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Abstract—Consider the problem of learning the drift coefficient
of a stochastic differential equation from a sample path. In this
paper, we assume that the drift is parametrized by a high-
dimensional vector. We address the question of how long the
system needs to be observed in order to learn this vector of
parameters. We prove a general lower bound on this time
complexity by using a characterization of mutual information
as time integral of conditional variance, due to Kadota, Zakai,
and Ziv. This general lower bound is applied to specific classes
of linear and non-linear stochastic differential equations. In
the linear case, the problem under consideration is the one of
learning a matrix of interaction coefficients. We evaluate our
lower bound for ensembles of sparse and dense random matrices.
The resulting estimates match the qualitative behavior of upper
bounds achieved by computationally efficient procedures.

I. INTRODUCTION

Consider a continuous-time stochastic process {xt}t≥0, that
is defined by a stochastic differential equation (SDE) of the
form

dxt = F (xt;A) dt+ dbt , (1)

where xt ∈ Rp, bt is a p-dimensional standard
Brownian motion and the drift coefficient F (xt;A) =
[F1(xt;A), ..., Fp(xt;A)] ∈ Rp, is a function of xt
parametrized by A, which is an unknown high-dimensional
vector.

In this paper we consider the problem of learning informa-
tion about the vector of parameters A from the observation
of a sample trajectory XT ≡ {xt}Tt=0. More precisely, we
consider the high dimensional case (where the dimensions of
A and xt are large) and investigate what is the minimum time
length T we need to observe the system in order to be able
to recover A, with some confidence.

Models based on SDE’s play a crucial role in several
domains of science and technology, ranging from chemistry
to finance. As an example, gene regulatory networks can
be modeled by systems of non-linear stochastic differential
equations, whose variables encode concentrations of certain
gene expression products (e.g. proteins) [1]. Complex chem-
ical networks are also described by SDE’s that can involve
hundreds of reactants [2], [3]. The problem of learning the
parameters (reaction coefficients) of such an SDE or simply
reconstructing the underlying network structure (i.e. which
parameters are non-vanishing) plays crucial role in this context
[4].

An important subclass of models consists in linear SDE’s,
whereby the drift is a linear function of xt, namely F (xt;A) =
Axt with A ∈ Rp×p. This can be a good approximation
for many systems near a stable equilibrium. Linear SDE’s
are a special case of a broader class for which the drift
is a linear combination of a finite set of basis functions
F (xt) = [f1(xt), f1(xt), . . . , fm(xt)], with fi : Rp → R. The
drift is then given as F (xt;A) = AF (xt), with A ∈ Rp×m.
As an example, within models of chemical reactions, the
drift is a low-degree polynomial. For instance, the reaction
A+ 2B→ C is modeled as dxC = kC,ABxAx

2
Bdt+ dbC where

xA, xB and xC denote the concentration of the species A,
B and C respectively, and dbC is a noise term affecting the
measurement of xC . In order to learn a model of this type, one
can consider a basis of functions that contain all monomials
up to a maximum degree.

A. Illustration

As an illustration, consider a system of p masses in Rd

connected by springs. Let C0 be the corresponding adjacency
matrix, i.e. C0

ij = 1 if and only if masses i and j are connected,
and D0

ij be the rest length of the spring (i, j). Assuming
unit masses and unit elastic coefficients, the dynamics of this
system in the presence of external noisy forces can be modeled
by the following damped Newton equations

dvt = −γvtdt−∇U(qt) dt+ σ dbt, (2)
dqt = vtdt , (3)

U(q) ≡ 1

2

∑
(i,j)

C0
ij(‖q(i) − q(j)‖ −D0

ij)
2 ,

where qt = (q
(1)
t , . . . , q

(p)
t ), vt = (v

(1)
t , . . . , v

(p)
t ), and

q
(i)
t , v

(i)
t ∈ Rd denote the position and velocity of mass i

at time t. This system of SDE’s can be written in the form (1)
by letting xt = [qt, vt] and A = [C0, D0] . A straightforward
calculation shows that the drift F (xt;A) can be further written
as a linear combination of the following basis of non-linear
functions

F (xt) =
[
{v(i)t }i∈[p], {∆

(ij)
t }i,j∈[p],

{ ∆
(ij)
t

‖∆(ij)
t ‖

}
i,j∈[p]

]
, (4)

where ∆
(ij)
t = q

(i)
t − q

(j)
t and [p] = {1, . . . , p}. In many

situations only specific properties of the parameters are of
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Fig. 1. Evolution of the horizontal component of the position of three masses
in a system with p = 36 masses interacting via elastic springs (cf. Fig. 2 for
the network structure). The time interval is here T = 1000. All the springs
have rest length Dij = 1, the damping coefficient is γ = 2, cf. Eq. (2), and
the noise variance is σ2 = 0.25.

