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Abstract
In this paper we consider optimization as an approach for quickly and flexibly developing hybrid
cognitive capabilities that are efficient, scalable, and can exploit task knowledge to improve
solution speed and quality. Given this context, we focus on the Three-Weight Algorithm, which
is interruptible, scalable, and aims to solve general optimization problems. We propose novel
methods by which to integrate diverse forms of task knowledge with this algorithm in order to
improve expressiveness, efficiency, and scaling across a variety of problems. To demonstrate
these techniques, we focus on two large-scale constraint-satisfaction domains, Sudoku and cir-
cle packing. In Sudoku, we efficiently and dynamically integrate knowledge of logically deduced
sub-problem solutions; this integration leads to improved system reactivity and greatly reduced
solution time for large problem instances. In circle packing, we efficiently integrate knowledge
of task dynamics, as well as real-time human guidance via mouse gestures; these integrations
lead to greatly improved system reactivity, as well as world-record-breaking solutions on very
large packing problems. These results exemplify how cognitive architecture can integrate high-
level knowledge with powerful optimization techniques in order to effectively and efficiently
contend with a variety of cognitive tasks.
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Introduction

A central goal of cognitive architecture is to integrate in a
task-independent fashion the broad range of cognitive capa-
bilities required for human-level intelligence, and a core
challenge is to implement and interface the diverse process-
ing mechanisms needed to support these capabilities.

The Soar cognitive architecture (Laird, 2012) exemplifies
a common approach to this problem: Soar integrates a
hybrid set of highly specialized algorithms, which leads to
flexibility in the types of task knowledge about which it
can reason and learn; efficiency for real-time domains; and
scalability for long-lived agents in complex environments.
However, since each algorithm is highly optimized, it can
be challenging to experiment with architectural variants.

By contrast, work on the Sigma (R) architecture
(Rosenbloom, 2011) has exemplified how hybrid cognitive
capabilities can arise from uniform computation over
tightly integrated graphical models. When compared with
Soar’s hybrid ecosystem, this approach allows for compara-
ble flexibility but much improved speed of integrating and
experimenting with diverse capabilities. However, utilizing
graphical models as a primary architectural substrate com-
plicates the use of rich knowledge representations (e.g.
rules, episodes, images), as well as maintaining real-time
reactivity over long agent lifetimes in complex domains
(Rosenbloom, 2012).

This paper takes a step towards an intermediate
approach, which embraces a hybrid architectural substrate
(ala Soar), but seeks to leverage optimization over factor
graphs (similar to Sigma) via the Three-Weight Algorithm
(TWA; Derbinsky, Bento, Elser, & Yedidia, 2013) as a general
platform upon which to rapidly and flexibly develop diverse
cognitive-processing modules. We begin by describing why
optimization is a promising formulation for specialized cog-
nitive processing. Then we describe the TWA, focusing on its
generality, efficiency, and scalability. Finally, we present
novel methods for integrating high-level task knowledge
with the TWA to improve expressiveness, efficiency, and
scaling and demonstrate the efficacy of these techniques
in two domains, Sudoku and circle packing.

This paper does not propose a new cognitive architec-
ture, nor does the work result from integrating the TWA
with an existing architecture. Instead, we propose a para-
digm and both present and evaluate a set of methods to
enable research in integrated cognition.

Optimization

A general optimization problem takes the form

minimize
v2Rn

: fðvÞ ¼
XM

a¼1
faðfvgaÞ ð1Þ

where fðvÞ : Rn ! R is the objective function to be
minimized1 over a set of variables v and fa represents a
set of M local cost functions (including ‘‘soft’’ costs and/
or ‘‘hard’’ constraints, those that must be satisfied in a
feasible solution2) over a sub-set of variables fvga.

As we will exemplify with our discussion of the TWA, it is
often useful to consider families or classes of optimization
problems, which are characterized by particular forms of
the objective and constraint functions. For example, much
recent work has been done on convex optimization prob-
lems, in which both the objective and constraint functions
are convex (Boyd & Vandenberghe, 2004). However, neither
the TWA nor our proposed approach are constrained to any
class of optimization problem.

Optimization is a useful framework in the context of
hybrid cognitive processing for two primary reasons: (1)
generality of problem formulation and (2) independence
of objective function and solution method. First, the form
in Eq. (1) is fully general, supporting such diverse processing
as constraint satisfaction (a problem with only hard con-
straints, such as our example tasks) and vision/ perception
(e.g. Geman & Geman, 1984). Often these problems are
represented as a factor graph (Kschischang, Frey, &
Loeliger, 2001), as exemplified in Fig. 1. Like other graphi-
cal models, factor graphs decompose the objective function
into independent local cost functions, reducing the combi-
natorics that arise with functions of multiple variables.

