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Part I:
Introduction to Graph Distances



Talk outline

1. Quick review about graphs
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Graphs, their comparison, and applications

interaction Protein 1

, Protein 2
Protein 3
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Graphs, their comparison, and applications

Unlabeled, undirected, non-weighted
G=WV, &) V=]n]

interaction Protein 1

, Protein 2
Protein 3

Protein i and j interact transiently
,orin a stable form

(i,5) € £ &
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Graphs, their comparison, and applications

Protein 1 [EGHIL....]

, Protein 2 [ARND ...]
Protein 3 |
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Graphs, their comparison, and applications

Labeled, undirected, non-weighted

g = (V, 5) ) C Possible amino acid sequences
Protein1[EGHIL....]
Protein 2 [ARND ...]

Protein 3 ,

Protein1[RGNIL....]

, Protein2 [ERHD ...]
Protein 3
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Graphs, their comparison, and applications

Protein 1

Protein j

Protein i
Wi, j
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Graphs, their comparison, and applications

Unlabeled, undirected, weighted

Protein 1

Protein j

Protein i
Wi, j

How confident are we that i and j will interact?
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Graphs, their comparison, and applications

inhibition

activation
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Graphs, their comparison, and applications

Unlabeled, directed, weighted
G=W,E, W) V=n]

inhibition
Q?activation

(i,7) € € # (j,1) € €
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Graphs, their comparison, and applications

a1

a3,1

Graph Metric Spaces

a2
az 2
as,2

1.3
a2 3
a3 3
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Graphs, their comparison, and applications

All of these types of graphs, and other combinations,
can be described by an adjacency matrix.

11 dAi12 Q13
A= 21 dA22 Q23

a3;1  az2 adz;3

* Non-weighted graphs have 0/1 entries in 4
 Undirected graphs have symmetric 4
« a;; # 0iff node i and j are not connected
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Talk outline

2. Applications where comparing graphs is important
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Graphs, their comparison, and applications

Graph comparison methods

 Alignment-based

* Alignment-free

(although this distinction might not always be clear)
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Graphs, their comparison, and applications

Example of alighment-based method in biology:
Alignment of protein-protein interaction (PPI) networks

Network 1 Network 2
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Graphs, their comparison, and applications

Example of alignhment-based method in biology:
Alignment of protein-protein interaction (PPIl) networks

Network 1 Network 2

We want to maximize the # of (a, b, ¢, 7) such that
(@, 1) are evolutionarily related, and (b, j)are too, and
the interaction between (a, b) and (%, j)is the same.
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Graphs, their comparison, and applications

Network 1 Network 2
(e \.

-

[ARND .. ]

* Do we give more importance to the labels
(matching nodes with similar sequences) or to the
topology?
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Graphs, their comparison, and applications

Network 1 Network 2

* How do we get a score from the alighment between
the two graphs?
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Graphs, their comparison, and applications

The alignment of PPl networks (or networks in general)
allows us to

1. Transfer knowledge from one graph into another

known function for p,
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Graphs, their comparison, and applications

The alignment of PPl networks (or networks in general)
allows us to

2. Get a score of how similar, or dissimilar, two
graphs are

10
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Graphs, their comparison, and applications

The alignment of PPl networks (or networks in general)
allows us to

3. How well a sub network of proteins can be found in
a large network of proteins?
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Graphs, their comparison, and applications

Alignment-free methods facilitate comparing graphs
from different domains.

We can compare networks from different domains
using, e.g., degree distribution, and a method to
compare distributions.

11

Graph Metric Spaces BOSTON COLLEGE



Graphs, their comparison, and applications

For example, several networks from different domains
are similar in the sense that they have heavy tail
degree distributions: e.g. social networks [e.g. Ahn et
al. 2007], WWW [e.g. Crovella et al. 1998], PPI [e.g.
Hormozdiari et al. 2007].

11
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Graphs, their comparison, and applications

There are many other kinds of networks that, if
compared, bring more knowledge than the sum of
their parts.

12
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Graphs, their comparison, and applications

There are many other kinds of networks that, if
compared, bring more knowledge than the sum of
their parts.

In biology

PPl networks, e.g. [Rohit et al. 2008]
 Gene regulatory networks
 Metabolic networks, e.g. [Pinter et al. 2005]
* Signaling networks
 Neural networks (of the real kind),

e.g. [Milano et al. 2017]

13
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Graphs, their comparison, and applications

In computer vision, comparing graphs, known usually as
graph matching, is useful in several tasks.

1. Locate objects from features, @ |
e.g. [Gold & Rangarajan 96] |

14
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Graphs, their comparison, and applications

In computer vision, comparing graphs, known usually as
graph matching, is useful in several tasks.

2. Transfer knowledge, e.g.
[Zhang et al. 2010]

14
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Graphs, their comparison, and applications

In computer vision, comparing graphs, known usually as
graph matching, is useful in several tasks.

3. Find matches in database,
e.g. [Kisku et al. 2007]

14
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Graphs, their comparison, and applications

Comparing social networks is very important.

E.g. it allows us to uncover identities, or communities
[Kong et al. 2013]

_starlord

________________________
_______________
el e e e - -

Facebook Twitter

15
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Graphs, their comparison, and applications

atom chemical
bound

atom

In chemistry, comparing graphs is important to
answer the following questions [Akutsu et al. 2013]:

* Are two chemicals identical?

* |sone compound part of another compound?

 What is the maximum common part of two
chemicals?

16
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Graphs, their comparison, and applications

In general, most of these tasks are hard to complete
exactly/optimally. However, domain knowledge can
make tasks tractable.

For example, in chemistry, most graphs have

maximum degree 8, which simplifies many of these
tasks.

17
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Graphs, their comparison, and applications

Alignment-based methods: usually chosen for tasks
such as

* Transfer knowledge

* Sub graph matching

Alignment-free methods: more flexible in terms of
what kinds of graphs can be compared

(stay tuned for Part i)
18 () BOSTON COLLEGE
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Graphs, their comparison, and applications

Is there a family of methods that encompass both
alignment-free and alighment-based methods?

(stay tuned for Part Il)

18
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Talk outline

3. Graph distances
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Notions to compare graphs

Exact graph comparisons (output a “yes” or “no”)

* Graph isomorphism: given two graphs
G1 = ([nl, &1), G2 = ([n], &2)
is there a permutation P : [n| — [n] such that

(4,7) € & iff (P(i), P(j)) € &

(this problem belongs to NP but it is not known if it
belongs to P or NP-complete)

19
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Notions to compare graphs

Exact graph comparisons (output a “yes” or “no”)

* Sub graph isomorphism: given two graphs

gl — ([n]agl)agQ — ([m]ng)an Z m
is there a sub-graph of G, , i.e. Go = (Vy, &p) s.t.
Vo C [n],é’o C & UV X Vo, s.t. Go =2 Gy ?

20
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Notions to compare graphs

Inexact graph comparison (output a closeness score):
 Matching: 1-to-1; 1-to-many; many-to-many;

 Score: edge overlap; spectrum overlap; etc.

21
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Inexact graph comparisons

 Chemical distance (alignment-based)

Let A; and A5 be the adjacency matrices of two
graphs of equal size.

min |[A1 P — PAs||r = min |P(£1) A&
Pell Pell

22
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Inexact graph comparisons

e Chartramd-Kubicki-Schultz dist. (alignment-based)

Same as chemical distance but with A; and A,
containing the hop distances between each two nodes
in each of the two graphs.

22
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Inexact graph comparisons

e Edit distance (alignment-free)
Given two graphs, not necessarily of equal size, and a
set of operations, e.g.

O ={vertex/edge/label

insertion /deletion /substitution}

, and a cost functionc : O — R, we want to find the
cheapest sequence of operations that take G, into G5.
k

min Z c(eg)

{e;}r_,€0k:Go=(eyo0---0e1)0G, 1

For certain ¢ and D this reduces to the Chemical dist.
() BOSTON COLLEGE
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Inexact graph comparisons

e Spectral distance (alignment-free)

Given two graphs of equal size with adjacency
matrices A; and Ao, let 1 = -+ = lnand
V1 2 -+ 2 Vp be the spectrum of A1 and As.

n
Z i — v
i=1

24
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Inexact graph comparisons

Zelinks distance, common sub graph distance
(alighment-based): max{|V1], |V2|} — n(G1,G>)

n(glag2) — maX|Sl| S.t. Sl g V].)S2 g V27
51| = |S2],G1(51) = G2(52)

24
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Inexact graph comparisons

 Bunke-Shearer metric (alignment-based)

Using the same setup as the common sub graph
distance, this is
! > n(G1,92)

1
max{|V1], [V2|}

25
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Inexact graph comparisons

« Common super graph distance (alignment-based)

N(G1,G2) — min{ | V1], | V2|}

where
N(G1,G2) =min |V|s.t. G = (V,E),S51,5 CV,
G(S1) = G1,G(52) = G

Graph Metric Spaces >
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Inexact graph comparisons

* Edge distance

E1l + |E2| — 2E(G1,G2) + |[Vi| — [V

E(gl,QQ) = max|5| S.t. Q — (V,S),Sl C Vl,SQ C VQ,
1S1] = 52|, G = G1(51) = G2(S2)

26
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Inexact graph comparisons

* Fernandez-Valiente metric

If 7 and T are the sizes of the maximum common
sub graph and minimum common super graph, then
m — n IS a metric.

