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Problem

Given n graphs, {Gq1,:*,G,}, we want to find a notion of
similarity, d(Gq,:--,G,,), that gives a small value when the
graphs are similar, and a large value when the graphs are not
similar.
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Problem

Note that graphs that do not look the same, might actually be
the same (or closely related).




Problem

There are also many different kinds of graphs, and comparing
them might require using information about:

Size (# nodes / edges)
Topology

Labels

Weights

Edge direction

Al S



Why is this important?

In biology, for example, the topology of a network of interacting
proteins (a protein complex) might give some clues about its

function, [Dohrmann et al. 15].

Having access to d, allows us to answer the question: “do these
complexes have the same function?”

_ . arethese 3 nets.
similar, as a
group?




Some additional goals

In addition to looking for a measure of closeness between n
graphs, we might want

1. to find an association between the nodes of the graphs, such
that it becomes clear why the graphs are similar or dissimilar.




Some additional goals
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Some additional goals

This allows, e.g., knowledge transfer in PPI nets.

known function for p, inferred function for p:



Some additional goals

In addition to looking for a measure of closeness between n
graphs, we might want

2. the association between multiple graphs to be consistent.
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a~b,a~c,c~d
= b~d




Some additional goals

In addition to looking for a measure of closeness between n
graphs, we might want

3. the distance function to satisfy intuitive properties of metrics.
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Some additional goals

For two graphs, d is a metric (2-metric) if the following
conditions are satisfied:

d(G1,G2) > 0,

d(G1,Gs) =0, iff G1, G5 are not distinct (isomorphic),
d(G1,G2) = d(Ga,G1),

d(G1,G3) < d(G1,G2) 4+ d(Gs, Gs).

What about for n graphs? (more on this later)



Metrics and computational advantages

o G, Go) > A/zf

° > A
O( S 2) V.S. ~ A/Q
O(|S|) (1/2-approx. ®

in expectation)




Related work

1. There are many different graph metrics, for two graphs, most
of which are not easy to compute [Deza & Deza 2009]:

a. Chemical distance
b. Edit distance

c. Maximum common subgraph distance



Related work

Chemical Distance

a mapping between the two graphs that minimizes their edge
discrepancies:

min HA1P — PA2||F
Pell

C.D. is zero if and only if two graphs are isomorphic.



Chemical Distance

For small graphs the C.D. is easy
to compute. The for-loop can
be trivially parallelized. Using a
GPU, we can compute the C.D.
for graphs of size n =13 in < 1h.

best = inf;
all perms = perms(l:n);
parfor i = l:size(all perms, 1)
P = all perms(i,:);
if (norm(Al*P-P*A2)<best)
best = norm(Al1*P-P*A2);

end CPU
(Malab)

Related work

GPU
(CUDA C)

__global _ void kernel to compute optimal match(int

chunck_per cycle, int num perm per thread, lint nfact, int n, float
*A, float *B, float (*metric)(int , float* , float *, int* ), float
* obj vals, lint * obj perms ){

int baseix = blockIdx.x*blockDim.x + threadIdx.x;;
lint ix = baseix;

extern _ shared__ float AB_shared mem[];

float * shared A = AB_shared_mem;

float * shared B = &AB shared_mem[n*n];

if (threadIdx.x == 0){
for (int i = 0; i < n*n ; i++){
shared A[i] = A[i]; shared B[i] = B[i];
}
}

__syncthreads();
float best_val = FLT_MAX;
lint best perm ix;
for (int i = 0; i < num perm per thread ; i++){
ix = baseix + chunck_per_ cycle*i;
if (ix < nfact){
int perm[MAX N_PERM]; int scrap[MAX N PERM];
index_to perm( ix , n, perm, scrap);

float val = (*metric)( n, shared A , shared B,
perm) ;
if (val < best val){
best val = val; best perm ix = ix;
}
}

}
obj vals[baseix] = best val; obj perms[baseix] = best perm ix;



Related work

We can relax the constraint P<Il and obtain tractable metrics.
For example, if IT is the set of doubly stochastic matrices, or the
set of orthogonal matrices, then glel% |A1P — PAs||r s

easy to compute, and is a metric [Bento & loannidis 2018].