Another important reason to embrace an optimization
framework is that the objective function is formulated inde-
pendently from the method by which the corresponding
problem is solved. This abstraction supports flexibility in
experimenting with objective variants without requiring
significant effort to change a corresponding algorithm.
However, objective-function changes may impact the speed
and success rate of a particular optimization algorithm, and
thus it is advantageous to use an optimization algorithm
that can specialize to particular classes of objective func-
tions, as well as adapt solving strategies when provided
higher-level sources of task knowledge (issues we discuss
in greater depth later).

Related work

Broadly speaking, optimization has been applied in three
main ways within the cognitive-architecture community.
First, optimization has been applied as a methodological

Fig. 1 Factor graph of an optimization problem whose
objective function is fðvÞ¼ f1ðv1;vnÞþ f2ðvnÞþ . . .þ fmðv1;vnÞ.
The circles (right) represent the variables, while the squares
(left) represent hard or soft cost functions. If a line connects a
square to a circle, that means that the cost function depends on
the variable.

1 By convention we consider minimization, but maximization can
be achieved by inverting the sign of the objective function.
2 These functions return 0 when satisfied, 1 otherwise.
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framework with which to rigorously traverse large model-
ing-parameter spaces, such as the spaces of reward signals
(Singh, Lewis, Barto, & Sorg, 2010) and behavioral strategies
(Howes, Vera, & Lewis, 2007). When applied in this way, the
particulars of the optimization algorithm, as well as integra-
tion within an agent architecture, are typically unimpor-
tant, whereas these issues are of primary focus in this
paper. A second, related application of optimization has
been as an analytical framework of behavior, as best exem-
plified by such theories as rational analysis (Anderson,
1991), bounded rationality (Simon, 1991), and optimality
theory (Smolensky & Legendre, 2011). But again, this utili-
zation of optimization typically does not necessitate a par-
ticular implementation-level algorithm, but instead offers
evidence and organization for a set of functional capabili-
ties. Finally, work on Sigma (Rosenbloom, 2011) formulates
the entire agent/ architecture as an optimization/inference
problem. This paper is much more narrowly scoped in com-
parison: we discuss optimization as an enabling platform for
one or more cognitive modules, independent of the imple-
mentation commitments of the architecture as a whole.
However, a sub-problem when considering architecture as
an optimization problem is how to formulate individual
modules, and thus we revisit this comparison in the next
section when discussing the specifics of the TWA.

The Three-Weight Algorithm (TWA)

The Three-Weight Algorithm (Derbinsky et al., 2013) is
based on a message-passing interpretation of the Alternat-
ing Direction Method of Multipliers, or ADMM, an algorithm
that has gained much attention of late within the convex-
optimization community as it is well-suited for distributed
implementations (Boyd, Parikh, Chu, Peleato, & Eckstein,
2011). The TWA exhibits several properties that make it
attractive for cognitive systems:

% General. The TWA operates on arbitrary objective func-
tions (e.g. non-linear, non-convex), constraints (hard,
soft, mixed), and variables (discrete, continuous). It is
known to converge to the global minimum for convex
problems and in general, if it converges, the TWA will
have arrived at a feasible solution (i.e. all hard con-
straints met).
% Interruptible. The TWA is an iterative algorithm and, for
many problems, intermediate results can serve as heuris-
tic input for warm-starting complementary approaches.
% Scalable and Parallelizable. The TWA takes the form of
a decomposition-coordination procedure, in which the
solutions to small local subproblems are coordinated to
find a solution to a large global problem. Boyd et al.
(2011) showed that this algorithmic structure leads natu-
rally to concurrent processing at multiple levels of exe-
cution (e.g. MapReduce, multi-core, GPU).

Derbinsky et al. (2013) provide a full TWA description, as
well as its relationship to ADMM; however, the core of the
algorithm (see Algorithm 1) can be interpreted as an itera-
tion loop that consists of two phases: (1) minimizing each
cost function locally and then (2) concurring, for each
variable, on the result of the local computations. Impor-

tantly, TWA messages operate on the edges of the corre-
sponding factor graph, as opposed to directly on variables:
this distinction raises the dimensionality of the problem,
allowing the TWA to more effectively search the variable
space and avoid invalid solutions.

Algorithm 1. An abstracted version of the Three-Weight
Algorithm for general distributed optimization.