Fig. 2. From left to right and top to bottom: structures reconstructed using
the algorithm of [5] with observation time T = 500, 1500, 2500, 3500 and
4500. For T = 4500 exact reconstruction is achieved.

interest, for instance one might be interested only in the
network structure in the present example.

Figure 1 shows the trajectories of three masses in a two-
dimensional network of 36 masses and 90 springs evolving
according to Eq. (2) and Eq. (3). How long does one need
to observe these (and the other masses) trajectories in order
to learn the structure of the underlying network? Figure
2 reproduces the network structure reconstructed using the
algorithm of [5] for increasing observation intervals T . The
inferred structure converges to the actual one only if T is
large enough.

B. Related Work

Over the last few years, a significant effort has been devoted
to developing methods and sample complexity bounds for
learning graphical models from data. Particular effort was
devoted to learning sparse graphical models using convex
regularizations that promote sparsity. Well known examples in
the context of Gaussian graphical models include the graphical
LASSO [6] and the pseudo-likelihood method of [7]. These
papers assume that the data are i.i.d. samples from a high-
dimensional Gaussian distribution. However in many cases

samples are produced by an underlying dynamical process and
the i.i.d. assumption is unrealistic.

In [5], a convex regularization method was developed to
learn linear SDE’s with a sparse network structure from data.
The upper bounds on the sample complexity proved in [5]
match in several cases the lower bounds developed here. The
related topic of learning graphical models for autoregressive
processes was studied recently in [8], [9]. These papers pro-
pose a convex relaxation different from the one of [5], without
however developing estimates on the sample complexity for
model selection.

Finally, a substantial literature addresses various questions
related to learning SDE’s [3], [10], [11]. However this line
of work did not yield quantitative estimates on the scaling of
sample complexity with the problem dimensionality.

II. MAIN RESULTS

Without loss of generality, assume that the parameter A is a
random variable chosen with some unknown prior distribution
PA (subscript will be often omitted). We are interested in a
specific property of A that is given by a function A 7→M(A).
Unless specified otherwise P and E denote probability and
expectation with respect to the joint law of {xt}t≥0 and
A. As mentioned above XT ≡ {xt}0≤t≤T will denote the
trajectory up to time T . Also, we define the variance of a
vector-valued random variable as the sum of the variances
over all components, i.e.,

VarA|Xt(F (xt;A)) =

p∑
i=1

VarA|Xt(Fi(xt;A)). (5)

Our main tool is the following general lower bound, that
follows from an identity between mutual information and the
integral of conditional variance proved by Kadota, Zakai and
Ziv [12].

Theorem II.1. Let M̂T (XT ) be an estimator of M(A) based
on XT . If P(M̂T (XT ) 6= M(A)) < 1

2 then

T ≥ H(M(A))− 2I(A;x0)
1
T

∫ T
0
EXt{VarA|Xt(F (xt;A))}dt

. (6)

Proof: Equation (1) can be regarded as describing a white
Gaussian channel with feedback where A denotes the message
to be transmitted. For this scenario, Kadota et al. [12] give the
following identity for the mutual information between XT and
A when the initial condition is x0 = 0,

I(XT ;A) =
1

2

∫ T

0

EXt{VarA|Xt(F (xt;A))}dt. (7)

For the general case where x0 6= 0 and might depend on A
(if for example x0 is the stationary state of the system) we
can write I(XT ;A) = I(x0;A) + I(XT ;A|x0) and apply
the previous identity to I(XT ;A|x0). Taking into account
that I(M̂T (XT ));M(A)) ≤ I(XT ;A) and making use of
Fano’s inequality I(M̂T (XT ));M(A)) ≥ P(M̂T (XT ) =

M(A))H(M̂T (XT ))) the results follows.



