
How should we (correctly)
compare ! networks?

Sam Safavi & José Bento

Open Data Science Conference
Boston, May 2019

Problem

Given ! graphs, "#,⋯ , "& , we want to find a notion of
similarity, ' "#,⋯ , "& , that gives a small value when the
graphs are similar, and a large value when the graphs are not
similar.

Problem

Problem

Note that graphs that do not look the same, might actually be
the same (or closely related).

Problem

There are also many different kinds of graphs, and comparing
them might require using information about:

1. Size (# nodes / edges)
2. Topology
3. Labels
4. Weights
5. Edge direction

Why is this important?

In biology, for example, the topology of a network of interacting

proteins (a protein complex) might give some clues about its

function, [Dohrmann et al. 15].

Having access to d, allows us to answer the question: “do these

complexes have the same function?”

are these 3 nets.

similar, as a

group?

Some additional goals

In addition to looking for a measure of closeness between !
graphs, we might want

1. to find an association between the nodes of the graphs, such
that it becomes clear why the graphs are similar or dissimilar.

1 2

3

45

6

1 2 3

4 5 6

Some additional goals

1 2

3

45

6

1 2 3

4 5 6

A =

2

6666664

0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0

3

7777775

B =

2

6666664

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

3

7777775

P =

2

6666664

1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

3

7777775

kA� PBP>k
kAP � PBk
= small

Some additional goals

This allows, e.g., knowledge transfer in PPI nets.

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5p1 p2 p3 p4 p5

p1 p2 p3 p4 p5p1 p2 p3 p4 p5 p01 p02 p03 p04 p05

p01 p02 p03 p04 p05

p01 p02 p03 p04 p05p
0
1 p02 p03 p04 p05

p01 p02 p03 p04 p05

known function for !" inferred function for !#$

Some additional goals

In addition to looking for a measure of closeness between !
graphs, we might want

2. the association between multiple graphs to be consistent.

G1 G2 G3 G4

G1 G2 G3 G4

G1 G2 G3 G4

G1 G2 G3 G4

a b c d
a b c d

a b c d
a b c d

"~$, "~&, &~'
⇒ $~'

Some additional goals

In addition to looking for a measure of closeness between !
graphs, we might want

3. the distance function to satisfy intuitive properties of metrics.

G1 G2 G3 G4

G1 G2 G3 G4

G1 G2 G3 G4

" #$, #& , " #$, #'
⇒ " #&, #'

small

small

Some additional goals

For two graphs, ! is a metric (2-metric) if the following
conditions are satisfied:

d(G1, G2) � 0,

d(G1, G2) = 0, i↵ G1, G2 are not distinct (isomorphic),

d(G1, G2) = d(G2, G1),

d(G1, G3)  d(G1, G2) + d(G2, G3).

What about for n graphs? (more on this later)

Metrics and computational advantages

max
G1,G22S

d(G1, G2) > �/2

> �/2

> �

O(|S|2) v.s.

O(|S|) (1/2-approx.

in expectation)

Related work

1. There are many different graph metrics, for two graphs, most
of which are not easy to compute [Deza & Deza 2009]:

b. Edit distance

c. Maximum common subgraph distance

a. Chemical distance

Related work

min
P2⇧

kA1P � PA2kF = min
P2⇧

|P (E1)�E2|

Chemical Distance

a mapping between the two graphs that minimizes their edge
discrepancies:

C.D. is zero if and only if two graphs are isomorphic.

Related work

best = inf;
all_perms = perms(1:n);
parfor i = 1:size(all_perms, 1)

P = all_perms(i,:);
if (norm(A1*P-P*A2)<best)

best = norm(A1*P-P*A2);
end

end

__global__ void kernel_to_compute_optimal_match(int
chunck_per_cycle, int num_perm_per_thread, lint nfact, int n, float
*A, float *B, float (*metric)(int , float* , float *, int*), float
* obj_vals, lint * obj_perms){

int baseix = blockIdx.x*blockDim.x + threadIdx.x;;
lint ix = baseix;
extern __shared__ float AB_shared_mem[];
float * shared_A = AB_shared_mem;
float * shared_B = &AB_shared_mem[n*n];
if (threadIdx.x == 0){

for (int i = 0; i < n*n ; i++){
shared_A[i] = A[i]; shared_B[i] = B[i];

}
}
__syncthreads();
float best_val = FLT_MAX;
lint best_perm_ix;
for (int i = 0; i < num_perm_per_thread ; i++){

ix = baseix + chunck_per_cycle*i;
if (ix < nfact){

int perm[MAX_N_PERM]; int scrap[MAX_N_PERM];
index_to_perm(ix , n, perm, scrap);
float val = (*metric)(n, shared_A , shared_B,

perm);
if (val < best_val){

best_val = val; best_perm_ix = ix;
}

}
}
obj_vals[baseix] = best_val; obj_perms[baseix] = best_perm_ix;

}

GPU
(CUDA C)

CPU
(Malab)

Chemical Distance
For small graphs the C.D. is easy
to compute. The for-loop can
be trivially parallelized. Using a
GPU, we can compute the C.D.
for graphs of size n = 13 in < 1h.