The minimization phase (line 4 in Algorithm 1) takes as
input a ðmsg;weightÞ pair for each edge and must produce,
for each edge, a corresponding output pair. The minimiza-
tion routine must select a variable assignment in

argmin
v

fðvÞ þweightin
2

ðv &msginÞ
2

! "
ð2Þ

The set of variable values must jointly minimize the sum of
the local cost function while remaining close to the incom-
ing message set, as balanced by each edge’s incoming
weight. Furthermore, each edge must be assigned an outgo-
ing weight, which can be either 0 (intuitively no opinion or
uncertain), 1 (certain), or a ‘‘standard’’ weight (typically
1.0). Proper use of these weight classes can lead to
dramatic performance gains (Derbinsky et al., 2013) and is
crucial for integration with higher-level knowledge (as
discussed later). The logic that implements this minimiza-
tion step may itself be a general optimization algorithm,
but can also be customized to each cost function; custom
minimization almost always leads to improvements in
algorithm performance and is typically the bulk of the
implementation effort.

The concur phase (line 10) combines incoming messages
about each variable from all associated local cost functions
and computes a single assignment value using a fixed logic
routine (typically a weighted average). After each variable
node has concurred, it is possible to extract this set of val-
ues as the present solution state.

We do not go into the details of computing ‘‘messages’’
(lines 6 and 12), but two ideas are crucial. First, each mes-
sage incorporates both an assignment value and an accumu-
lation over previous errors between the value computed by
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a local cost function (line 4) and the concurred variable
value (line 10). Second, due to this error term, each edge,
even those connected to the same variable node, often
communicates a different message: intuitively, each edge
has a different view of the variable as informed by an aggre-
gation over local iteration history. The TWA has converged
(line 15) when outgoing messages from all variable nodes
do not change significantly between subsequent iterations.

All message-passing data is local to each edge within the
factor graph, and thus it is trivial to coarsely parallelize the
two main phases of the algorithm (i.e. all factors can be
minimized in parallel and then all variables can be
concurred upon in parallel). For complex cost functions,
fine-grained parallelization within the minimization routine
may lead to additional performance gains.

The Sigma architecture (Rosenbloom, 2011) uses a
related algorithm for inference, the summary-product algo-
rithm, which mixes the sum-product and max-product vari-
ants of Belief Propagation (BP; Pearl, 1982). Both the TWA
and BP are message-passing algorithms with strong guaran-
tees for a class of problems (the TWA is exact for convex
problems, BP for cycle-free graphical models) and both have
been shown to be useful more broadly. However, the TWA
and BP differ along several important dimensions.3 First,
continuous variables are native to the TWA, whereas special
treatment (e.g. discretization) is required in BP, which can
lead to scaling limitations. BP algorithms do exist that deal
with continuous variables by sending messages that are con-
strained to have special forms (e.g. quadratics or piece-wise
linear functions), but the factor graphs that these algo-
rithms can handle only allow for a limited class of possible
function costs and constraints. Second, it is frequently eas-
ier to obtain analytic or nearly analytic message-update
rules in the TWA than it would be using BP. In the TWA, mes-
sages are single values (i.e. minimum-energy state), and
thus one only needs to optimize a single set of variables over
a local function, while in BP one needs to derive consistency
rules for a probability distribution, which often involve very
complicated multi-dimensional integrations that are hard to
simplify unless the local cost functions have a special form.
Finally, whereas BP can converge to uninformative fixed
points and other invalid solutions, the TWA only converges
to valid solutions (though they may be local minima).

Integrating knowledge with the TWA

This section discusses two novel methods to integrate
higher-level knowledge into the operation of the Three-
Weight Algorithm. These techniques are general and, when
specialized for a particular problem, can lead to improved
algorithm efficiency (iterations and wall-clock time), scal-
ing, and expressiveness of constraints and heuristics.

Reasoner hierarchy

We begin by augmenting the TWA iteration loop in order to
introduce a two-level hierarchy of local and global reason-
ers, as shown in Algorithm 2. Local reasoners are imple-

mented as a special class of factor within the problem
graph. They are able to send/receive messages like other
factors, but incoming message values always reflect the
concurred upon variable value. Their default operation is
to send zero-weight messages (i.e. have no impact on the
problem), but they can also affect change through non-
zero-weight messages. Furthermore, local reasoners have
a Reason method, which supports arbitrary logic. We term
this class of reasoner ‘‘local’’ because, like other factors,
it has a local view of the problem via connected variables
(and thus can be executed concurrently); however, the
added reasoning step affords communication with global
reasoners.

Global reasoners are implemented as code modules via a
single Reason method and are not connected to the problem
graph, but instead have a ‘‘global’’ view of the problem via
access to the concurred values of any variable, as well as
any information transmitted via local reasoners. Global rea-
soners can affect the problem via three main methods: (1)
requesting that local reasoners send non-zero-weighted
messages; (2) detecting problem-specific termination condi-
tions and halting iteration; and (3) modifying the problem
graph, as discussed in the next section.