26
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Talk outline

4. Why a metric?
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All of the notions of comparing graphs just mentioned
are metrics (if we consider an appropriate quotient
space, where the equivalence classes are the graphs
for which the respective distance is zero).

27
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Metric: d: Q) x Q2 +— R suchthat VA, B,C € ()
d(A, B) > 0 (non-negativity)

d(A,B) =0 iff A = B (identity of indescernibles)
d(A, B) =d(B,A) (symmetry)
d(A,B) +d(B,C) > d(A, () (triangle inequality)

27

Graph Metric Spaces @ BOSTON COLLEGE



The pair (€2, d) is called a metric space.

27
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Pseudo-metrics and quasi-metrics

A pseudo-metric relaxes the condition
d(A, B) =0 iff A = B (identity of indescernibles)
tod(A,A) =0

28
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Pseudo-metrics and quasi-metrics

Given a pseudo-metric, we can obtain a metric if we
define the equivalence relation A ~ B iff d(A, B) =0
and define the metricd : (Q\ ~) x (Q\ ~) = R

such that d([A], [B]) = d(A, B).

28
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Pseudo-metrics and quasi-metrics

A quasi-metric removes the symmetry condition from
the definition of metrics. From a quasi-metric d we

can obtain a metricas d(4, B) = d(A, B) + d(B, A)

28
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Why a metric?

Metrics allow fast algorithms for several tasks

 Diameter estimation: Given a set S with n elements,

we want to find max d(z,y)
x,yes

[Indyk 1999] 1/2-approximation > A 2
algorithm with O(n) expected
run time. Idea: if there exists two
points with dist. > A then there
are at least n — 1 pairs of points with dist. > A /2.

® o

Hence, sampling O(n) pairs is enough on average.
. (B) BOSTON COLLEGE
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Why a metric?

Metrics allow fast algorithms for several tasks

 Nearest neighbor search: For a set .S with n elements
and query point ¢ drawn randomly from Vin R*
[Kenneth & Clarkson 1999] propose a data structure
with the following expected run times
» Preprocessing : O(n)(log n)?1°81°87) where 7is
the ratio of the maximum to minimum distance
between points

* Query: O((log n)0(1)+2 log log )

+ Space: O(n(logn)PH+2loglogy)

30
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Why a metric?

Metrics allow fast algorithms for several tasks

* Fast NN algorithms can be used to derive fast outlier
detection algorithms. E.g. [Angiulli & Pizzuti 2002]
do this with the following definition of outlier p

weight,(p) = Y d(s,p)

s€k-NN(p)

outlier = large wy,

31

Graph Metric Spaces BOSTON COLLEGE



Why a metric?

Metrics allow fast algorithms for several tasks

* Clustering (k-means clustering): Given a set P of

size n, find

ng}f&:k { e AP, C)}
peP
In arbitrary metric spaces this problem is NP-hard.
Approximation algorithms are possible. E.g. in R®
[Badiou et al. 2002/2003] get an (1 + g)-approx. in
time

O(d°Dn(logP®) )27y

32
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Why a metric?

Metrics allow fast algorithms for several tasks

* Clustering (k-means clustering): Given a set P of
size n, find

min { min d(p, c)}
CCP:|C|=k ceC

peP

Arbitrary metrics: [Ackermann, Blomer & Sohler
2008]: If the 1-median can be solved in linear time
then there exists an (1 + g)-approximation algorithm

with run time

O(nQ(é)O(l))

33
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Why a metric?

Metrics allow fast algorithms for several tasks

* Clustering (ki-means clustering): Given a set P of
size n, find

min { min d(p, c)}
CCP:|C|=k ceC
peP
Arbitrary dissimilarity: There are a few results for the
Kullback Leibler divergence and Bergman divergence.

But, in general, results are rare for non-metrics.

34
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Talk outline

5. Scalable alignment algorithms
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Scalable algorithms for graph aligment

Many of the metrics just mentioned cannot be
computed easily. We now go over a few efficient
algorithms that try to find globally-optimal alignment

between two graphs.

35
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Scalable algorithms for graph aligment

Any alignment algorithms can be transformed into
distance functions. For example, given an alignment P

between two graphs, with adjacency matrices A1, Ao
we can compute ||[A1 P — PAs||r .

These distances often do not result in metrics.
(Stay tuned for Part Il)
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Quadratic formulation

%! Vo L = possible node matches
® ® S. .. =1

. -/ 1,7,7,0

‘e o !

. Y A
G . Gy iff 7,7, 7, 7" make a square

]\: through L, U1 and Gs
e 7 ,

J
max § « E Wi 3’ Ly i + g xi,i’xj,j’si,i’,j,j’
(4,")EL (4,4'),(J,5")EL
subject to g xiy < 1,Vi; g T < 1,Vi';
i’ (i3’ )EL i:(4,i')EL

z; v €4{0,1},V(i,i") € L
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Quadratic formulation

%! Vo L. = possible node matches
z" ) % Si,it g = 1
G [ ° **. g, iffd,7,j,7" make a square
]0\: through L,y and o
° 7 j/

If L is the complete graph, and w = 0, this reduced to
maximum common sub graph distance, which is NP-
hard, even NP-hard to approximate.

Several relaxations of this IQP lead to scalable
algorithms for matching to graphs.

37
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Quadratic formulation: linear relaxation

* Linear relaxation: Replace

() + D TiwmySii g

(¢,2),(5,5" ) €L

S.t. () and Ti i € {O, 1},\V/(’i,?:,) c L

by (...) + Z Yiit .94, 5.5 s.t. (...) and

(¢,4"),(3,5")€L

Yiit jg' = Yjgtiits Yisit gt < Tiirs i € [0,1],V(4,4), (4,757) € L

This LP relaxation requires a final rounding scheme.

38
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Quadratic formulation: Klau’s algorithm & Natalie 2.0

e [Klau 2009] First, move the symmetry constraint in
the linear relaxation into the objective as

O+ D Uiiggr Wainggr — Yigrinit)
(2,¢"),(4,3") €L

and add the constraint that

Z Vi g < 1V5, Z Yiir g0 < 1,¥5,¥(i,i") € L

j:(4,9")€L 3':(3,3") €L

For any U, this problem upper bounds the linear
relaxation. The resulting LP has the form of a
maximum weight matching, hence produces 0/1 sols.
() BOSTON COLLEGE
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Quadratic formulation: Klau’s algorithm & Natalie 2.0

Second, use sub gradient descent to optimize over
U. This algorithm does not require a final
rounding scheme.

40
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Quadratic formulation: Klau’s algorithm & Natalie 2.0

Natalie 2.0 [El-Kebir 2015] is an improvement on
Klau’s algorithm, where the sub gradient descent is
combined with a dual descent step.

40
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Quadratic formulation: Belief propagation [Bayati et al 09]

Write the quadratic problem (w = 0 for simplicity) as
max Z Li,i’,5,5' (L) = potential square in L

i,1/,5,5' €L(L)

subject to Z T < 1,V Z i < 1,Vi';

i':(4,i")EL i:(i,i’)EL

Tiit g = Tii x5V, 1, g, 5 € O(L),
r; o € 40,1}, V(i,i") € L

41
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Quadratic formulation: Belief propagation [Bayati et al 09]

Write the quadratic problem (w = 0 for simplicity) as
max Z Li,i’,5,5' (L) = potential square in L

i,1/,5,5"€(L)

subject to Z T < 1,V Z i < 1,Vi';

i':(4,i")EL i:(i,i’)EL

Tiil 5.5 = xi’i/SIZjJ/\V/Z., ’i/,j,j, - D(L),
r; o € 40,1}, V(i,i") € L
Build the probability distribution

P({xi,i’}a {xi,i’,j,j’}) — % (eg Zi,i’,j,j’eD(L) xia’i',j,j’) H\I}( '. Z Ti i S 1)
H\I’( Z xii < 1) H

i/ (4,4 ) €L i,1’,5,5’ €€lI(L)

41
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Quadratic formulation: Belief propagation [Bayati et al 09]

The support of P({z; ;s },{x; i j i/ }) is the set of
feasible solution to the original IQP.

42
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Quadratic formulation: Belief propagation [Bayati et al 09]

We can use max-product BP, a message-passing
algorithm over the factor-graph associated to this
distribution, to find

arg max P(x; ;+) or argmaxP(x; s j.7)

42
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Quadratic formulation: Belief propagation [Bayati et al 09]

With a rounding scheme, we can then extract an
approximate solution to the original problem from the
maximizers of the marginal probabilities.