Related work

We can relax the constraint and obtain tractable metrics.

For example, if is the set of doubly stochastic matrices, or the

set of orthogonal matrices, then is

easy to compute, and is a metric [Bento & Ioannidis 2018].

min
P2⇧

kA1P � PA2kF = min
P2⇧

|P (E1)�E2|

min
P2⇧

kA1P � PA2kF = min
P2⇧

|P (E1)�E2|

min
P2⇧

kA1P � PA2kF = min
P2⇧

|P (E1)�E2|

Orthogonal matrices

(PTP = I ; A1,A2 sym.)
Doubly stochastic matrices

(P ≥ 0, 1P = 1, PT = 1)

norm(sort(eigs(A1)) - sort(eigs(A2))

cvx_begin

variable P(n,n)

minimize (norm(B*P - P*A))

subject to

P >= 0; sum(P ,1) == 1; sum(P ,2) == 1

cvx_end

(Malab) (Malab

- CVX)

Related work

Once a non-permutation P is obtained, we can project this to the

permutations by solving a simple LP:

cvx_begin

variable M(n,n)

minimize -trace(M*P')

subject to

M >= 0; sum(M) == 1; sum(M') == 1;

cvx_end

(Malab - CVX)

This projection can destroy optimality/metric property.

Related work

O ={vertex/edge/label

insertion/deletion/substitution}

min
{ei}k

i=12Ok:G2=(ek�···�e1)�G1

kX

i=1

c(ek)
G1 G2 G1 G2

Edit distance

max{|V1|, |V2|}� n(G1, G2)

Max. common subgraph distance

For trees, we can solve this via dynamic prog. [Benjamin 2018].

Related work

2. There are many different scalable methods to generate global

alignments between two graphs, but many do not result in

metrics [Bento & Ioannidis 2018].

Average Centroid Complete Median Single Ward Weighted

NetAlignBP

SparseIsoRank

IsoRank

NetAlignMR

Natalie

DSL1

DSL2

ORTHOP

ORTHFR
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
ractio

n
 o

f M
issclassified

 G
rap

h
s à

 b
etter

Methods of Merging Clusters in Hierarchical Agglomerative Clustering

N
o
n
-m

et
ri

cs

M
et

ri
cs

Average Centroid Complete Median Single Ward Weighted

NetAlignBP

SparseIsoRank

IsoRank

NetAlignMR

Natalie

DSL1

DSL2

ORTHOP

ORTHFR
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Average Centroid Complete Median Single Ward Weighted

NetAlignBP

SparseIsoRank

IsoRank

NetAlignMR

Natalie

DSL1

DSL2

ORTHOP

ORTHFR
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8(a) Clustering Misclassification Error

0.58
0.61
0.61
0.59
0.36

0.20
0.20

0.00
0.00

B3 B4 B5 E0.1 P R3 R4 R5 S W3 W4 W5

NetAlignBP

IsoRank

SparseIsoRank

NetAlignMR

Natalie
0

0.01

0.02

0.03

0.04

0.05

B3 B4 B5 E0.02E0.1 P R3 R4 R5 S W3 W4 W5

NetAlignBP

SparseIsoRank

IsoRank

NetAlignMR

Natalie
0

0.01

0.02

0.03

0.04

0.05

(c) TIVs, n = 50(b) TIVs, n = 10

Description

Bd Barabasi Albert of degree d [5]
Ep Erd�s-Rényi with probability p [24]
P Power Law Tree [45]

Rd Regular Graph of degree d [12]
S Small World [36]

Wd Watts Strogatz of degree d [59]

(d) Synthetic Graph Classes

1 2 3 4 5 6 7 8 9 10 11
0

0.02

0.04

0.06

0.08
1 - InnerDSL2
2 - NetAlignBP
3 - IsoRank
4 - SparseIsoRank
5 - NetAlignMR
6 - Natalie
7 - DSL1
8 - DSL2
9 - InnerPerm
10 - InnerDSL1
11 - EXACT
12 - ORTHOP
13 - ORTHFR