Algorithm 2. Extending the TWA with a two-level hierarchy
of local and global reasoners.

As alluded to already, a major reason for a hierarchy of
reasoners is to exploit parallelism in order to better scale
to large problems. Thus, where possible, local reasoners
serve as a filtering step such that global reasoners need
not inspect/operate on the full variable set. In the Sudoku
task, for instance, this hierarchy yields an event-based dis-
crimination network, similar to Rete (Forgy, 1982), whereby

3 Derbinsky et al. (2013) more comprehensively compares ADMM,
the TWA, and BP.
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the local reasoners pass along information about changes to
possible cell states and a global reasoner implements
relational logic that would be difficult and inefficient to
represent within the [first-order] problem factor graph.

The TWA weights each message to express reliability,
and in the context of symbolic systems, it is often useful
to extract certain information (weight ¼1). Local reason-
ers can filter for this certain information, propagate to
global reasoning, and express logical implications with
certainty in outgoing messages. In Sudoku, for example,
propagating certainty via the reasoner hierarchy maintains
real-time reactivity for very large problem instances by
pruning unnecessary constraints.

So, to summarize, the two-level reasoner hierarchy
improves the TWA along the following dimensions:

% Integration. Global reasoners can implement arbitrary
logic, including complex indexing structures, search algo-
rithms, etc. Information is extracted from the problem,
optionally filtered through local reasoners; processed
via the global reasoner; and then re-integrated through
the API of ðmsg;weightÞ pairs in local reasoners. Certainty
weighting allows for fluid integration with processing
mechanisms that operate over symbolic representations.
% Expressiveness. The two-level hierarchy supports
relational reasoning over the inherently propositional fac-
tor-graph representation without incurring combinatorial
explosion. The global reasoner can incorporate richer
representations, such as rules, higher-order logics, expli-
cit notions of uncertainty, and perceptual primitives.
% Efficiency and Scalability. Operations of the local rea-
soners are parallelized, just as factor minimization and
variable-value concurrence in the problem graph. Fur-
thermore, effective use of local filtering can greatly
reduce the set of variables considered by global reason-
ers, thereby supporting scaling to large, complex
problems.

Graph dynamics

Our second method for integrating knowledge is to support
four classes of graph dynamics by global reasoners: (1) add-
ing/removing edges,4 (2) adding/removing factor nodes,5

(3) adding new variables, and (4) re-parameterizing factors.
These actions allow for adapting the representation of a sin-
gle problem instance over time [given experience/task
knowledge], as well as reusing a single mechanism for multi-
ple problem instances.

Removing graph edges and factors has two main effects:
(a) [potentially] changing variable assignments and (b)
improving runtime performance. First, if an edge is discon-
nected from a factor/variable node, the outgoing variable
assignments are now no longer dependent upon that input,
and therefore the objective cost may yield a different
outcome. Second, while removing an edge is analogous to
sending a zero-weight message, the system need no longer

expend computation time, and thus wall-clock time, per
iteration, may improve, as we see in both evaluation tasks.

The ability to add and remove edges allows the TWA to
represent and reason about dynamically sized sets of vari-
ables. For example, in the Sudoku task, the TWA considers
a set of possible symbols for each cell, and can reduce its
option set over time as logically certain assignments are
made within the row/column/square.

Factor re-parameterization supports numerous capabili-
ties. First, it is possible to reflect incremental environmen-
tal changes without having to reconstruct the graph, an
important characteristic for online systems. It is also
possible to reflect changes to the objective function, which
may come about due to environmental change, task transi-
tions, or dynamic agent preferences/goals. Additionally,
re-purposing existing factors helps keep memory costs
stable, which supports scaling to large, complex problems.

So, to summarize, graph dynamics improves the TWA
along the following dimensions:

% Integration. Global reasoners can dynamically re-struc-
ture and re-configure the problem graph to reflect
changes in the state of the environment and task struc-
ture, as well as agent preferences, goals, and knowledge.
% Expressiveness. Changing edge connectivity supports
dynamic sets of variables without the necessity of
enumerating all possibilities.
% Efficiency and Scalability. Performance of the TWA iter-
ation loop depends upon the size of the graph, which can
be dynamically maintained in order to represent only
those factor nodes, variables, and edges that are
necessary.

We now evaluate the TWA with our novel knowledge-
integration techniques in two tasks: Sudoku and circle
packing. These tasks are not intended to represent cogni-
tive processing modules – we are certainly not suggesting
that cognitive architectures should have dedicated puzzle-
solving capacities! Rather, these tasks allow us to
demonstrate high-level task-knowledge integration in
the TWA, as well as show benefits for expressiveness,
efficiency, and scaling.