®) BOSTON COLLEGE
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Isorank [Singh et al. 2008]

g1 = a Go = (Va, &)

Let 4 be the adjacency matrix of the product graph
G1 X Go = (V1 x Vo, {((4,7), (u,v)) : (i,u) € &1, (j,v) € E2})
deg(3b) = deg(3) x deg(d)
la

&
()
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Isorank [Singh et al. 2008]

g1 = a Go = (Va, &)

Let 4 be the adjacency matrix of the product graph
G1 X Gg = (Vl X VQ? {((27])7 (uvv)) : (Zvu) S 817 (]7 U) S 52})
deg(3b) = deg(3) x deg(b)
@ Isorank: (1) Find R: R=A4 R and (2)
) @ then use R € RVIIV2l 35 weights
L in @ maximum matching problem

to match nodes of G; and G .

() BOSTON COLLEGE
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Isorank [Singh et al. 2008]

Note that R = A R corresponds to finding the
stationary distribution of a random walk on G; x Gs :

deg(¢)deg(j)

This stationary distributionis R; ; = 2|&1]1&2]
1 2

44
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Isorank [Singh et al. 2008]

The equation R = 4 R can be generalized to include
node-similarity information as R = a4AR + (1 — 0)E,
where £ is normalized tosumto 1 and aisin [0, 1].

44
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Isorank [Singh et al. 2008]

We can solve R = aAR + (1 — a)E using a PageRank-
like method. A match then can be produced using a
maximum weight matching with R as weights.

“ ®) BOSTON COLLEGE
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Sparse Isorank [Bayati et al 09]

Let S € RMIIV2IxIVilVal he 35 in the original 1QP for
a complete L. Recall that

Siirg.y = 1iff 4,4', 4, 7" make a square

through L, G; and G5

45
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Sparse Isorank [Bayati et al 09]

We can write the adjacency matrix of the product
graph g1 X Goas A = DngT where
- Dg = diag(rowsum(5))

Hence, we can generalize the Isorank to sparse-
isorank as aDg'S' R+ (1 — a)E = R where S,
now, can be sparse and allow only some matches.

“ (B) BOSTON COLLEGE
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Inner [Lyzinski et al. 2014]

Start with the Chemical distance definition. Then do,

(1) arg min ||AP — PB||% = argmin |AP||% + |PB||% — 2(AP, PB)

Pell Pell
= AP, PB) — (2 AP, PB
ars %21}1<< 7 > ( ) ars PEDougEfaggochastic< ’ >

46
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Inner [Lyzinski et al. 2014]

Start with the Chemical distance definition. Then do,

(1) arg min |AP — PB| = arg min |AP||% + | PB||z — 2(AP, PB)

Pecll
= AP, PB 2 AP, PB
ars %131}1<< 7 > ~ ( ) ars PEDougII;faggochastic< ’ >

Theorem: For several families of random graphs, with
high probability, solving (2) gives a solution to (1).

(2) Can be approx. solved easily using, e.g., projected
gradient descent. When (2) does not return a

permutation, we use rounding methods.
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Weisfeiler-Lehman algorithm [Weisfeiler & Lehman 1968]

This alg. can, sometimes, determine if two graphs are

non-isomorphic:

1. Color the two graphs with nodes of equal color

2. For each graph do, for each node /

colorfJr1 = hash(sort({color;- }ieneig.ofi)

3. Once colors are stable, compare the distributions
of the colors in the two graphs. If they are

different, output non-isomorphic.

The final colors can be use to find an (inexact)
matching. Find a cost function to compare colors, and
use a maximum weight matching to match nodes.

®) BOSTON COLLEGE
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Scalability

These algorithms can align large graphs (~300k nodes
per graph, and ~20M possible matches between
nodes [Bayati et al. 2009]).

A few can be solved using distributed message passing
schemes and hence, at least in principle, can scale to
very large graphs: WL alg., NetAlignBP, Isorank.

Optimization-based algs., e.g. the LP relaxation, Klau’s
alg., Natalie 2.0, and Inner alg., can be solved using
standard distributed optimization methods.

48
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Scalability

Among existing methods for large scale distributed
optimization, worth noting is the Alternating
Direction Method of Multipliers.

1. Can deal with non-smooth functions

Easily distributed and parallelized

3. Good convergence properties, and empirically
good performance in several non-convex problems

4. Fastest possible first-order method among strongly

convex functions with Lipschitz gradients [Franca &
Bento 2016]

N
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Scalability

Unfortunately, if we use the alignment produced by
these algorithms to produce a distance between
graphs, e.g. using an alignment’s permutation matrix

to compute
|AP — PB||

, the resulting distances are not metrics. This is the
case for Natalie 2.0, Klau’s alg., IsoRank,
SparselsoRank and Inner alg.
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Scalability

Can we find a rich set of scalable graph comparison
methods that result in metrics?

(part Il of this tutorial)
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Part Il:
A Family of Tractable Graph Metrics



A Highly Desirable Property

d(z,y) >0 (non-negativity)
d d(z,y)=0iff z=y (pos. definiteness)
, d(z,y) = d(y, ) (symmetry)
d(z,y)<d(z,z)+d(z,y) (triangle inequality)

Distance score d is a metric

U Poly-time Algorithms with provable guarantees:
O k-NN
O Clustering
O Dataset diameter
Q..

0 Work very well in practice.

7> Northeastern
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Example: Chemical Distance

Given two adjacency matrices A, B € {0, 1}7"*" Optimal mapping
. . : . between nodes
their chemical distance is: /
dpn(A,B) :minpepn HAP—PBHF,

- Count edge

where differences
={Pc{0,1}":P1=1,P'1=1}

is the set of permutation matrices and || - || is the Frobenius norm.

v "Natural": minimal edge discrepancy
v’ Zero iff graphs are isomorphic
v Metric

¢ Intractable

7> Northeastern
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Example: Chartrand-Kubiki-Shultz (CKS) Distance

Given two shortest path distance matrices A, B € R%}"

their CKS distance is:
dpn (A, B) = minpepn HAP — PBHF,

where
P ={Pec{0,1}":P1=1,P'1 =1}

is the set of permutation matrices and || - || » is the Frobenius norm.

v’ Zero iff graphs are isomorphic
v Metric

9 Intractable

RN O
=N
S
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Tractable Approaches

dpn (A, B) = minpepn | AP — PB||F,

Q Inexact solution: approximate optimal matrix P € P"

[Singh et al., 2007], [Bayati et al. 2009]
[Klau 2009], [Koutra et al. 2013]
[Kebir et al. 2015], [Lyzinski et al. 2016]

1 Convex relaxations: SDP relaxation, method of moments, ...

dResulting dis not a metric!!

Challenge: produce tractable metrics

7> Northeastern

4 A Family of Tractable Graph Metrics



A Family of Tractable Graph Metrics

O Generalization of chemical & CKS distances: [Bento, loannidis SDM 2018]
ds(A, B) = minpcg ||[AP — PB|| (%)
~ \
Closed & Bounded Set Matrix Norm
0 Conditions on .S, || - || under which ds is a metric

Q dg is indeed a metric when either:

S = Doubly Stochastic Matrices, or S = Orthogonal Matrices

In both cases, (*) is tractable.

0 Extension of (*) to incorporate node attributes.

5 A Family of Tractable Graph Metrics 7 Northeastern




Outline

 Relaxations of Chemical & CKS distances
U Incorporating Metric Embeddings

A Distributed Computation
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Outline

(1 Relaxations of Chemical & CKS distances
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Graph Spaces

23
pisay

N

6 5
G4

O Undirected graphs:

U Weighted, undirected graphs:

O Weighted, directed graphs:

8 A Famuly of Tractable Graph Metrics

OO O OO O
S OoOHrRr OO OoO OO
OR OO O RO, OO
SO OO R EFEFOFEOOO
OO R OO, OOOoO
OO O OO+, O OO
— O OO, OO~k OOo
_H O OO OO, OO

oc—rocor~rococo r o
I»—u—u—u—looooool

adjacency matrix A

Q={0,1}"""NS"™ (binary, symmetric)
Q=8" (real, symmetric)

Q =R"*" (real)

7> Northeastern




Problem Formulation

O For A, B € Q:

ds(A, B) = minpes |AP — PB|

~

Closed & Bounded Set

\

Matrix Norm

ad () = e.g., binary, binary symmetric, real symmetric, real

aQ S=

P"={Pec{0,1}"*":P1=P'1 =1}
W ={Pec[0,1]"":P1=P'1=1}

Q"={PcR™.PP' =P'P=1}

9 A Famuly of Tractable Graph Metrics

permutation matrices

doubly-stochastic matrices
(a.k.a. the Birkhoff Polytope)

orthogonal matrices
(a.k.a. the Stiefler Manifold)

& Northeastern




Why These Relaxations?

P"={Pc{0,1}"": P1=P'1=1)} permutation matrices

W ={Pec[0,1]"":P1=P'1=1} doubly-stochastic matrices

O" ={P eR"": PP' =P'P= I} orthogonal matrices
W™ = conv(P") (Birkhoff-von Neumann Theorem)
P"* =W"NnQO"

7> Northeastern
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Metrics

Q Function d : {2 x {2 — R is a metric over set () if it
satisfies the following properties:

d(x,y) > (non-negativity)
d(z,y)=0iff x=y (pos. definiteness)
d(z,y) = d(y, ) (symmetry)
d(x,y)<d(x,z)+d(z,y) (triangle inequality)

Pair (€2, d) is then called a metric space.