(e) TIVs, small graphs

Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for di�erent clustering parameters (x-axis) is shown
in (a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We
compute distances between them using nine di�erent algorithms from Table 1. Only the distances in our family (DSL1, DSL2,
ORTHOP, and ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [28] using
Average, Centroid, Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction
of misclassified graphs, with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance
scores across all clustering methods. The error rate of a random guess is ¥ 0.8. Subfigures (b) and (c), top center and right,
shows that non-metric distances produce triangle inequality violations (TIVs) which contribute to poor clustering results; the
figure shows the fraction of TIVs within di�erent 10-node and 50 node graph families under these algorithms. Finally, subfigure
(e), bottom right, shows the fraction of triangle inequality violations for di�erent algorithms on the small graphs dataset of all
7-node graphs.

Theorem 5. If S = Wn
and Î·Î is an arbitrary entry-

wise norm, then dS given by (6) is a pseudometric over

� = Sn ◊ �n
�̃, the set of symmetric graphs embedded

in (�̃, d̃). Moreover, if Î · Î is an arbitrary entry-wise

or operator norm, then the symmetric extension d̄S

of (6) is a pseudometric over � = Rn◊n ◊ �n
�̃.

Adding the linear term (5) in dS has significant
practical advantages. Beyond expressing exogenous
attributes, a linear term involving colors, combined
with a Kronecker distance, translates into hard con-
straints: any permutation attaning a finite objective
value must map nodes in one graph to nodes of the
same color. Theorem 5 therefore implies that such
constraints can thus be added to the optimization
problem, while maintaining the metric property. In
practice, as the number of variables in optimization
problem (4) is n2, incorporating such hard constraints
can significantly reduce the problem’s computation
time; we illustrate this in the next section. Note

that adding (5) to dOn does not preserve the metric
propery.

5 Experiments

Graphs. We use synthetic graphs from six classes
summarized in the table in Fig. 1(d). In addition,
we use a dataset of small graphs, comprising all 853
connected graphs of 7 nodes [46]. Finally, we use a
collaboration graph with 5242 nodes and 14496 edges
representing author collaborations [42].
Algorithms. We compare our metrics to several com-
petitors outlined in Table 1 (see also Appendix E). All
receive only two unlabeled undirected simple graphs
A and B and output a matching a matrix P̂ either in
Wn or in P

n estimating P ú. If P̂ œ P
n, we compute

ÎAP̂ ≠ P̂BÎ1. If P̂ œ Wn, then we compute both
ÎAP̂ ≠ P̂BÎ1 and ÎAP̂ ≠ P̂BÎF ; all norms are entry-
wise. We also implement our two relaxations dW and

7

1 2 3 4 5 6 7 8 9 10 11
0

0.02

0.04

0.06

0.08

Bayatti et a. 2009

Lyzinski et a. 2014

El-Kebir et a. 2015

Fraction on TIV among triples of 7 by 7 node graphs

Related work

3. There are many different scalable methods to generate global
alignments between n graphs, which have not been tested for
their “metric’’ properties. Most algorithms come from
computer vision.

i. [Guibas et al. 2013, 2018]
ii. [Daniilidis et al. 2015]
iii. [Stephen et al. 2015]
iv. [Tong et al. 2015]
v. [Huang et al. 2014]
vi. [Singh et al. 2013]

Mathematical background: !-metrics

How do we generalize the metric property from 2 graphs to "
graphs?

d(G1, G2) � 0,

d(G1, G2) = 0, i↵ G1, G2 are not distinct (isomorphic),

d(G1, G2) = d(G2, G1),

d(G1, G3)  d(G1, G2) + d(G2, G3).

d(G1, ..., Gn) � 0,

d(G1, ..., Gn) = 0, i↵ Gi ⇠ Gj8i, j
d(G1, ..., Gn) = d(permute(G1, ..., Gn)),

d(G1, ..., Gn) 
nX

i=1

d(G1, ..., Gi�1, Gi+1, ..., Gn+1).

Mathematical background: !-metrics
d(G1, G2) � 0,

d(G1, G2) = 0, i↵ G1, G2 are not distinct (isomorphic),

d(G1, G2) = d(G2, G1),

d(G1, G3)  d(G1, G2) + d(G2, G3).

d(G1, G2, G3)  d(G2, G3, G4) + d(G1, G3, G4) + d(G1, G2, G4)

1

3 2
 1

3 2

1

3 2
+

1 2

3 4


1 2

3 4
+

1 2

3 4

1 2

3 4
+

Defining an !-metrics

Given a metric for two graphs, why can we not simply define

d(G1, . . . , Gn) =
X

(i,j)

d(Gi, Gj) ?