The bound in Theorem II.1 is often too complex to be
evaluated. Instead, the following corollary provides a more
easily computable bound.

Corollary II.2. Assume that the process {xt}t≥0 is stationary.
Let M̂T (XT ) be an estimator of M(A) based on XT . If
P(M̂T (XT ) 6= M(A)) < 1

2 then

T ≥ H(M(A))− 2I(A;x0)

Ex0{VarA|x0
(F (x0;A))}

. (8)

Proof: Since conditioning reduces variance, we have
EXt{VarA|Xt(F (xt;A))} ≤ Ext

{VarA|xt
(F (xt;A))}. Us-

ing stationarity, we have Ext
{VarA|xt

(F (xt;A))} =
Ex0
{VarA|x0

(F (xt;A))}, which simplifies (6) to (8).
In the rest of this section, we apply this lower bound

to special classes of SDE’s. In all of our applications it is
understood that the process {xt}t≥0 is stationary.

A. Learning Sparse Linear SDE’s

Consider the linear SDE,

dxt = Axtdt+ dbt. (9)

The goal is to learn the interaction matrix A ∈ Rp×p. The
first two theorems stated below provide lower bounds for
sample complexity T , for the two regimes of sparse and
dense matrices. Throughout this paper Q∗ will denote the
transpose of matrix Q. Given a matrix Q, its supp(Q) is
the 0 − 1 matrix such that supp(Q)ij = 1 if and only if
Qij 6= 0. Its ‘signed support’ sign(Q) is the matrix such
that sign(Q)ij = sign(Qij) if Qij 6= 0 and sign(Q)ij = 0
otherwise.

Define the class of matrices A(S) ⊂ Rp×p by letting A ∈
A(S) if and only if
(i) A has at most k non-zero elements per row, k ≥ 3,

(ii) minij |Aij | > amin,
(ii) Letting λmin(Q) denote the smallest eigenvalue of matrix

Q, λmin(−(A+A∗)/2) ≥ ρ > 0.
The next theorem provides a lower bound on the time com-
plexity of learning the signed support of models from the class
A(S).

Theorem II.3. Let M(A) = sign(A) be the signed support
of A and M̂T (XT ) an estimator of M(A) based on XT .
There is a constant C(k) such that, for all p large enough, if
supA∈A(S) PXT |A(M(A) 6= M̂T (XT )) < 1

2 then

T >
C(k)

amin
max{ρ/amin, 1} log(p). (10)

B. Learning Dense Linear SDE’s

A different regime of interest in learning the network of
interactions for a linear SDE’s is the case of dense matrices.
As we shall see shortly, this regime exhibits fundamentally
different behavior in terms of sample complexity compared to
the regime of sparse matrices.

Let A(D) ⊂ Rp×p be the set of matrices with the following
properties: A ∈ A(D) if and only if,

(i) amin ≤ |Aij |p1/2 ≤ amax.
(ii) λmin(−(A+A∗)/2) ≥ ρ > 0.

The second theorem provides a lower bound for learning the
signed support of models from class A(D).

Theorem II.4. Let M(A) = sign(A) be the signed support
of A and M̂T (XT ) an estimator of M(A) based on XT .
There exists a constant C such that, for all p large enough, if
supA∈A(D) PXT |A(M(A) 6= M̂T (XT )) < 1

2 then

T >
C

amin
max{ρ/amin, 1}p. (11)

Together with the upper bounds from [5], Theorem II.3
establishes that the time complexity of learning sparse linear
SDE’s is T = Θ(log(p)). Further, this task can be performed
efficiently using `1 penalized least squares [5]. On the other
hand, Theorem II.4 implies a dramatic dichotomy. The time
complexity of learning dense linear SDE’s is at least linear in
p (and indeed matching upper bounds can be proved in this
case as well [13]).

C. Learning Non-Linear SDE’s

In this section we assume that the observed samples XT

come from a stochastic process driven by a general SDE of
the form (1).

In what follows, v(i) denotes the ith component of vector
v. For example, x(3)2 is the 3th component of the vector xt at
time t = 2. JF ( · ;A) ∈ Rp×p will denote the Jacobian of the
function F ( · ;A).

