing cospectral graphs. 

Aequationes Math. 25 (1982), no. 2-3, 257–268.
• Conjecture: The number of graphs that are cospectral

goes to 0 as the number of nodes goes to infinity.
– Durfee, C., Martin, K., Distinguishing graphs with zeta 

functions and generalized spectra. Linear Algebra Appl. 481 
(2015), 54–82. 

Cospectrality

45



Properties of B’s spectrum: hubs

46

Configuration Model with power law deg. dist. 
N = 10k, �k�= 10, γ = 2.1

Fewer hubs



Properties of B’s spectrum: hubs
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Configuration Model with power law deg. dist. 
N = 10k, �k�= 10, γ = 2.1

Fewer hubs



Properties of B’s spectrum: triangles

48

Erdos-Renyi Graph 
N = 10k, �k�= 10, γ = 2.1

More triangles



Properties of B’s spectrum: triangles

49

Erdos-Renyi Graph 
N = 10k, �k�= 10, γ = 2.1

More triangles



Fine tuning B’s spectrum

50

• The original NBD uses true eigenvalues

– ! ",$ = ∑'()* +' − -' .

– +' = /' + 12'
• NBD can be fine-tuned for triangles

– +'3 = 4/' + 567
8 , 4 > 1

• NBD can be fine-tuned for degrees

– +'33 = +' ; /' + 12' , < > 0



Application: clustering

51

• 1 dot = 1 eigenvalue
• r = 200; 50 graphs per model



Application: clustering

52

• 1 dot = 1 graph
• 98.66% accuracy 
• Errors are when KR gets misclassified 

as BA

• 1 dot = 1 eigenvalue
• r = 200; 50 graphs per model



Application: pattern recognition

53

• Enron email network
• 1 network per day
• Comparing all other days to day 0 (Sunday)  



Application: anomaly detection

54

• Enron email network
• 1 network per week
• Comparing each week to the previous week



Summary of part 1: graphs as metric spaces

55

• The length spectrum characterizes the 
2-core of a graph

• The eigenvalues of B account for the image 
of the length spectrum

• NBD is a pseudo-metric, which can be 
interpreted in terms of triangles & degrees

• Applications: cluster graphs, pattern 
recognition, anomaly detection

• Paper: arXiv:1807.09592

• Code: https://github.com/leotrs/sunbeam
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Vectorization
• Given a graph G=(V, E), find a d-dimensional feature 

vector for each node or edge
• Geometry: similar nodes are close to each other
• Useful for link prediction, node classification, etc.

Vectorization vs. pattern recognition

57



Vectorization vs. pattern recognition
Vectorization
• Given a graph G=(V, E), find a d-dimensional feature 

vector for each node or edge
• Geometry: similar nodes are close to each other
• Useful for link prediction, node classification, etc.

Pattern Recognition
• Given a graph G=(V, E), find a d-dimensional location 

for each node/edge
• Geometry: shape reveals relationships between nodes
• Useful for visualization, anomaly detection, etc.

58



“Perhaps the most famous example is that the 
embedded representation of the word queen can 
be roughly recovered from the representations of 
king, man, and woman.”

!"##$ ≈ &'$( −*+$ + -.*+$
– Omer Levy, Yoav Goldberg, Linguistic Regularities in Sparse 

and Explicit Word Representations. CoNLL 2014: 171-180.

Example of pattern recognition

59



• Graph embedding (from graph mining): need a low rank representation of 
the nodes; they use the distance, but don’t use the geometry. See Tutorial 
T6/44 this afternoon.

• Isometric embedding: Given a distance on a graph (e.g. shortest path), find 
an embedding in Euclidean space that exactly preserves distances.

• Graham, R. L., Winkler, P. M., Isometric embeddings of graphs. PNAS 
U.S.A. 81 (1984), no. 22, Phys. Sci., 7259–7260. 

• Theorem: If G is complete, and has weights on edges that satisfy 
triangle inequality, then there's a necessary and sufficient 
characterization for isometric embeddings – namely, a quadratic 
inequality on linear combinations of edge weights.

• Deza, M. M., Laurent, M., Geometry of cuts and metrics.
Algorithms and Combinatorics, 15. Springer, Heidelberg, 2010.

Literature review

60



• Embedding with distortion (a.k.a. nearly isometric embedding): an 
embedding that is “almost” isometric, up to some distortion in distances.

• Linial, N., London, E., Rabinovich, Y., The geometry of graphs and 
some of its algorithmic applications. Combinatorica 15 (1995), no. 2, 
215–245. 

• Simplex geometry: exact correspondence between the n nodes of a graph 
and the vertices of an (n-1) dimensional simplex in Euclidean space.

• Devriendt, K., Piet Van M., The Simplex Geometry of Graphs. preprint 
arXiv:1807.06475 (2018).

• Graph planarity: Place nodes on a plane such that edges don’t cross; 
preserves adjacency but not distance.

• https://en.wikipedia.org/wiki/Planarity_testing

Literature review

61

https://en.wikipedia.org/wiki/Planarity_testing


Literature review table

62

Name Definition Common
Approach Properties Unique 

solution?