Orthogonal matrices Doubly stochastic matrices

(P'P=1,;A4,4,sym.) (P>0,1P=1, P'=1)
cvx_begin

i _ - variable P(n,n)
norm(sort(eigs(Al)) - sort(eigs(A2)) minimize ( norm(B*P - P*A) )
subject to
(Malab) | (Malab P>=0; sum(P,1) == 1; sum(P ,2) == 1
cvx_end
- CVX)




Related work

Once a non-permutation P is obtained, we can project this to the
permutations by solving a simple LP:

cvx_begin
variable M(n,n) B
minimize -trace( M*P') (Malab CVX)
subject to
M >=0; sum(M) == 1; sum(M') == 1;
cvx_end

This projection can destroy optimality/metric property.



Related work

Edit distance

min Z c(ex)

{ei}r_ €OF:Gi=(ero---0e1)0Go*

1=1
O ={vertex/edge/label

insertion /deletion /substitution}

For trees, we can solve this via dynamic prog. [Benjamin 2018].

Max. common subgraph distance

max{ |V, |Va|} — n(G1,G2)



Related work

2. There are many different scalable methods to generate global
alignments between two graphs, but many do not result in
metrics [Bento & loannidis 2018].

Fraction on TIV among triples of 7 by 7 node graphs

008
1 - InnerDSL2
2 - NetAlignBP
1 3 - IsoRank > Bayatti et a. 2009
4 - SparselsoRank
5 - NetAlignMR
6 - Natalie - El-Kebir eta. 2015
7 - DSL1
. 8 - DSL2

9 - InnerPerm o
10 - InnerDSL1 } Lyzinski et a. 2014
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Related work

3. There are many different scalable methods to generate global
alignments between n graphs, which have not been tested for
their “metric”’ properties. Most algorithms come from
computer vision.

i. [Guibasetal.2013, 2018]
ii. [Daniilidis et al. 2015]

iii. [Stephen et al. 2015]

iv. [Tong et al. 2015]

v. [Huang et al. 2014]

vi. [Singh et al. 2013]




Mathematical background: n-metrics

How do we generalize the metric property from 2 graphs ton
graphs?

L d(Gh,.sGr) = 0, iff Gy ~ GV, j
. d(Gy,...,G,) = d(permute(Gy, ..., Gy)),

_ d(G1,....,Gn) <Y d(G1,....,Gi1,Git1, o, Grp1).
1=1



Mathematical background: n-metrics

d(G1,G3) < d(G1, Ga) +d(G2, G3)




Defining an n-metrics

Given a metric for two graphs, why can we not simply define

d(G1,...,Gp) =Y d(Gi,Gj) ?
(2,5)
This does define an n-metric. However, if we look e.g. at what
would happen if we used the Chemical distance, we quickly
notice we cannot guarantee consistent alignments.
d(Gy,...,Gp) = min Y |[A;P; — P jAj|lF

P; 3€H‘v’z,j
(4,5)

P} .7 =7P} Py

a]



Defining an n-metrics

Given a metric for two graphs, why can we not simply define

d(Gy,...,Gn) =) d(G;,Gj) 7
(i,7)
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Defining an n-metrics

Let d(A,B) be a metric for two graphs. An easy way to obtain an
n-metric is to define

n

We want G to be close to all of
the G; ‘s. If we can find such a
G,, then the graphs are similar.




Defining an n-metrics

Let us look at the Fermat distance associated with the Chemical
distance: d(G1,G3) = gﬂ% | A1 P — PAs||.
=

d(Gq.....G.) = mi AP, — P,B
(e B}?é%w; H |

Let Py, = P;P; ' then,
p* P;(P;TP,;‘)P;T — P;P;T = P/ P}

ij

Consistency is easy to achieve! The difficulty is that, even if we
relax 11 to be a convex set, the problem is still non-convex, and
hence not easy to solve exactly.



Defining an n-metrics

Instead we define

1
d(Gq,...,Gp) = min - Y AP — Pij A

1,7=1

S = {Pi,j EHZPi,ij,k :Pi,kapi,i :I}

Theorem [Safavi & Bento 2018]: d is an n-metric.