For fixed L, B and D ≥ 0, define the class of functions
A(N) = A(N)(L,B,D) by letting F (x;A) ∈ A(N) if and
only if

(i) the support of JF (x;A) has at most k non-zero entries
for every x,

(ii) the covariance matrix for the stationary process, Σ∞,
satisfies λmin(Σ∞) ≥ L,

(iii) Varx0|A(x
(i)
0 ) ≤ B ∀i,

(iv) |∂Fi(x;A)/∂x(j)| ≤ D for all x ∈ Rp i, j ∈ [p].

For simplicity we write F (x;A) ∈ A(N) by A ∈ A(N).

Theorem II.5. Let M(A) be the smallest support for which
supp(JF (x;A)) ⊆ M(A) ∀x. If M̂T (XT ) is an estimator
of M(A) based on XT and supA∈A(N) PXT |A(M̂T (XT ) 6=
M(A)) < 1/2 then

T >
k log p/k − logB/L

C + 2k2D2B
. (12)

In the above expression C = maxi∈[p] E{Fi(Ex0|A(x0);A)}.

Remark II.1. Note that the assumption that F is Lipschitz
is not very strong in the sense that it is usually required for
existence and uniqueness of a solution of the SDE (1) with
finite expected energy, [14].



III. PROOFS AND TECHNICAL LEMMAS

In this section we prove Theorems II.3 to II.5. Throughout,
{xt}t≥0 is assumed to be a stationary process. It is immediate
to check that under the assumptions of the Theorems II.3 and
II.4, the SDE admit a unique stationary measure, with bounded
covariance. We let Σ∞ = E{x0x∗0} − E{x0}(E{x0})∗ =
E{xtx∗t } − E{xt}(E{xt})∗ denote this covariance.

A. A general bound for linear SDE’s

Before passing to the actual proofs, it is useful to establish a
general bound for linear SDE’s (9) with symmetric interaction
matrix A.

Lemma III.1. Assume that {xt}t≥0 is a stationary pro-
cess generated by the linear SDE (9), with A symmetric.
Let M̂T (XT ) be an estimator of M(A) based on XT . If
P(M̂T (XT ) 6= M(A)) < 1

2 then

T ≥ H(M(A))− 2I(A;x0)
1
2Tr{E{−A} − (E {−A−1})−1}}

. (13)

Proof: The bound follows from Corollary II.2 after
showing that Ex0

{VarA|x0
(Ax0)) ≤ (1/2)Tr{E{−A} −

(E {−A−1})−1}. First note that

Ex0{VarA|x0
(Ax0)} = Ex0 ||Ax0 − EA|x0

(Ax0|x0)||22. (14)

The quantity in (14) can be thought of as the `2-norm error
of estimating Ax0 based on x0, using EA|x0

(Ax0|x0). Since
conditional expectation is the minimal mean square error
estimator, replacing EA|x0

(Ax0|x0) by any estimator of Ax0
based on x0 gives an upper bound for the expression in (14).
We choose as an estimator a linear estimator , i.e., an estimator
in the form Bx0 where B = (EAAΣ∞)(EAΣ∞)−1,

Ex0
||Ax0 − EA|x0

(Ax0|x0)||22 ≤ Ex0
||Ax0 −Bx0||22

= Tr{E{Ax0(x0)∗A∗}} − 2Tr{BE{x0(x0)∗A∗}}
+ Tr{BE{x0(x0)∗}B∗}. (15)

Furthermore, for a linear system, Σ∞ satisfies the Lyapunov
equation AΣ∞+Σ∞A

∗+I = 0. For A symmetric, this implies
Σ∞ = −(1/2)A−1. Substituting this expression in (14) and
(15) finishes the proof.

B. Proof of Theorem II.3

We prove the theorem by showing that the same complexity
bound holds in the case when we are trying to estimate the
signed support of A for an A that is uniformly randomly
chosen with a distribution supported on A(S) and we simulta-
neously require that the average probability of error is smaller
than 1/2. This guarantees that unless the bound holds, there
will exist A ∈ A(S) for which the probability of error is biger
than 1/2. The complexity bound for random matrices A is
proved using Lemma III.1.