) Northeastern
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Pseudo-metrics & Quasi-metrics

Q Function d : 2 x {2 — R is a pseudo-metric over set
if it satisfies the following properties:

d(x,y) >0 (non-negativity)
if

d(x,y) :O\ﬁx:y

d(z,y) = d(y, z) (symmetry)

d(x,y)<d(x,z)+d(z,y) (triangle inequality)

If d is a pseudo-metric, then it is a metric over equivalence classes
implied by d(x,y) = 0 (i.e., the quotient space)

JZEERN 0
I

) Northeastern
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Pseudo-metrics & Quasi-metrics

Q Function d : {2 x {2 — R is a quasi-metric over set (2
if it satisfies the following properties:

d(x,y) >0 (non-negativity)
d(z,y)=0iff z=y

d(x,y)<d(x,z)+d(z,y) (triangle inequality)

If d is a quasi-metric, then the symmetric extension

| | d(z,y) = d(z,y) + d(y, x)
IS a metric.

JZEERN 0
[z %\

Z>) Northeastern

13 A Farmily of 7ractable Graph Metrics



Optimization over Permutation Matrices

ds(A,B) = minpeg ||AP — PB|| (%)
S=P"={Pc{0,1}"":P1=P'1=1}

Theorem: If S=P" and | - || is an arbitrary entry-wise or operator
matrix norm, then ds is a pseudo-metric over 2 = R"?*"

O Weighted, directed graphs
O Equivalence relation=lsomorphism

7> Northeastern
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Optimization over Doubly Stochastic Matrices

ds(A,B) = minpeg ||AP — PB|| (%)
S=W'={Pecl0,1]"":P1=P'1=1)}

Theorem: If S=W"and | - lis an arbitrary entry-wise matrix norm,
then ds is a pseudo-metric over {) = S

5 X on g g 5
If|| - || is an operator norm or €2 = R"™” " then it is a quasi-metric.

- /

L Weighted, undirected graphs + entry-wise norms o.k.

O Operator norms/directed graphs break symmetry

O Equivalence classes characterized by Weisfeiler-Lehman algorithm.
O Tractable:(x) is a convex optimization problem!

7> Northeastern
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Optimization over Orthogonal Matrices

ds(A,B) = minpeg ||AP — PB|| (%)
S=0"={PecRY":PP'=P'P=1}

Theorem: If S = Q™and || - || is a either the operator or the entry-
wise 2-norm, then dgs is a pseudo-metric over ) = RP**"

0 Weighted, directed graphs
U Restricted to 2-norms
U Equivalence classes characterized by co-spectrality.

O Tractable:(+) is not convex, but can be solved via a spectral
decomposition.

7> Northeastern
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d We can construct pseudo-metrics for
S =P*"W" and O"

3 In the latter two cases, computing ds(A, B)
IS tractable.

/ZIERN [
V= N
(3 N

7% Northeastern

17 A Farmly of 7Tractable Graph Metrics



Clustering Performance

Distance Score Algorithms

[ (Non-metric) Distance Score Algorithms I

NetAlignBP Network Alignment using Belief Propagation [9, 33]
IsoRank Neighborhood Topology Isomorphism using Page Rank
[54, 33]
SparselsoRank Neighborhood Topology Sparse Isomorphism using Page
Rank [9, 33]
InnerPerm Inner Product Matching with Permutations [42]
InnerDSL1 Inner Product Matching with Matrices in W' and entry-
wise 1-norm [42] @
InnerDSL2 Inner Product Matching with Matrices in W' and Frobe- =
nius norm [42] °
NetAlignMR Iterative Matching Relaxation [34, 33] =
Natalie (V2.0) Improved Iterative Matching Relaxation [23, 22] g
[ Metrics from our Family (2.4) I Z.
EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dyn with entry-
wise 1l-norm
DSL2 Doubly Stochastic Chemical Distance dwn with Frobe-
nius norm
ORTHOP Orthogonal Relaxation of Chemical Distance don with
operator 2-norm
ORTHFR Orthogonal Relaxation of Chemical Distance don with »
Frobenius norm .9
&
s
| | Description | |
I
Bd Barabasi Albert of degree d [5]
Ep Erd8s-Rényi with probability p [25]
P Power Law Tree [44]
Rd Regular Graph of degree d [13]
S Small World [35]
Wd Watts Strogatz of degree d [58]

18 A Farmily of 7ractable Graph Metrics
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(a) Clustering Misclassification Error

[ NetAlignBP |-
IsoRank |

SparselsoRank

NetAlignMR

Natalie

\
-
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ORTHOP

ORTHFR

\

A

verage Centroid Complete Median Single

0.58
0.61
0.61

0.59

Ward Weighte

4

Y
Methods of Merging Clusters in Hierarchical Agglomerative Clustering

PR

\\\%ﬁ

0.8\

0.7

0.6

"

Iop0q & sydelny poryIsseosSIA

) Northeastern



Triangle Inequality Violations (TI1Vs)

NetAlignBP
IsoRank
SparselsoRank

NetAlignMR

i

B3 B4 BS5SE002E0.1 P R3 R4 R5 S W3 W4 W5

Natalie

(a) Effect of TIVs
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—_—
|

o
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o
)

N
~

o
o

0p

Fraction of Misclassified Graphs

Fraction of TIVs
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Bd Barabasi Albert of degree d [5]
Ep Erdés-Rényi with probability p [25]
P Power Law Tree [44]
Rd Regular Graph of degree d [13]
S Small World [35]
WwWd Watts Strogatz of degree d [58]
| —%— NetAlignBP
IsoRank
SparselsoRank
1 — NetAlignMR
—#=— Natalie
| — DSLI1
—*— DSL2
| —=— ORTHOP
ORTHFRO

— Random guess

‘ ‘ ‘ ‘ ‘ ‘ ‘ A><10_2
0 02 04 06 08 10 12 14
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Outline

U Incorporating Metric Embeddings

/RN O
RS
(& \\
e h qj(‘

20 A Family of Tractable Graph Metrics Northeastern



Node Attributes

J Nodes often have attributes

21

U Exogenous (gender, age, in social network, atomic number in molecule, etc.)

017
(6.4

X
0"!“6;&6“&

Ty = Q 70K | 20ys

Q
C16

UEndogenous (degree, number of triangles, pagerank, etc.)

015

N S
IS

N
S ‘

3 |1 |046

=
S
|

Find mappings that map
"similar" nodes to each other

A Family of Tractable Graph Metlrics 0 Northe astern




Metric Embeddings

~

O Metric embedding: Mapping of nodes to metric space (Q, d).

E. g .. o (@:;\,bﬁ?ge . N

Ty — Q [7oK|20ys () = Rd

22 A Family of Tractable Graph Metrics



Incorporating Node Attributes

O Consider two graphs embedded in the same metric space (Q, CZ).

O Seek permutations that map nodes to other nearby/proximal nodes.

l ~ Pairwise distances between

: Fo i i nxn
| L B (Q,d) Dap €R nodes in (Q,d)
Tl e® 1 1 1
67 | Te%iTgs ds(A, B P'D
@ RS = min tr

9 e A B) =gl Das)
Theorem: If S=P"or S=W) then dg is a pseudo-
N metric over graphs embedded in (2, d).

Q ForS = W optimization is convex!

O ForS = IP"} optimization is polytime-solvable!
(Hungarian algorithm)

" Northeastern
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Incorporating Node Attributes

O Consider two graphs embedded in the same metric space (Q, 65).

O Seek permutations that map nodes to other nearby/proximal nodes.

! - Pairwise distances between
| L e (Q,d) nodes in (Q,d)
-
- R = e
P 1 & ie \
e® 4 19 ie°
L L9 el dS(A,B):gﬁg(uAP—PBH+tr(PTDA,B))
' y 3 Coro €

QA’ Theorem: If S=P"or S=W?7 then ds is a pseudo-
» metric over graphs embedded in (€2, d).

Q ForS = W' optimization is still tractable!

24 A Family of Tractable Graph Metrics \ Northeastern




Important Practical Implications

— m _ TF
ds(A, B) = min (||AP = PB| + tx(P" Da5))

0 Endogenous features in R? : degree,
pagerank, etc.

O Speed up convergence

‘. 0 Constraints
Q *’ O Map nodes of degree k only to nodes of degree k
-x* 0 Map females to females, oxygens to oxygens, etc.

U Reduces # variables in optimization

Q — {O, 1, 2, 3’ . } (degrees, atomic numbers, ...)

~ 0, ifax=y, _ .
d(z,y) = if £y (Dirac distance) Constraints maintain metric property!!

25 A Family of Tractable Graph Metrics : Northeastern




How to Pick an Embedding?

Embedding must place nodes in the same metric space. ‘_l‘

Mapping must be unique (in particular, deterministic)
Preferred property: embedding is permutation invariant.

Possible Example Embeddings ' N
QO Local/node centric features
U WL counts, degrees, cycles, k-hop neighborhoods

U Laplacian Eigenmaps [Hoffman and Buchanan 94, Balasubramanian and Swartz 02, He and Nyogi 03]
U Eigenmaps of Non-Backtracking Walks [See Part Il of tutorial!!!]