Defining an n-metrics

The set S can be defined in several equivalent ways. Let all the
graphs have m nodes, and let

P11 Py Pig
Po1 Pao Po3
P = P31 P3a Ps3

then

S={F;,; €ell :rank(P) =m,P;; = I}
S = {Pi,j cll: P > O,Pi,z' :I}
S=b; €1l PijPjx = Pig, Pii =1}




Defining an n-metrics

These different representations automatically lead to different
relaxations of the original n-metric (related relaxations have
been proposed before).

|
d(G1,....,Gp) = P{,-I,ljlgc 5 Z |A: P ; — P Al
P, ;=1 4Jj€[n]
P >0
1
(G1, -, G) P{glgc 9 Z | \J 45

P =1 i,J€[n]

IP[|«<mn

C = some convex set of matrices



Defining an n-metrics

Note that in
1
d(G1,....,Gn) = Priljlgc 5 Z |A: P ; — P Al
P, ;=1 4Jj€[n]

P>0

we require that P, ; = P]-Ti but not in

, 1
d(Gy,...,Gp) = juin o Z |AiPs,; — Pij Aj|
P i=I i,5€[n]
P ||« <mn



Defining an n-metrics

A typical choice for C is, for example, the set of doubly stochastic
matrices:

C={PeR™™:P1=1,P'1=1,P >0}

Theorem [Safavi & Bento 2018]: For this choice of C, both maps
are n-metrics.



Defining an n-metrics

It is easy to compute d(G1, ..., Gr) when we relax the consistency
constraint and also relax the set S to C.

cvx_begin
variable P(n*k,n*k)
s=0;
fori=1:k
forj=1:k
s=s+norm(A(:,:,i)*P([1:n]+n*(i-1) , [1:n]+n*(j-1) )-P([1:n]+n*(i-1), [1:n] + n™(j-1) )*A(:,:,)));
end
end
minimize (0.5*s )
subject to
P == semidefinite(n*k); diag(P) == 1;
fori=1:k
forj=1:k
P([1:n] + n*(i-1), [1:n] + n*(j-1) ) >=0;
sum(P([1:n]+n*(i-1) , [1:n]+n*(j-1) ))==1; sum(P([1:n]+n*(i-1), [1:n] + n*(j-1))') == 1;
end
end
cvx_end



Numerical experiment: clustering graphs

loannidis & Bento 2018 show that metrics can cluster graphs better
than non-metrics. Here we test if this is also the case for n-metrics,

n> 2.
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Numerical experiment: clustering graphs

loannidis & Bento 2018 show that metrics can cluster graphs better
than non-metrics. Here we test if this is also the case for n-metrics,

n> 2.
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Numerical experiment: clustering graphs

loannidis & Bento 2018 show that metrics can cluster graphs better
than non-metrics. Here we test if this is also the case for n-metrics,

n> 2.

We compute the hyper-edges using our n-metric and 3 other
distances (not all proven to be n-metrics): matchSync [Pachauriet
al., 2013], mOpt [Yan et al., 2015], pairwise. We partition the hyper
graph into as many equal-sized parts as possible using a min-
hypergraph-cut algorithm by Vazquez 2009.



Numerical experiment: clustering graphs

Ours mOpt
20 10 ,
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matchSync pairwise
Mean = 0.49[0.04 | Bl Mean =046+ 0.04 |




Improving the generalized A-inequality

In fact, our theorems, for both permutations and relaxations over
doubly-stochastic matrices, hold for a more stringent notion of (#,
r)-metric.

d(Gy,...,Gp) >0,
d(G1,...,Gp) =0, it G; ~ G;Vi,j
d(G1,...,Gy) = d(permute(Gq, ...,G,)),

Td(Gl, ceey Gn) S Z d(Gl, ceny Gi—l; G’i—l—l) ceny Gn_|_1)
1=1



Improving the generalized A-inequality

Theorem [Safavi & Bento 2018]: The following three maps, are
(n,n/4)-metrics, for n large enough, and the set of doubly
stochastic matrices.

d(Gl,... = glel%_ Z HA P@] Pi,jAjH
i,j=1

S = {P@)j EHIPi,ij,k :Pi,kapi,i :I}

d(Gq,...,G _Pm1£C§ > AP — Py Ayl
P, ,=I 4J€[n]
P>O

d(Gq,...,Gp) = Pmlgc > Z |A; P — P A

P; ;=1 i,J€[n
IP. <mn



Relation with existing work and future work

Several authors, e.g. [Daniilidis et al. 2015] and [Guibas et al.
2013], formulate multi-graph matching in a way that is related to
ours.

, 1
d(Gl, cens Gn) — PI,LI’IJIQC)\HPH* —|— 5 P HA’LP’L,] — Pf,;’jAjH
P; =1 6,7 €[n]
, 1
A(G1, ., Gn) = in AP, — 5 26% ]<A¢Pz-,j,P@-,jAj>
Pi,i:I L,ycn

Are these n-metrics?
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Thank you !