In order to generate A at random we proceed as follows.
Let G be the a random matrix constructed from the adjacency
matrix of a uniformly random k-regular graph. Generate Ã by
flipping the sign of each non-zero entry in G with probability
1/2 independently. We define A to be the random matrix A =

−(γ + 2amin

√
k − 1)I + aminÃ where γ = γ(Ã) > 0 is

the smallest value such that the maximum eigenvalue of A is
smaller than −ρ. This guarantees that all these A satisfy the
four properties of the class A(S).

The following lemma encapsulates the necessary random
matrix calculations.

Lemma III.2. Let A be a random matrix defined as above
and

Q(amin, k, ρ) ≡ lim
p→∞

1

p
{Tr{E(−A)} − Tr{(E(−A−1))−1}}.

(16)

Then, there exists a constant C ′ only dependent on k such that

Q(amin, k, ρ) ≤ min{C
′ka2min

ρ
,
kamin√
k − 1

}. (17)

Proof: First notice that

lim
p→∞

1

p
ETr{−A} = lim

p→∞
E(γ) + 2amin

√
k − 1 (18)

= ρ+ 2amin

√
k − 1 (19)

since by Kesten-McKay law [15], for large p, the spectrum of
Ã has support in (−ε− 2amin

√
k − 1, 2amin

√
k − 1 + ε) with

high probability. Notice that unless we randomize each entry
of Ã with {−1,+1} values, every Ã will have k as its largest
eigenvalue and the above limit will not hold.

For the second term we will compute a lower bound. For
that purpose let λi > 0 be the ith eigenvalue of the matrix
E(−A−1). We can write,

1

p
Tr{(E(−A−1))−1} =

1

p

p∑
i=1

1

λi
(20)

≥ 1
1
p

∑p
i=1 λi

=
1

E{ 1pTr{(−A)−1}}
(21)

where we applied Jensen’s inequality in the last step. By
Kesten-McKay law we now have that,

lim
p→∞

E{1

p
Tr{(−A)−1}} = E{ lim

p→∞

1

p
Tr{(−A)−1}} (22)

=
1

amin
G(k, ρ/amin + 2

√
k − 1) (23)

where

G(k, z) =

∫
−1

ν − z
dµ(ν) (24)

and

dµ(ν) =
k

2π

√
4(k − 1)− ν2
k2 − ν2

dν (25)

for ν ∈ [−2
√
k − 1,−2

√
k − 1] and zero otherwise. Expres-

sion (25) defines the Kesten-McKay distribution. Computing
the above integral we obtain

G(k, z) = − (k − 2)z − k
√
−4k + z2 + 4

2 (z2 − k2)
(26)



whence

lim
ρ→0

Q(amin, k, ρ) =
amink√
k − 1

, (27)

lim
ρ→∞

ρQ(amin, k, ρ) = k(amin)2. (28)

Since Q(amin, k, ρ)/amin is a function of k and ρ/amin that
is strictly decreasing with ρ/amin, the claimed bound follows.

Proof (Theorem II.3): Starting from the bound of Lemma
III.1, we divide both terms in the numerator and the denom-
inator by p. The term H(M(A))/p can be lower bounded
by p−1 log

((
p
k

)
2k
)p ≥ k log(2p/k) and Lemma III.2 gives

an upper bound on the denominator when p → ∞. We
now prove that limp→∞ I(x0;A)/p ≤ 1. This finishes the
proof of Theorem II.3 since after multiplying by a small
enough constant (only dependent on k) the bound obtained
by replacing the numerator and denominator with these limits
will be valid for all p large enough.

We start by writing,

I(x0;A) = h(x0)− h(x0|A) (29)

≤ 1

2
log(2πe)p|E(Σ∞)| − E

1

2
log(2πe)p|Σ∞|, (30)

where Σ∞ = −(1/2)A−1 is the covariance matrix of the
stationary process xt and |.| denotes the determinant of a
matrix. Then we write,

I(x0;A) ≤ 1

2
log |E(−(βA)−1)|+ 1

2
E log(| − βA|) (31)

≤ 1

2
TrE(−I − (βA)−1) +

1

2
ETr{−I − βA} (32)

where β > 0 is an arbitrary rescaling factor and the last
inequality follows from log(I +M) ≤ Tr(M). From this and
equations (18) and (22) it follows that,

lim
p→∞

1

p
I(x0;A) ≤ −1 + (1/2)(β′z + β′−1G(k, z)) (33)

where z = ρ/amin + 2
√
k − 1 and β′ = βamin. Optimizing

over β′ and then over z gives,

β′z + β′−1G(k, z) ≤ 2
√
zG(k, z) ≤

√
8

√
k − 1

k − 2
≤ 4, (34)

which implies limp→∞ I(x0;A)/p ≤ 1.