NN

Non-Examples: —~
O Nearly-isometric embeddings [Linial et al. 96, Matousek 99, Bourgain 86, Rao 95] Need for
O Matrix factorization [Nikoletzos et al. 17, Ou et al 16, Shaw and Jebara 09] = research on how
QO Path-NLP based methods [DeepWalk, node2vec, etc.] to co-embed

—

More on Embeddings: T6/44:
Modeling Data With Networks + Network Embedding: Problems, Methodologies and Frontiers

Peng Cui (Tsinghua University), Jian Pei (SFU), Wenwu Zhu (Tsinghua University),
Tanya Berger-Wolf (UIC), Ivan Brugere (UIC) Bryan Perozzi (Google)
ICC Capital Suite Room 11 (Level 3), 1:00 PM - 5:00 PM
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Outline

A Distributed Computation

7 Northeastern
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Distributing Computation

|AP — PB||y + tr(P" Da,p) S‘S‘ S‘azkpk;, szkbkj +22pw

1=1 7=1 1=1 7=1

Zpij =1 qu;j =1
i—1 =1

() Objective can be written as sum of convex functions
[ Solution can be parallelized via consensus ADMM

Boyd, Stephen, et al. "Distributed optimization and statistical learning via the
alternating direction method of multipliers." Foundations and Trends® in
Machine learning 3.1 (2011): 1-122.

& Northeastern
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Distributing Computation

Yazk;pkj szkbk:j + Zzpw

=1 j=1

=1 j=1

|AP — PB||, +tr(PTDap) = \IS‘S‘

n n

Zpij =1 sz'j =1

i=1 j=1
0 Objective cannot be written as sum of convex

functions

 Solution can still be parallelized through map and
reduce operations+ADMM

29 A Family of Tractable Graph Metrics ﬁ\ Northeastern



Parallel Implementation

O Apache Spark
Q ADMM

Slashdot graph
O n=82,168 nodes
O |E| = 948,464 edges

O Constraints: WL-coloring

algorithm

k # vars

0 27,478,564
1 3,747,960
2 239,048

3 182,474
4 182,016

5 182,006

30 A Family of 7Tractable Grapl Metrics
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d 448 CPUs = 8 machines x 56 cores each
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Coming Up:
...Non-backtracking Matrix,
Graph Distances, and Metric
Embeddings
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Graph Distances & Graph Similarity

(@ -

O Given two graphs as input, how similar are they?

/ZXERN [
wa‘ S %%
/S $
3 «A
W
e,
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Graph Distances & Graph Similarity

3
‘"\ Ab 3 Edit Distance:
1
, 'w . A' By \ Eo| + | Es \ |

O Given two graphs as input, how similar are they?

"Labeled" setting: correspondence between nodes given.

/ZZRERN [
(> =2\
&7 Q

22 Northeastern
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Graph Distances & Graph Similarity

(€2 i)

O Given two graphs as input, how similar are they?

"Unlabeled" setting: no prior correspondence between nodes.

/ZIERN [
=
[ §\¢
S i)
[ A
‘ gqx

i
S
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Applications of Graph Distances

O Key in many Graph Mining
Tasks
0 Graph De-anonymization
O k-Nearest Neighbors Search
O Clustering

- friendship graph phone-call graph

O Graphs are Ubiquitous
Q Social Networks
0 Computer Vision
O Chemistry
0 Computer Networks
I I

CC )¢

Cambridge Crystallographic
Data Centre
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A Highly Desirable Property

d(z,y) >0 (non-negativity)
d d(z,y)=0iff z=y (pos. definiteness)
, d(z,y) = d(y, ) (symmetry)
d(z,y)<d(z,z)+d(z,y) (triangle inequality)

Distance score d is a metric

U Poly-time Algorithms with provable guarantees:
O k-NN
O Clustering
O Dataset diameter
Q..

0 Work very well in practice.

7> Northeastern
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Metrics

Q Function d : {2 x {2 — R is a metric over set () if it
satisfies the following properties:

d(x,y) > (non-negativity)
d(z,y)=0iff x=y (pos. definiteness)
d(z,y) = d(y, ) (symmetry)
d(x,y)<d(x,z)+d(z,y) (triangle inequality)

Pair (€2, d) is then called a metric space.

) Northeastern
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Graph Distance, and Metric Embedding



Outline

Part 1. Part 2.
Graphs as metric spaces Geometry of graph embeddings
Leo Torres, Pablo Suarez Serrato, & Leo Torres & Tina Eliassi-Rad

Tina Eliassi-Rad (arXiv:1807.09592)

* The length spectrum * Vectorization vs. pattern

+ Modifying the length recognition

spectrum * Literature review
* Detour: Non-backtracking * Edge embedding with NBM
matrix (NBM)

 Examples
* Graph distance

* Properties & examples

72 Northeastern



https://arxiv.org/abs/1807.09592

Isometry in metric spaces

Two metric spaces (€24, d{) and (€, d,) are called

Isometric when there exists a function:
f: Q4 > Q, suchthat d;(x,y) = d,(f(x), f(¥))

AN Nor‘[heaStern




Isometry and graphs as metric spaces

Two metric spaces (24, d4) and (Q,, d-) are called
Isometric when there exists a function:

f: (1; = (1, such that dl(X, y) — dz(f(X), f(y))

Graphs as metric spaces
* Graph G

— Q,=node set of G and d; = a distance function on Q;
* Graph H

— €, = node set of H and d, = a distance function on Q,
® f=anode-correspondence function

' Northeastern




From isometry to isomorphism

* QGiven agraph G = (V, E), the set of nodes is a
metric space under the shortest path distance

* If two unweighted graphs are isometric with the
shortest path distance, then they are isomorphic

75 Northeastern




The length spectrum

The length spectrum of a graph
characterizes its 2-core uniquely
up to isometry.

— Constantine, David, and Jean-Francois Lafont.
“Marked Length Rigidity for One-Dimensional
Spaces.” Journal of Topology and Analysis, 2018.

“3 Northeastern




The length spectrum

The length spectrum of a graph
characterizes its 2-core uniquely
up to isometry.

— Constantine, David, and Jean-Francois Lafont.
“Marked Length Rigidity for One-Dimensional
Spaces.” Journal of Topology and Analysis, 2018.

=» If two graphs have the same length spectrum,
then their 2-cores are isometric.

7 Northeastern




How to construct the length spectrum?

* Givenagraph G=(V, E)and anode v ...

) Northeastern




Closed walks

e _..consider the set of all closed walks that start
and end at node v




Equivalence of closed walks

* Closed walks are equivalent if they differ by
tree-like parts that don’t go through the

basepoint ... s /?‘ \ equivalence
Ir Ozi}—\o i \I / class
.. , P
; I

\\_‘:-:-__ \.-”/_— \\ p

N

G ’ \ A0 W\ lQ Ci»\
\/o/—o—\“b o/—oi% } /

—

- —
e T — — -




A representative from each equivalence class

* Retain the shortest closed walk in each subset

g & equivalence
o f / class

. 7 ) Northeastern




The fundamental group

* The set of representatives is the fundamental
group of G with basepoint v - a.k.a. m,(G, v)

# y ™ r ™
/ \ - i ~
i \ I i T .
[ ] ] J | ] b
]
, |
N )
| ) \ ]
1 ! |
J 1
(| ! |
.
'
:
:
| I
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Modifying equivalence of closed walks

* Closed walks are equivalent if they differ by
tree-like parts ’

basepoint

e >

12



Non-backtracking cycles

* Under this new equivalence definition, we get the
set of non-backtracking cycles (NBCs) of G

£

NBCs of G

(20 (e | WA
7 (Northeastern
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Back to the length spectrum

* The length spectrum, £, assigns to each closed
walk the length of its shaved version

14



Back to the length spectrum

* The length spectrum, £, assigns to each closed
walk the length of its shaved version

15



Back to the length spectrum

* The length spectrum, £, assigns to each closed
walk the length of its shaved version

16



Back to the length spectrum

* The length spectrum, £, assigns to each closed
walk the length of its shaved version

17



How can we measure distance between graphs

with the length spectrum?

d(G,H) =d(Lg, Ly)

; 7 ) Northeastern




How can we measure distance between graphs

with the length spectrum?

d(G,H) =d(Lg, Ly)

Two Two Two
assumptions problems solutions
G- L, How to compute? Image instead of
domain
d(Ls, Ly) How to compare? | Partition the image

§ 79 Northeastern




How can we measure distance between graphs

with the length spectrum?

Partition the image

H

G
LN Py N\ A
Domain &%% Iﬁ)ﬁ)&ﬁ ?‘@%Q}

Image

SN
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How can we measure distance between graphs

with the length spectrum?

Partition the image

G H

Domain { Oﬂ) OQO Oﬂ)

count

Image

count
o ]

length
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How can we measure distance between graphs

with the length spectrum?

Partition the image

G H

Domain

\ Lo \

count

Image

w| ]
]
count
]
]

4 3 4
length

22




How can we measure distance between graphs

with the length spectrum?