Sudoku

A Sudoku puzzle is a partially completed row-column grid of
cells partitioned into N regions, each of size N cells, to be
filled in using a prescribed set of N distinct symbols, such
that each row, column, and region contains exactly one of
each element of the set. A well-formed Sudoku puzzle has
exactly one solution. Sudoku is an example of an exact-
cover constraint-satisfaction problem and is NP-complete
when generalized to N ' N grids (Yato & Seta, 2003).

People typically solve Sudoku puzzles on a 9' 9 grid
(e.g. see Fig. 2) containing nine 3' 3 regions, but larger
square-in-square puzzles are also possible. To represent
an N ' N square-in-square Sudoku puzzle as an optimization
problem we use OðN3Þ binary indicator variables (each
serving as a boolean flag) and OðN2Þ hard constraints. For
all open cells (those that have not been supplied as
‘‘clues’’), we use a binary indicator variable, designated

4 Variable nodes are automatically pruned if there are no
remaining incoming edges.
5 Removing a factor node has the effect of removing any incoming

edges.
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as vðrow; column; digitÞ, to represent each possible digit
assignment. For example, the variables vð1; 3; 1Þ; vð1; 3; 2Þ
. . ., vð1; 3; 9Þ represent that the cell in row 1, column 3
can take values 1 through 9. See Fig. 3 for a graphical depic-
tion of this representation, reproduced from Ercsey-Ravasz
and Toroczkai (2012).

For factor nodes, we developed hard ‘‘one-on’’ con-
straints: a one-on constraint requires that a single variable
is ‘‘on’’ (value = 1.0) and any remaining are ‘‘off’’
(value = 0.0). Furthermore, when appropriate, these con-
straints output weights that reflect logical certainty: if
there is only a single viable output (e.g. all variables but
one are known to be ‘‘off’’), the outgoing weights are set
to 1 (otherwise, 1.0). We apply one-on constraints to four
classes of variable sets: one digit assignment per cell; one of
each digit assigned per row; one of each digit assigned per
column; and one of each digit assigned per square. Prior
work on formulating Sudoku puzzles as constraint-satisfac-
tion problems (e.g. Simonis, 2005) has utilized additional,
redundant constraints to strengthen deduction by combin-
ing several of the original constraints, but we only utilize
this base constraint set, in order to focus on the effects
of reasoners and graph dynamics.

Sudoku is a non-convex problem, so the TWA is not guar-
anteed to solve the problem. However, prior work has

shown that it is effective for many puzzles, even those that
are very large, and that incorporating certainty weights
leads to a certainty-propagation algorithm falling out of
the TWA (Derbinsky et al., 2013). The TWA with certainty
weights proceeds in two phases: (1) 1 weights from initial
clues quickly propagate through the one-on constraints,
and then (2) any remaining cells that could not be logically
deduced are searched numerically via optimization
message-passing. While many Sudoku puzzles that humans
solve for entertainment can be entirely solved in this first
phase, prior work found that in the case of very difficult
and large puzzles, the first phase makes little if any impact
(i.e. the problem search space is not dramatically reduced
via constraint propagation), and so we focus on how knowl-
edge integration can improve performance of the second
phase.

Integrating knowledge

We added to the problem graph one local reasoner per cell
with the express purpose of maintaining the set of possible
digit assignments (i.e. those values for which there was not
a certain message for the ‘‘off’’ binary indicator variable)
and, when a possibility was removed, communicate this
information to a global reasoner.

(a) (b)

Fig. 2 A typical 9' 9 sudoku puzzle: (a) original problem and (b) corresponding solution.

(a) (b) (c)

Fig. 3 (a) The puzzle from Fig. 2 with bold digits as clues (givens). (b) Setup of the boolean representation in a 9' 9' 9 grid. (c)
Layer of the puzzle containing the digit 4 with 1-s in the location of the clues and the regions blocked out for digit 4 by the presence
of the clues (shaded area). Adapted from Ercsey-Ravasz and Toroczkai (2012).

112 N. Derbinsky et al.



Author's personal copy

The global reasoner utilized this information to improve
solver efficiency and performance by utilizing graph dynam-
ics to reduce the problem search space. Specifically, when a
possibility was no longer viable logically, the global rea-
soner removed four edges (those that connected the binary
indicator variable to the constraints of the {cell, row, col-
umn, and square}), as well as any factors that were left
option-less in the process. These graph dynamics were
intended to reduce the problem-graph size by removing con-
straints, as they became unnecessary, and thereby dramat-
ically improve iteration time of the second phase of
numerical solving, which is the major time sink for difficult
puzzles.