This does define an "-metric. However, if we look e.g. at what
would happen if we used the Chemical distance, we quickly
notice we cannot guarantee consistent alignments.

d(G1, . . . , Gn) = min
Pi,j2⇧8i,j

X

(i,j)

kAiPi,j � Pi,jAjkF

P ⇤
i,j? =?P ⇤

i,kP
⇤
k,j

Defining an !-metrics

Given a metric for two graphs, why can we not simply define

d(G1, . . . , Gn) =
X

(i,j)

d(Gi, Gj) ?

P ⇤
12P

⇤
23 6= P ⇤

13

0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0

P ⇤
13 =

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

P ⇤
12 =

0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0

P ⇤
23 =

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

Defining an !-metrics

Let d(A,B) be a metric for two graphs. An easy way to obtain an
"-metric is to define

This is called the Fermat distance associated with d.

d(G1, . . . , Gn) = min
G0

nX

i=1

d(Gi, G0)

G1

G2
G3

G4 G5

We want G0 to be close to all of
the Gi ‘s. If we can find such a
G0, then the graphs are similar.G0

Defining an !-metrics

Let us look at the Fermat distance associated with the Chemical
distance: .d(G1, G2) = min

P2⇧
kA1P � PA2k

d(G1, . . . , Gn) = min
B,Pi2⇧8i

nX

i=1

kAiPi � PiBk

P ⇤
i,j = P ⇤

i (P
⇤
k
>P ⇤

k)P
⇤
j
> = P ⇤

i P
⇤
j
> = P ⇤

i,kP
⇤
k,j

P ⇤
i,j = P ⇤

i P
⇤
j
>Let then,

Consistency is easy to achieve! The difficulty is that, even if we
relax to be a convex set, the problem is still non-convex, and
hence not easy to solve exactly.

⇧

Defining an !-metrics

Instead we define

d(G1, ..., Gn) = min
P2S

1

2

nX

i,j=1

kAiPi,j � Pi,jAjk

S = {Pi,j 2 ⇧ : Pi,jPj,k = Pi,k, Pi,i = I}

Theorem [Safavi & Bento 2018]: d is an "-metric.

Defining an !-metrics

The set " can be defined in several equivalent ways. Let all the
graphs have # nodes, and let

P =

2

6664

P1,1 P1,2 P1,3 . . .
P2,1 P2,2 P2,3 . . .
P3,1 P3,2 P3,3 . . .
...

...
...

. . .

3

7775

then
d(G1, ..., Gn) = min

P2S

1

2

nX

i,j=1

kAiPi,j � Pi,jAjk

S = {Pi,j 2 ⇧ : Pi,jPj,k = Pi,k, Pi,i = I}

S = {Pi,j 2 ⇧ : rank(P) = m,Pi,i = I}
S = {Pi,j 2 ⇧ : P ⌫ 0, Pi,i = I}

Defining an !-metrics

These different representations automatically lead to different
relaxations of the original "-metric (related relaxations have
been proposed before).

d(G1, ..., Gn) = min
Pi,j2C
Pi,i=I
P⌫0

1

2

X

i,j2[n]

kAiPi,j � Pi,jAjk

d(G1, ..., Gn) = min
Pi,j2C
Pi,i=I

kPk⇤mn

1

2

X

i,j2[n]

kAiPi,j � Pi,jAjk

C = some convex set of matrices

Defining an !-metrics

Note that in
d(G1, ..., Gn) = min

Pi,j2C
Pi,i=I
P⌫0

1

2

X

i,j2[n]

kAiPi,j � Pi,jAjk

we require that but not inPi,j = P>
j,i

d(G1, ..., Gn) = min
Pi,j2C
Pi,i=I

kPk⇤mn

1

2

X

i,j2[n]

kAiPi,j � Pi,jAjk

Defining an !-metrics

A typical choice for is, for example, the set of doubly stochastic
matrices:

C = some convex set of matrices

C = {P 2 Rm⇥m : P1 = 1, P>1 = 1, P � 0}

Theorem [Safavi & Bento 2018]: For this choice of , both maps
are n-metrics.