Partition the image

G H

Domain OAJ ? OQD

count

Image

T

3 4 5 3 4 5
length

count
]
]
]
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How can we measure distance between graphs

with the length spectrum?

Partition the image

G H

Domain cﬂ
T A ggg& A

HHHH

345 6 7 345 6 7
length

count

Image

count
]
[ ]
]
]
]

24




From length spectrum to histogram of NBCs

« How should we compare these two histograms?

« Observe the height of each bar is the number of
NBCs of a certain length

« We can compute this using the non-backtracking
matrix

G H

ol Tdll

count

count

3456 7
length length

25
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Outline

26

Part 1. Part 2.
Graphs as metric spaces Geometry of graph embeddings

The length spectrum Vectorization vs. pattern

Modifying the length recognition

spectrum

Literature review

Edge embedding with NBM

Detour: Non-backtracking
matrix (NBM)

Examples
Graph distance

Properties & examples

) Northeastern




Detour: Non-Backtracking matrix B

2Mm -

"\‘F«\XEJ},‘&
AN
7 Northeastern
% ;éy‘/
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Detour: non-backtracking matrix B

- 22 Northeastern



Detour: non-backtracking matrix B

G = (VaE)
E| =m B
— — Oifi #j
By s1u—sv = 0wk (1 — 0ur) sy={0i 2]

29 22 Northeastern




Detour: non-backtracking matrix B

« Similar to an adjacency

30

matrix of the set of
directed edges

Entries of the powers
store the number of
non-backtracking walks

Bg ., = # of non-
backtracking walks
starting at e, and
ending at e,

B

B iy = 0p (1 — dy1)

7 ) Northeastern




Detour: non-backtracking matrix B

« Similar to an adjacency
matrix of the set of
directed edges

« Entries of the powers
store the number of
non-backtracking walks

* Y B&e, = # of non-

31

backtracking cycles
(NBCs) of length k

B

B iy = 0p (1 — dy1)

(OL T
S e
‘§ //1”\\\“ ﬁ‘:‘\\ h
ZIRY [ enita, 71“‘(‘
7 (Northeastern




Detour: non-backtracking matrix B

« Similar to an adjacency

32

matrix of the set of
directed edges

Entries of the powers
store the number of
non-backtracking walks

tr(B*) = # of NBCs of
length k

B

B iy = 0p (1 — dy1)

SN
A QU
‘§ //1"\\\“%\\ h
2 [t | WA
0 INortheastern




Detour: non-backtracking matrix B

« Similar to an adjacency

matrix of the set of
directed edges

Entries of the powers
store the number of
non-backtracking walks

« Y. A¥=# of NBCs of

33

length k

B

B iy = 0p (1 — dy1)

SN
A QU
‘§ //1"\\\“%\\ h
2 [t | WA
0 INortheastern




Computing B

« Given G = (V, E) with |V| = n and |E| = m,

define
Qw,u—)v — 5:13’0
P, T, UV 5:1:11,
C = PTQ

e QandP aren x 2m matrices, so C is a
2m x 2m matrix

7 Northeastern
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Computing B

« Given G = (V, E) with |V| = n and |E| = m,

define
Qzu—sv = Oz
Py v = Ozu
C = PLQ

Ch—lu—sv = Oyk

35 ) Northeastern




Computing B

Bk—)l,u—m — vk(l — 5ul)

Ck%l,u—)v — 5vk Cu—>v,k—>l — 5ul

36 2 Northeastern




Computing B

Bk—)l,u—m — ’Uk(]' - 5ul)
Ck%l,u_)v — 5’()]{5 Cu—)’l),k-)l — 5’u,l

Bk—>l,u—>v — Ck—>l,u—>v(1 o C“'_””k_)l)

; 2 Northeastern




Computing B

38

Bk—)l,u—w — 'uk(l — 5ul)
Ck%l,u—m — 5vk Cu—>v,k—>l — 5ul

Bk—)l,u—)v — Ck—)l,u—)v(]- — Cu—)v,k—)l)

Algorithm: computeB
Input: a graph G
Output: non-backtracking matrix B of G

Runtime
P, O « incidence matrices > O(m) complexity for
. © - ET - Q.t. iy o " OEnékii) computing B
or each positive entry Cy.i y.v: O(nlk _
is O(m+n(k?))

if Cu—>v, k_>l==o .

Bk—»l y U—>V = 1

7 Northeastern




Outline

39

Part 1. Part 2.
Graphs as metric spaces Geometry of graph embeddings

The length spectrum Vectorization vs. pattern

Modifying the length recognition

spectrum

Literature review

Edge embedding with NBM

Detour: Non-backtracking
matrix (NBM)

Examples
Graph distance

Properties & examples

7 Northeastern




Graph distance

How should we compare these two histograms?

- Recall that the height of each bar is the number of
NBCs of a certain length

- The histograms can be generated using only the
eigenvalues of B

G H
ke il
/D‘;ﬁ 4 3 D’] 6 7
tl‘(B3) length tl'(B )

length

- 7 Northeastern




The NBD of two graphs

41

Given two graphs G and H

Let A, be the k" eigenvalue of G’s non-backtracking matrix
Let u; be the k" eigenvalue of H’s non-backtracking matrix
Consider the top r eigenvalues of G and H

— Al = [A;] = = |2,

= lml = lp2l = - = |uy]

Then, the Non-Backtracking Distance, NBD, is

A(G, H) = 1/ Shey [k —

7 Northeastern




Computing the NBD graph distance

A(G, H) = /Xy Mt — i

Algorithm: NBD

Input:
Output.:

G’, H’
B, , B,
A, n

d

42 https://github.com/leotrs/sunbeam

two graphs G, H, 1nteger r
real number d, the NBD between G, H

— shave (G), shave (H)

— computeB (G’), computeB(H')
— el1gs(B;,r), eigs(B,, r)

— Euc (A, 1)

> Northeastern



https://github.com/leotrs/sunbeam

NBD iIs a pseudo-metric

A(G, H) = /Xy Mt — i

[A1] Identity: d
[A2] Symmetry: d

(
(
[A3] Triangle Inequality: d(
[34] 1d. of indiscernibles: d(

(

[A5] Divergence*: d

Koutra, Danai, et al. “DeltaCon: A Principled Massive-Graph Similarity
Function.” SIAM SDM 2013.

43




Cospectrality

 NBD does not satisfy [A4] because of cospectrality:
sometimes different graphs have the same eigenvalues

» This can occur w.r.t. the adjacency matrix, the
Laplacian, or the non-backtracking matrix

S S

Smallest cospectral graphs w.r.t. the non-backtracking matrix

' Northeastern
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Cospectrality

* Almost all trees are cospectral.

— Schwenk, A. J., Almost all trees are cospectral. In New
Directions in the Theory of Graphs (Proc. Third Ann Arbor
Conf), pp. 275-307.

* Open problem: How many graphs are cospectral?

— Godesil, C. D., McKay, B. D. Constructing cospectral graphs.
Aequationes Math. 25 (1982), no. 2-3, 257-268.

* (Conjecture: The number of graphs that are cospectral
goes to 0 as the number of nodes goes to infinity.

— Durfee, C., Martin, K., Distinguishing graphs with zeta
functions and generalized spectra. Linear Algebra Appl. 481
(2015), 54-82.

45 " Northeastern




Properties of B’s spectrum: hubs

Configuration Model with power law deg. dist.
N =10k, <k) =10,y=2.1

20 - .

i

10 A

% 0

_10 Y

'

-20 .
-20 0 20

Re(A)

Fewer hubs

46 “ ) Northeastern




N = 10Kk,

Properties of B’s spectrum: hubs

Configuration Model with power law deg. dist.
(k) =10,y=2.1

Im(A)
Im(A)

-l -

o,
wv

0
Re(A)

Fewer hubs

)

Im(A)

| Northeastern




Properties of B’s spectrum: triangles

Erdos-Renyi Graph
N=10k, <k) =10,y=2.1

5.0 -
2.5 - o
~ { 1
= 004
£ \ !
-2.5 - .
_5.0 -
-5 0 5
Re(A)

More triangles

48 7 Northeastern




Properties of B’s spectrum: triangles

Erdos-Renyi Graph
(k) =10,y=2.1

N = 10k,
5.0 - 5.0 -
2.5 P 2.5
= / =
= 009 ¢ = 0.0
E \ E
25 * . —-2.5
—5.0 - —5.0 A
-5 0 -5
Re(A)

Im(A)

5.0 -
2.5 o’
0.0 - -
_25 - L]
50 -
-5 0 5
Re(A)

49

More triangles

_ Northeastern




Fine tuning B’s spectrum

* The original NBD uses true eigenvalues

— d(G,H) = Xh_1 1A — p|?