To evaluate this form of task-knowledge integration, we
downloaded 32 of the hardest puzzles from an online puzzle
repository6 and Table 1 summarizes final problem graph size
(factors + variables), iteration-loop time (in milliseconds
per iteration), and total solution time (in seconds) with
and without this global reasoner (results were gathered
using a Java implementation of the TWA running on a single
core of a 3.4 GHz i7 CPU with OS X 10.8.3). We see from this
data that as the problem increases in size, the global rea-
soner maintains a much smaller problem graph (typically
an order-of-magnitude difference) and corresponding itera-
tion time: even as the baseline TWA crosses 50 ms/itera-
tion, a commonly accepted threshold for reactivity in the
cognitive-architecture community (Rosenbloom, 2012;
Derbinsky & Laird, 2009; Derbinsky, Laird, & Smith, 2010;

Derbinsky & Laird, 2013), our reasoner is able to easily
maintain a real-time response rate for very large sudoku
puzzles. Because our global reasoner modifies the problem
graph, and thus the numeric optimizer must now search
over a different objective function, it was not obvious
whether there would be an overall benefit in terms of
time-to-solution. However, the last two columns show that
adding knowledge always resulted in a faster solve – up to
more than 14· faster for N ¼ 25.

We also evaluated a concurrent implementation of the
TWA that divides factors/variables into work queues using
a naı̈ve scheduling algorithm: cost / number of incoming
edges and we do not reschedule work (i.e. queues can
become unbalanced). Fig. 4 illustrates the degree to which
this implementation can exploit added cores: each stacked
segment represents the proportion of speedup in iteration-
loop time (milliseconds per iteration), as calculated by
ððtimewith1core=timewithncoresÞ=nÞ, and each vertical tick
is 1 unit tall (thus perfect linear speedup would be repre-
sented by a stack that spans the full vertical space). This
data reveals two trends: (1) adding cores yields better per-
formance; and (2) our implementation of the TWA can take
greater advantage of parallelism with larger problem
graphs. The only exception to the former point was for
N ¼ 25; cores ¼ 2, in which the overhead of threading actu-
ally hurt performance (shown as 0 height in the figure). The
latter point is especially relevant for evaluating graph
dynamics, as Fig. 4 demonstrates significantly reduced
concurrent bandwidth when the problem graph is kept
very small (N 2 f16; 25g): however, when comparing the
best average time-per-iteration, using graph dynamics was

Table 1 N · N square-in-square Sudoku puzzles solved without/with the reasoner hierarchy and graph dynamics.

N # Puzzles Avg. final graph size Avg. iter. time (ms/iter) Avg. solve time (s)

TWA +Knowledge TWA +Knowledge TWA +Knowledge

16 10 5,120 460 1.48 0.80 0.17 0.12
25 9 18,125 3,121 6.19 0.92 75.96 5.25
36 10 51,840 6,032 22.19 4.12 61.36 9.03
49 3 127,253 11,173 52.48 10.54 124.59 20.08

Fig. 4 Degree of concurrency when solving Sudoku puzzles of different sizes without/with knowledge integration. Improving
linearly yields 1 vertical-unit block, and thus ideal concurrency would fill the full vertical space.

6 http://www.menneske.no/sudoku/eng.
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6:6' faster for N ¼ 49; 4:5' faster for N ¼ 36; 3:5' faster
for N ¼ 25, and was nearly unchanged for N ¼ 16.

Thus, to summarize our work in Sudoku:

% Local reasoners were used to create an efficient and
scalable discrimination network of possibility-set
changes for consumption by a global reasoner.
% A global reasoner responded to changes in possibility-
sets in order to implement graph dynamics.
% These graph dynamics dramatically pruned the problem
set size (more than an order of magnitude for large puz-
zles) and had the result of improving efficiency and scal-
ing, including reactive iterations for the largest puzzles.

Circle packing

Circle packing is the problem of positioning a given number
of congruent circles in such a way that the circles fit in a
square without overlapping. A large number of circles makes
finding a solution difficult, due in part to the coexistence of
many different circle arrangements with similar density. For
example, Fig. 5 shows an optimal packing for 14 circles,
which can be rotated across either axis, and the free circle
in the upper-right corner (a ‘‘rattle’’) can be moved without
affecting the density of the configuration.

To represent a circle-packing instance with N objects as
an optimization problem we use OðNÞ continuous variables
and OðN2Þ constraints. Each object has 2 variables: one rep-
resenting each of its coordinates (or, more generally, d vari-
ables for packing hyperspheres in d dimensions). For each
object we create a single box-intersection constraint, which
enforces that the object stays within the box. Furthermore,
for each pair of objects, we create a pairwise-intersection
constraint, which enforces that no two objects overlap.
For both sets of constraints, we utilize zero-weight

messages when the constraint is not violated (i.e. the
object is within the box and/or the two objects are not
intersecting).