Graph 
embedding

Low rank representation 
of the nodes

Matrix 
factorization Distance No

Isometric 
embedding

Embedding preserves 
distances exactly

Randomized
algorithm Distance No

Nearly isometric 
embedding

Embedding preserves 
distances with global distortion

Randomized
algorithm Distance No

Simplex 
embedding

Embed nodes based on the 
eigenvectors of the Laplacian

Eigen 
decomposition

Vector space 
(convexity, linear 

indep., …)
Yes

Graph planarity Place nodes on a plane such 
that edges don’t cross Edge additions Adjacency 

(relaxed distance) No



• Problem

– Given a graph G =(V, E), find a low-dimensional 
representation for each directed edge, !" "∈$

• Approach

– For each directed edge e, assign !" = '⃗(", '⃗*" , 
where '⃗( and '⃗* are the first and second 
eigenvectors of G’s non-backtracking matrix

Edge embedding with the eigenvectors of the 
non-backtracking matrix

63



• Edge embedding 

• Node embedding by aggregating edges incident to the 
same node

• Distinction between source and target nodes

• The first and second eigenvectors are interpretable

• 1st eigenvector captures edge centrality 

• 2nd eigenvector captures community structure

• Deterministic, not stochastic 

• Always produces the same embedding (save for signs)

Why the eigenvectors of the non-backtracking 
matrix?

64



• Consider a graph G = (V, E)

• For each directed edge, there are two corresponding 
rows in the non-backtracking matrix B, one for each 
orientation

– Each eigenvector has two entries for each directed 
edge  

• Let !", !$ be the largest two eigenvalues of B

• Let &⃗", &⃗$ be their corresponding eigenvectors

• For each directed edge e, define '( = &⃗"(, &⃗$(

Non-backtracking embedding of edges

65



Non-backtracking embedding of edges

66

• For each directed edge e, define !" = %⃗&", %⃗("

• Issue: %⃗&" is always a real number, but %⃗(" may be 
complex

• Solution: Use ) %⃗(" = *+ ,( *+ %⃗(" − ./ ,( ./ %⃗("

– ) %⃗(" is proportional to %⃗(" when ,( is real

– ) %⃗(" is a real linear combination of the real and 
imaginary parts of %⃗(" when ,( is complex

– ) %⃗(" is always a real number



• Given the directed edge embeddings !" "∈$, we build 
two distinct node embeddings

• For node u, 

– S(u) = set of all edges with u as source

– T(u) = set of all edges with u as target

• The embedding of u as a source is defined as the mean 
of !" "∈%(')

• The embedding of u as a target is defined as the mean 
of !" "∈)(')

Non-backtracking embedding of nodes

67



From edge to node embedding

68

Node u as a source

Node u as a target

v1

v1

f(v2)

f(v2)

X marks the 
mean of !" "∈$(&)

X marks the 
mean of !" "∈((&)
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Erdos-Renyi graphs

70

The overall structure is a noisy point cloud, 
but the dots seem to have a fan shape. Why?



Barabasi-Albert graphs

71

• Each cluster is made up of all edges 
that are incident to the same node. 

• Why should incident edges cluster 
together in this space?

• Every cluster has dark dots to the left 
and light dots to the right. 

• Why does every cluster have the 
same internal structure?

The polygon marks the convex hull of edges to 
the largest hub. The X marks the center of mass.



Kronecker graphs
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• The overall structure is a noisy cloud point but clusters are present.
• It looks like a mix between the ER and BA. 
• In what way is KR “a mix” between ER and BA?



Summary of part 2: geometry of graph embeddings
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• The non-backtracking matrix 
allows for deterministic 
embedding of nodes and edges

• These embeddings can be 
interpreted in terms of their shape

• Useful for pattern recognition 
applications such as visualization, 
anomaly detection, etc.



• Geometric data analysis of graphs:
graphs as metric spaces, metric spaces of 
graphs, metric embedding spaces

• Topological data analysis of graphs:
the length spectrum, the non-backtracking 
matrix, its eigenvalues and eigenvectors

Summary
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General Outline for T21: Graph Metric Spaces 

8:00 - 9:00 Jose Bento Part 1: Introduction to Graph Distances

9:00 - 9:30 Stratis Ioannidis Part 2a: A Family of Tractable Graph 
Metrics

9:30 - 10:00 Coffee break ICC Capital Suite Foyer (Level 3) 

10:00 - 10:30 Stratis Ioannidis Part 2b: A Family of Tractable Graph 
Metrics

10:30 - 11:30 Tina Eliassi-Rad Part 3: Non-backtracking Matrix, Graph 
Distance, and Metric Embedding

11:30 - 12:00 Q&A

Slides available at https://neu-spiral.github.io/GraphMetricSpaces/

NSF Grants IIS-1741197 & IIS-1741129

https://neu-spiral.github.io/GraphMetricSpaces/


Boston college

Thank you!

Graph Metric Spaces
Tutorial @ KDD 2018

J. Bento, T. Eliassi-Rad / L. Torres, and S. Ioannidis 

Grants IIS-1741197 & IIS-1741129



Hyperbolic graphs
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Configuration model graphs
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Ring lattice graphs
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Ring lattice graphs
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Enron email network: 
Jeff Skilling becomes Enron CEO
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Enron email network: 
Analyst call to boost stock

82



Enron email network: 
California energy crisis ends
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Enron email network: 
One week after Skilling resigns
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Enron email network: 
Enron stocks plunge below $1
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Enron email network: 
Enron goes bankrupt.
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