— Ak=ak+ibk

* NBD can be fine-tuned for triangles
— A;C=aak+il?7k,a>1
* NBD can be fine-tuned for degrees

— A = A" (ag +iby), n >0

50

‘7 Northeastern



Application: clustering

ER
207 ¢ kr
® BA
ol ® ™
® WS :
o HG g
§ 0 i S— . —
s
_10 .
=20
-20 -10 0 10 20

Re

1 dot =1 eigenvalue
« r=200; 50 graphs per model

51

" Northeastern



Application: clustering

ER iy
07 o K o8
® BA ] %
| ® o™ .
10 ® WS )
o HG E 8 .
" a
E 04— " — 3
y Wiy
. 1 ‘.
’ -0.2 i}:_!.f‘.’-.
-101 4
! T
20 0.0 pc1 23
20 -10 0 10 20
Re « 1dot=1graph
« 1dot =1 eigenvalue * 98.66% accuracy
+ r=200; 50 graphs per model * Errors are when KR gets misclassified

as BA

o | Northeastern




Application: pattern recognition

Distance to Sun, July 15th, 2001

30

20+

Distance

10 -

53

5 10 15 20 25 30

Number of days since 7/15/01

Enron email network
1 network per day
Comparing all other days to day 0 (Sunday)

' Northeastern



Application: anomaly detection

~ Enron who-emails-whom network weekly graph distance

g 24 3. .’q 5 6 ® (1) Skilling becomes CED

§ 100 1 § ',' .._-. .‘ .. = .’ ® (2} Analyst conference call to boost stock
5 &4 K N - el sl .. | ® ()schwameneger, Lay meating

a '-"' '.'.""':“: . 3 ) ® (4} California energy crisis ends

8 2 7 _ @ (5} Enron shares down 20%

g r'O. uo‘”io.m ® (6} Lay resigns from the board

g 04, . I l l @ (7} Arthur Andersen indicted

= 0 10 20 30 40 50 60 70 80 37

Weeks since Jan 1st, 2001

* Enron email network
* 1 network per week
« Comparing each week to the previous week

54




The length spectrum characterizes the

2-core of a graph

The eigenvalues of B account for the image

of the length spectrum

NBD is a pseudo-metric, which can be
interpreted in terms of triangles & degrees

Applications: cluster graphs, pattern
recognition, anomaly detection

Paper: arXiv:1807.09592

Summary of part 1: graphs as metric spaces

Wl_(G, ’U)

Sy

[——

Code: https://github.com/leotrs/sunbeam

7 Northeastern
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Outline
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Part 1. Part 2.
Graphs as metric spaces Geometry of graph embeddings

The length spectrum Vectorization vs. pattern

Modifying the length recognition

spectrum

Literature review

Edge embedding with NBM

Detour: Non-backtracking

matrix (NBM) « Examples
Graph distance

Properties & examples
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Vectorization vs. pattern recognition

Vectorization

« Given a graph G=(V, E), find a d-dimensional feature
vector for each node or edge

« Geometry: similar nodes are close to each other
« Useful for link prediction, node classification, etc.

. ) Northeastern




Vectorization vs. pattern recognition

Vectorization

« Given a graph G=(V, E), find a d-dimensional feature
vector for each node or edge

« Geometry: similar nodes are close to each other
« Useful for link prediction, node classification, etc.

Pattern Recognition

« Given a graph G=(V, E), find a d-dimensional location
for each node/edge

« Geometry: shape reveals relationships between nodes
« Useful for visualization, anomaly detection, etc.

> 2> Northeastern




Example of pattern recognition

“Perhaps the most famous example is that the
embedded representation of the word queen can
be roughly recovered from the representations of

king, man, and woman.”
queen = king — man + woman

— Omer Levy, Yoav Goldberg, Linguistic Regularities in Sparse
and Explicit Word Representations. CoNLL 2014: 171-180.

) Northeastern
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Literature review

« Graph embedding (from graph mining): need a low rank representation of
the nodes; they use the distance, but don’t use the geometry. See Tutorial
T6/44 this afternoon.

« Isometric embedding: Given a distance on a graph (e.g. shortest path), find
an embedding in Euclidean space that exactly preserves distances.

« Graham, R. L., Winkler, P. M., Isometric embeddings of graphs. PNAS
U.S.A. 81 (1984), no. 22, Phys. Sci., 7259-7260.

« Theorem: If G is complete, and has weights on edges that satisfy
triangle inequality, then there's a necessary and sufficient
characterization for isometric embeddings — namely, a quadratic
inequality on linear combinations of edge weights.

 Deza, M. M., Laurent, M., Geometry of cuts and metrics.
Algorithms and Combinatorics, 15. Springer, Heidelberg, 2010.

60 7 Northeastern




Literature review

61

Embedding with distortion (a.k.a. nearly isometric embedding): an
embedding that is “almost” isometric, up to some distortion in distances.

« Linial, N., London, E., Rabinovich, Y., The geometry of graphs and
some of its algorithmic applications. Combinatorica 15 (1995), no. 2,
215-245.

Simplex geometry: exact correspondence between the n nodes of a graph
and the vertices of an (n-1) dimensional simplex in Euclidean space.

« Devriendt, K., Piet Van M., The Simplex Geometry of Graphs. preprint
arXiv:1807.06475 (2018).

Graph planarity: Place nodes on a plane such that edges don’t cross;
preserves adjacency but not distance.

 https://en.wikipedia.org/wiki/Planarity testing

“ ) Northeastern



https://en.wikipedia.org/wiki/Planarity_testing

Literature review table

N Common . Unique
Name Definition Approach Properties solution?
Graph Low rank representation Matrix Distance NG
embedding of the nodes factorization
Isometric Embedding preserves Randomized Distance NG
embedding distances exactly algorithm
Nearly isometric Embedding preserves Randomized Distance NG
embedding distances with global distortion algorithm
Simplex Embed nodes based on the Eigen (c?)/ﬁ\?;?(:tspﬁr?:ar Yes
embedding eigenvectors of the Laplacian decomposition i depy’ )
Graph planarity Place nodes on a plane such Edge additions Adjacency NG

that edges don’t cross

(relaxed distance)

62
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Edge embedding with the eigenvectors of the

non-backtracking matrix

* Problem

— G@Given a graph G =(V, E), find a low-dimensional
representation for each directed edge, {p.}ock

* Approach

— For each directed edge e, assign p, = (v5, v5),
where v, and v, are the first and second
eigenvectors of G’s non-backtracking matrix

- 7 Northeastern




Why the eigenvectors of the non-backtracking

matrix?

* Edge embedding

* Node embedding by aggregating edges incident to the
same node

* Distinction between source and target nodes
* The first and second eigenvectors are interpretable
* 1st eigenvector captures edge centrality
e 27d gigenvector captures community structure
* Deterministic, not stochastic

* Always produces the same embedding (save for signs)

- 7 ) Northeastern




Non-backtracking embedding of edges

* Consider agraph G = (V, E)

* For each directed edge, there are two corresponding
rows in the non-backtracking matrix B, one for each
orientation

— Each eigenvector has two entries for each directed
edge

* Let A4, 4, be the largest two eigenvalues of B
* Let vy, U, be their corresponding eigenvectors

* For each directed edge e, define p, = (V5, V5)

65 7 Northeastern




Non-backtracking embedding of edges

66

For each directed edge e, define p, = (v, v5)

Issue: v§ is always a real number, but v$ may be
complex

Solution: Use f(v5) = Re(A;)Re(V5) — Im(A,)Im(v5)
— f(¥%) is proportional to v§ when A, is real

— f(v%) is a real linear combination of the real and
imaginary parts of v$ when 4, is complex

— f(v5) is always a real number

72 Northeastern




Non-backtracking embedding of nodes

* Given the directed edge embeddings {p,}.cg, We build
two distinct node embeddings

* For node u,
— S(u) = set of all edges with u as source
— T(u) = set of all edges with u as target

* The embedding of u as a source is defined as the mean
of {pe}eES(u)

* The embedding of u as a target is defined as the mean
of {pe}eET(u)

- 7 Northeastern




From edge to node embedding

X marks the
f(v,) mean of {peleer)
° /
Node u as a target - —— x e
O
V1
f(v,) X marks the
mean of {p,}eesq)
Node u as a source —_———— o
o X o
V4

7> Northeastern
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Outline

69

Part 1. Part 2.
Graphs as metric spaces Geometry of graph embeddings

The length spectrum Vectorization vs. pattern

Modifying the length recognition

spectrum * Literature review
Detour: Non-backtracking * Edge embedding with NBM
matrix (NBM)

* Examples
Graph distance

Properties & examples
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Erdos-Renyi graphs

Erdés-Rényi (N = 2000,p =0.003)

Degree of Target Degree of Source Lo
0.04 1 | fiva) xRe(A2)Re(vz) — Im(Az)im(v2) )
X - 0.8
0.02 - .
o
_ 0.00- : 06 g
N =%
> )
o=
]
—0.027 7 0.4
~0.04 A RN T -
-, " . 0.2
* ‘Dg
—0.06 - T T e T T i T T s T T
0.00 0.01 0.02 0.03 0.00 001 002 0.03
V1 V1

The overall structure is a noisy point cloud,
but the dots seem to have a fan shape. Why?