Like Sudoku, circle packing is a non-convex problem, and
thus the TWA is not guaranteed to converge. However, prior
work has shown that the TWA is effective and that using
zero-weight messages to ‘‘ignore’’ inactive constraints dra-
matically reduces the number of iterations to convergence
from growing quadratically with the number of circles, to
only logarithmically (Derbinsky et al., 2013). But while this
form of message weighting reduces the number of itera-
tions, the TWA still requires OðN2Þ intersection constraints,
and so iteration-loop time (milliseconds per iteration) pre-
vents real-time operation on a large numbers of circles.
Thus, we focus our knowledge-integration methods on the
task of drastically improving scaling. We also found that
these methods can improve the reliability of achieving fea-
sible solutions by harnessing human assistance to perform
macro movements.

Integrating knowledge

A key observation in the circle-packing task is that while
there are OðN2Þ intersection constraints, at any given time,
there are only OðNÞ active constraints: in two dimensions, a
circle can only touch six other equally sized circles (the
‘‘kissing’’ number). Our goal was to incorporate this task
knowledge in order to reduce the complexity of the problem
graph (from quadratic growth to linear), thereby reducing
the iteration-loop time.

There are numerous methods for efficiently detecting
the active intersections of spatial objects within a scene,
and since the TWA tends to move circles in a local fashion,
we implemented a graph-dynamics global reasoner that
integrates an r-tree (Guttman, 1984) to add/remove inter-
section constraints each iteration (see Algorithm 3). To
begin, we update the r-tree with the locations of all circles
via concurred variable values (line 1). We use axis-aligned
bounding boxes (AABBs) to describe object locations and
add a 5% ‘‘neighborhood’’ buffer to each box: empirically
we found that if constraints were immediately removed
from neighboring circles, there was a high probability of
cycles and thrashing, but by keeping a small constant set
of adjoining circles, the problem-graph size was reasonably
small (though non-decreasing for reasonable densities) and
the solver was robust to starting conditions and configura-
tion densities. We then query for all object intersections
(line 2) and categorize them as either existing (line 4) or
new (line 5), based upon the current graph. We then iterate
over factors in the problem graph (line 9): for existing inter-
sections with corresponding factors, we do nothing (line
11); and for those factors that are no longer intersecting
(or in the neighborhood buffer), we remove those factors
from the graph and add to a ‘‘pool’’ of constraints (lines
13–14). Finally, for all new intersections, we add a
constraint to the graph, drawing from, and re-configuring,
past [and now unused] factors, if available in the pool (lines
18–19). The key insights of this algorithm are as follows: (1)
only those objects that are in the graph need to be
updated in the r-tree, as those are the only coordinates
the TWA could have altered; (2) the algorithm scales with

Fig. 5 An optimal packing of 14 circles within a square.
Contacting circles are indicated by lines.
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the number of active factors and intersections; and (3) the
algorithm pools and re-parameterizes unused factors to
bound memory consumption.

Algorithm 3. Core logic for a global reasoner implementing
dynamic-graph maintenance in the circle-packing task.

Using this approach, our circle-packing implementation
has scaled to successfully pack more than 2 million circles,
which is two orders of magnitude more than previously
reported results.7 To evaluate this form of knowledge inte-
gration, we used a Java implementation of the TWA running
on Mac OS X 10.8.5 with 2 · 2.66 GHz 6-core Intel Xeon CPUs
and 64GB RAM to find 0.8592-density, world-record-breaking
solutions for several sizes of packing problems, where num-
ber of circles = {992, 1892, 2047, 2070, 3052, 3080, 4000,
5076, 5967, 7181, 7965, 9024, 9996}.8 Fig. 6 plots the size
of the problem graph, as a percentage of the overall number
of problem constraints, vs. number of circles to be packed:

the global reasoner effectively managed the problem graph
size such that across all instances,9 the total number of fac-
tors and variables was never even 1% of the total problem
constraints, and total RAM utilization was less than 2 GB.
Fig. 7 compares the TWA with and without this reasoner,
focussing on loop-iteration time.10 As predicted, while iter-
ation-loop time for the TWA without knowledge integration
increases quadratically (R2 > 0:99), as it must operate over
the full set of constraints, the global reasoner, which oper-
ates over the set of active constraints, yields only a linear
growth (R2 > 0:999).11 We see that both algorithms benefit
from parallelism, though because graph dynamics are
sequential, the added benefit per core for the global rea-
soner is reduced (over 5:3' faster for TWA with 8 cores
vs. 1 core, while only 2:2' with the global reasoner). How-
ever, with even 8 cores, TWA without the global reasoner
cannot perform circle packing at the 50 ms/iteration rate
for even 800 circles, while the global reasoner extends this
real-time reactivity to over 5000 circles.