C = some convex set of matrices

Defining an !-metrics

It is easy to compute when we relax the consistency
constraint and also relax the set " to .

d(G1, . . . , Gn) =
X

(i,j)

d(Gi, Gj) ?

cvx_begin
variable P(n*k,n*k)
s = 0;
for i = 1:k

for j = 1:k
s=s+norm(A(:,:,i)*P([1:n]+n*(i-1) , [1:n]+n*(j-1))-P([1:n]+n*(i-1) , [1:n] + n*(j-1))*A(:,:,j));

end
end
minimize (0.5*s)
subject to

P == semidefinite(n*k); diag(P) == 1;
for i = 1:k

for j = 1:k
P([1:n] + n*(i-1) , [1:n] + n*(j-1)) >= 0;
sum(P([1:n]+n*(i-1) , [1:n]+n*(j-1)))==1; sum(P([1:n]+n*(i-1) , [1:n] + n*(j-1))') == 1;

end
end

cvx_end

C = some convex set of matrices

Numerical experiment: clustering graphs

G1

G0
G9

G0
0

G0
1

G0
9

Cluster 1 Cluster 2

small
large

small

Ioannidis & Bento 2018 show that metrics can cluster graphs better
than non-metrics. Here we test if this is also the case for n-metrics,
! > 2.

Numerical experiment: clustering graphs

G1

G0
G9

G0
0

G0
9

no hyper edge
if d is largehyper edge

if d is small

Ioannidis & Bento 2018 show that metrics can cluster graphs better
than non-metrics. Here we test if this is also the case for n-metrics,
! > 2.

Numerical experiment: clustering graphs

Ioannidis & Bento 2018 show that metrics can cluster graphs better
than non-metrics. Here we test if this is also the case for n-metrics,
! > 2.

We compute the hyper-edges using our !-metric and 3 other
distances (not all proven to be !-metrics): matchSync [Pachauriet
al., 2013], mOpt [Yan et al., 2015], pairwise. We partition the hyper
graph into as many equal-sized parts as possible using a min-
hypergraph-cut algorithm by Vazquez 2009.

Numerical experiment: clustering graphs

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Ours mOpt

matchSync pairwise

Mean = 0.40 ± 0.05 Mean = 0.44 ± 0.04

Mean = 0.49 ± 0.04 Mean = 0.46 ± 0.04

Improving the generalized ∆-inequality

In fact, our theorems, for both permutations and relaxations over
doubly-stochastic matrices, hold for a more stringent notion of (n,
r)-metric.

d(G1, ..., Gn) � 0,

d(G1, ..., Gn) = 0, i↵ Gi ⇠ Gj8i, j
d(G1, ..., Gn) = d(permute(G1, ..., Gn)),

rd(G1, ..., Gn) 
nX

i=1

d(G1, ..., Gi�1, Gi+1, ..., Gn+1).

Improving the generalized ∆-inequality

Theorem [Safavi & Bento 2018]: The following three maps, are
(!, !/4)-metrics, for ! large enough, and the set of doubly
stochastic matrices.

d(G1, ..., Gn) = min
Pi,j2C
Pi,i=I
P⌫0

1

2

X

i,j2[n]

kAiPi,j � Pi,jAjk

d(G1, ..., Gn) = min
Pi,j2C
Pi,i=I

kPk⇤mn

1

2

X

i,j2[n]

kAiPi,j � Pi,jAjk

d(G1, ..., Gn) = min
P2S

1

2

nX

i,j=1

kAiPi,j � Pi,jAjk

S = {Pi,j 2 ⇧ : Pi,jPj,k = Pi,k, Pi,i = I}

Relation with existing work and future work

Several authors, e.g. [Daniilidis et al. 2015] and [Guibas et al.
2013], formulate multi-graph matching in a way that is related to
ours.

d(G1, ..., Gn) = min
Pi,j2C
Pi,i=I

�kPk⇤ �
1

2

X

i,j2[n]

hAiPi,j , Pi,jAji

d(G1, ..., Gn) = min
Pi,j2C
Pi,i=I

�kPk⇤ +
1

2

X

i,j2[n]

kAiPi,j � Pi,jAjk

Are these n-metrics?

Please cite this tutorial by citing

@inproceedings{safavi2019tractable,
title={Tractable n-Metrics for Multiple Graphs},
author={Safavi, Sam and Bento, Jose},
booktitle={International Conference on Machine Learning},
pages={5568--5578},
year={2019}

}

@inproceedings{bento2018family,
title={A family of tractable graph distances},
author={Bento, Jose and Ioannidis, Stratis},
booktitle={Proceedings of the 2018 SIAM International Conference on Data Mining},
pages={333--341},
year={2018},
organization={SIAM}

}

@article{safavi2018admmtutorial, title={How should we (correctly)
compare ! networks?}, note={Open Data Science Conference}, author={Safavi, Sam and Bento, Jos{\’e}},
year={2019} }

@article{safavi2018admmtutorial, title={Graph metric spaces}, note={SDM Tutorials}, author={Bento,
Jos{\’e} and Eliassi-Rad, Tina and Ioannidis, Stratis and Torres, Leo}, year={2019} }

Thank you !