70 Northeastern




Barabasi-Albert graphs

Barabasi-Albert (N = 2000, m=5)

Degree of Target Degree of Source Lo
0.04 - 1 '
| iva) «Re(A;)Re(v2) — Im(Az)im(v,) |
0.03 A : - 0.9
0.02 1 -08 &
[
1]
_ 0.011 ¥ 0.7 2
5 3
= 0.00 2
0.6 §
—0.01 1 g
0.5 =
-0.02 -
0.4
-0.03 - .
-0.03 -0.02 -0.01  0.00 -0.03 —0.02 -0.01 0.00
V1 Vi

« Each cluster is made up of all edges Every cluster has dark dots to the left
that are incident to the same node. and light dots to the right.

*  Why should incident edges cluster Why does every cluster have the
together in this space? same internal structure?

The polygon marks the convex hull of edges to

71 the largest hub. The X marks the center of mass.




Kronecker graphs

Kronecker Graph (N =2048,M=[0.9,0.36;0.53,0.78])

Degree of Target Degree of Source oo
0-0207 [ fiv,) « Re(A;)Re(v2) — Im(A2)im(v,) | l
- 0.95
0.015 - :
- 0.90
0.010 - g g
- o
0.005 - . = 0.8 &
‘—-N :
= 0.000 - X 1 0.80 g
&
~0.005 - - 015 ¢
X
-0.010 A § 0.70
—0.015 - - 0.65
T T T T T T 0-60
-0.010  -0.005 0.000 -0.010 -0.005 0.000
V1 V1

« The overall structure is a noisy cloud point but clusters are present.
* |t looks like a mix between the ER and BA.
* In what way is KR “a mix” between ER and BA?

72




Summary of part 2: geometry of graph embeddings

- The non-backtracking matrix
allows for deterministic ¥
embedding of nodes and edges

- These embeddings can be
interpreted in terms of their shape

- Useful for pattern recognition
applications such as visualization,
anomaly detection, etc.

: ) Northeastern




* Geometric data analysis of graphs:

graphs as metric spaces, metric spaces of
graphs, metric embedding spaces

* Topological data analysis of graphs:

74

the length spectrum, the non-backtracking
matrix, its eigenvalues and eigenvectors
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NSF Grants I1IS-1741197 & IIS-1741129

General Outline for T21: Graph Metric Spaces

8:00 - 9:00 Jose Bento Part 1: Introduction to Graph Distances

9:00 - 9:30 Stratis loannidis Part 2a: A Family of Tractable Graph
Metrics

9:30 - 10:00 Coffee break ICC Capital Suite Foyer (Level 3)

10:00 - 10:30  Stratis loannidis Part.2b: A Family of Tractable Graph
Metrics

Part 3: Non-backtracking Matrix, Graph

10:30 - 11:30 Tina Eliassi-Rad Distance, and Metric Embedding

11:30 - 12:00 Q&A

Slides available at https://neu-spiral.qgithub.io/GraphMetricSpaces/

“ ) Northeastern



https://neu-spiral.github.io/GraphMetricSpaces/

R Grants 115-1741197 & 115-1741129

Thank you!

Graph Metric Spaces
Tutorial @ KDD 2018
J. Bento, T. Eliassi-Rad / L. Torres, and S. loannidis



Hyperbolic graphs

Hyperbolic Graph (N=2000,y= 2.1)

Degree of Target Degree of Source Lo
0.03 | [ flv2) <Re(A2)Re(v2) —Im(A)im(v,) | |
X »
¢ - 0.8
. —
0.02 - 1 . a
[
‘' - 062
e U 2 3
= 0.01- 1 A ¥
o 0.4 &
» L]
- 3
0.00 1 1 b <
' 0.2
-0.01 | 1
I I T I I I 0.0
0.00 0.01 0.02 0.00 0.01 0.02
%1 %1
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Configuration model graphs

Power Law Conf. Model (N =2000,y=2.1)

Degree of Target Degree of Source Lo
fiv,) xRe(A2)Re(v2) — Im(A;)im(vy) |
0.04 - ey 1 ﬂ »
™, .
| - 0.8
0.02 - . z
» X - » o
0.00 1 ‘w ) - ” ’ 008
- » >
S X g
—-0.02 7 0.4 &
’ Q
i «;
—0.04 bo: & i -
0.2
-0.06 - .
I U I U I T I T 0.0
0.00 0.01 0.02 003 0.04 0.00 0.02 0.04
%1 %1
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flva)

Ring lattice graphs

Degree of Targe

0.020 A

0.015 A

0.010

0.005 T

0.000 A

—0.005 1

—0.010 A

—0.015 7

—0.020 A

| lva) «Re(Az)Rel(vz) —Im(Az)im(v2) |

U I I I
0.008 0.010 0.012 0.014
V1

Rin? Lattice (N = 2000,

Degree of Source

xewpap/bap

L

I T I T
0.008 0.010 0.012 0.014

Northeastern




Ring lattice graphs

Rinq_Lattice plus 1 edge (N=2000,k =5)

Degree of Target Degree of Source
— 1.000
20207 [fiva) «Re(Az)Re(v) — ImAo)im(v2)| 1
- 0.975
0.015 1 i - 0.950
-0.925 o
0.010 1 4 = L
g 0.900 &
< S
0.005 A . 0.875 >
0.850
0.000 A com e eae 1 = =
0.825
_0.005 I I I I I T I I 0-800
-0.100 —0.075 —0.050 —0.025 0.000 -0.10 -0.05 0.00
V1 Vi
80 Northeastern




Enron email network:

Jeff Skilling becomes Enron CEO

Week of Feb 12, 2001 (N =3341, E= 5887)

Degree of Target Degree of Source
1 ] — 1.0
0.01
| fiva) xRe(Az)Relv) — Im(Az)im(vy)
0.00 A , - ‘0 7 - 0.8
3
-0.01 - 1 a
| 06 Q
5 3
2> —0.02 1 H
Q.
i 0.4 2
—0.03 - 1 .3 %
' .
0.2
~0.04 - ‘ {1
i '
_0.05 T T T T T T T T 0-0
0.00 001 002  0.03 0.00 0.01 002 0.03
V1 V1
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Enron email network:

Analyst call to boost stock

Week of Mar 26, 2001 (N =3978, E=7168)

Degree of Target Degree of Source Lo
| fiv2) xRe(A2)Re(v2) — Im(A;)im(v2) |
. o

0.01 - PP 1 e 5 - 0.8
5
o » =4
0.00 - . )
. > a0 062
T 3
= _ ] ) 4 A Q
0.01 =
0.4 o
:
’ =
-0.02 A hy . ‘\ =

> . 0.2

X *
-0.03 A .
T T T T T T 0-0
0.00 0.01 0.02 0.00 0.01 0.02
%1 Vi1
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Enron email network:

California energy crisis ends

Week of Jun 25, 2001 (N = 3479,E =5435)

Degree of Target Degree of Source Lo
[ lvy) <Re(A;)Re(v,) — lm(l\z)lm(v;ﬂ
»

0.03 1 - 0.8
g
=4
0.02 . - 0.6 §
= =
= =]
= Q
0.01 1 . 0.4 &
5
L3

[ 4 -
{ e ] 0.2
0.00 e %
L 4 @
T T T T T T T T 0.0
0.00 001 002 0.03 0.00 0.01 0.02 0.03
V1 Vi
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Enron email network:

One week after Skilling resigns

Week of Aug 20, 2001 (N = 3225, E =5334)

Degree of Target Degree of Source Lo
| fiv,) xRe(A2)Re(v2) — Im(Az)im(y>)
0.02 - 1
- 0.8
0.01 - .
. =3
X f ’ =
0.00 - . )
g | Al | Froed
S —0.01 - - X 5
= "
Q.
-0.02 1 § . 0.4 @
f :
L
—0.03 1 1
0.2
—0.04 - 1
-0.05 l . ; : . . . . 0.0
-0.03 -0.02 -0.01 0.00 -0.03 -0.02 -0.01 0.00
%1 %1
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Enron email network:

Enron stocks plunge below $1

Week of Nov 26, 2001 (N =5572, E =11499)

Degree of Target Degree of Source Lo
0.04 - 1 '
| fiv,) < Re(A2)Re(v2) — Im(A;)im(vy) |
»
X Ll L
0.03 - § 0.8
5
=4
0.02 - . 0.6 §
’:; ;
g ‘ 8
0.01 - - h 0.4 &
L]
. g
0-00 T ‘:"é — [ ] o .? 0-2
-0.01 | 1
T T T T T I I T 0.0
-0.03 -0.02 -0.01 0.00 -0.03 —0.02 -0.01 0.00
%1 %1
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Enron email network:

Enron goes bankrupt

Week of Dec 03, 2001 (N = 3583, E=5283)
Degree of Target Degree of Source

— 1.0
filv,) < Re(A2)Re(v2) — ImAa)im(v2)
0.00 gy
ks - 0.8
4
3
—-0.02 . ‘g:
- 0.6 8
5 4 g
=
-0.04 . a
‘ 0.4 &
L]
5
-
—0.06 - . 1 - 0.2
| |
—0.08 - - 0.0

T T T T T T
0.00 0.02 0.04 0.00 0.02 0.04
%1 Vi1
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