In watching the iteration dynamics of circle packing, we
noticed that because the TWA makes local changes to circle
positions, it can be difficult for the algorithm to make lar-
ger, coordinated movements to escape local minima. Thus,
we implemented two sets of reasoners to incorporate
human assistance, via a mouse, into the low-level circle-
packing optimization. The first implementation required
only a single local reasoner: when a user clicked and
dragged a circle in the GUI (which reflected iteration results
in real-time), the mouse coordinates were sent as weighted
messages to that circle’s coordinate variables (graph
dynamics were used to connect the local-reasoner factor
on-demand). Empirically, we found that if human users
knew high-level properties of the final packing (e.g. they
had seen a picture of a final configuration), they could easily
communicate the macro structure via a series of circle
movements, and then the TWA would integrate this infor-
mation and perform low-level, fine-grained movements.
The result was that humans working with the TWA could
consistently achieve packings that were near record-
breaking, and the human users would often interpret the
experience as ‘‘fun’’ and ‘‘game-like’’.

This type of interaction, however, did not work well
when we increased the number of circles to many thousands
or millions of circles. However, we still found that humans
could contribute high-level knowledge that was very useful,
but difficult to compute algorithmically within the TWA:
areas with free space. Thus, we implemented a reasoner
hierarchy: a global reasoner extracted meta-data from the
r-tree intersections to identify the circle with the largest
current overlap, the user would click a point in the GUI to
identify a region of free space, and a local reasoner would
transport (via weighted messages) the ‘‘distressed’’ circle
to the ‘‘vacant’’ region. Empirically this implementation
greatly decreases iterations-to-convergence, but we have
not verified this finding in a controlled setting.

Fig. 6 Percentage of the total constraints represented in the
problem graph using the global reasoner.

7 At the time of writing, 9,996: http://www.packomania.com.
8 At the time of writing, the record for packing 9996 circles had

the greatest density in this set, which was about 0.809177.

9 5 random seeds, 3 trials each, using 1, 2, 4, or 8 cores.
10 For all problems with fewer than 992 circles, we reduced circle
radius size by 5% in order to expedite convergence.
11 Compared to ADMM, the TWA with the global reasoner improves
solution time from OðN4Þ (OðN2Þ iterations, OðN2Þ iteration time)
to OðNlogðNÞÞ (OðlogðNÞÞ iterations, OðNÞ iteration time).
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For both of these reasoner implementations, we asked
humans to contribute high-level task knowledge in the form
of mouse clicks. However, it is conceivable that human per-
ceptual and motor models, such as those in EPIC (Kieras &
Meyer, 1997), might achieve similar results in an automated
fashion.

Thus, to summarize our work in circle packing:

% A local reasoner integrated mouse input from humans.
% A global reasoner integrated an r-tree with the main
iteration loop for greatly improved efficiency and prob-
lem-size scaling, as well as to inform human-assisted
packing via integration of intersection meta-data.
% Graph dynamics maintained the set of constraints, as
informed by an r-tree. These constraints were re-param-
eterized to bound memory usage.

Discussion

The focus of this paper was to consider whether general
optimization could serve as a useful platform upon which
to quickly and flexibly develop a variety of cognitive-
processing modules. In this context, we presented the
Three-Weight Algorithm as a candidate approach, along
with novel methods by which to usefully interface high-level
knowledge with a low-level optimization framework in order
to improve expressiveness of knowledge, methods, and heu-
ristics, as well as bolster algorithm efficiency scaling. In
order to exemplify these methods, we employed two tasks,
independent of an agent or cognitive architecture.

Future work needs to proceed down [at least] three sep-
arate paths. First, these methods need to be evaluated
within actual cognitive-processing modules. For example,
cognitive modelers could benefit from memory modules
that are flexible (via an arbitrary objective function) but
are also efficient for real-time use and scalable to complex
tasks, which might be accomplished via global reasoners
that exploit state-of-the-art indexing techniques
(Derbinsky et al., 2010). Furthermore, these types of meth-
ods seem to lend themselves to exploring the interface
between state-of-the-art perception algorithms and a sym-
bolic cognitive architecture (e.g. online spatial navigation;
Bento, Derbinsky, Alonso-Mora, & Yedidia, 2013). Second,
the TWA and our knowledge-integration techniques need
to be evaluated in context of a running agent, with real-
time environmental input and changing knowledge, goals,

and preferences. Finally, we need to explore whether effec-
tive and efficient learning can occur within modules that
employ these methods.
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