C. Proof of Theorem II.4: Outline

The proof of this theorem follows closely the proof of
Theorem II.3. We will prove that same bound (11) holds for
an A chosen at random with a distribution supported on A(D),
whence the claim follows. In order to lower bound the error
probability for random matrices, we make use of Lemma III.1.

We construct the random matrix A as follows. Let Ã
be a random symmetric matrix with {Aij}i≤j i.i.d. random
variables where P(Aij = amin) = P(Aij = −amin) = 1/4,
and P(Aij = 0) = 1/2. Notice that the second moment
of each entry is E(A2

ij) = a2min/2 ≡ α. We then define
A = −(γ + 2

√
α)I + Ã/

√
p where γ = γ(Ã) is the smallest

value that guarantees that λmin(−A) ≥ ρ.

D. Proof of Theorem II.5

The proof consists in evaluating the lower bound in Corol-
lary II.2. We again prove the theorem by showing for a random
class of functions contained in A(N).

We consider a the set of functions such that for each possible
support of a p by p matrix with at most k non-zero entries per
row. Assume there is one and only one function in the family
with JF having that support for all x.

Now notice that Ex0Varx0|AF (x0;A) ≤ E(||F (x0;A)||2).
Secondly notice that, if x and x′ only differ on the jth

component and (JF )ij 6= 0 then |Fi(x;A)| ≤ |Fi(x′;A)| +
D||x′ − x||. Since JF has at most k non-zero entries per
row, we get that for any x and x′, |Fi(x;A)| ≤ |Fi(x′;A)|+
kD||x′ − x||. If x = x0 and x′ = Ex0|A(x0|A) then
squaring the previous expression and taking expectations gives
us Ex0|A(Fi(x;A)2|A) ≤ 2Fi(x

′;A)2 + 2k2D2B. From this
we get that E(||F (x0;A)||2)/p ≤ C + 2k2D2B where C
is a constant independent of A. For this sub family of
functions we have H(M(A)) ≥ pk log(p/k). By (29) and
(30) we know that I(x0;A) ≤ (1/2) log((2πe)p|EΣ∞|) −
(1/2)E log((2πe)p|Σ∞|). The first term, which is the entropy
of a p-dimensional Gaussian with covariance matrix EΣ∞,
can be upper bounded by the sum of the entropy of its
individual components, which have variance upper bounded by
B. Finally, since Λmin(Σ∞) ≥ L, we have log |Σ∞| ≥ p logL
and therefore I(x0;A) ≤ p/2 logB/L, which completes the
proof.
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APPENDIX

A. Proof of Theorem II.4

The following Lemma contains a matrix theory calculation
that will be later used in this proof when applying Lemma
III.1. Recall that we defined α = a2min/2.

Lemma A.1. Let A be a random matrix defined as above and

Q(amin, ρ) ≡ lim
p→∞

1

p
{Tr{E(−A)} − Tr{(E(−A−1))−1}}.

(35)

Then, there exists a constant C ′ such that

Q(amin, ρ) ≤ min{C
′a2min

2ρ
,
amin√

2
}. (36)

Proof: Using Wigner’s Semicircle law for random sym-
metric matrices [16] and the bound described in (20) it follows
that,

lim
p→∞

1

p
{Tr{E(−A)} = ρ+ 2

√
α, (37)

C(α, ρ) ≡ lim
p→∞

E{1

p
Tr{(−A)−1}} (38)

=
−
√
ρ (4
√
α+ ρ) + 2

√
α+ ρ

2α
. (39)

Since C(α, ρ) = α−1/2C(1, ρ/
√
α) we can write ρ+ 2

√
α−

(C(α, ρ))−1 =
√
αG(ρ/

√
α) where G(x) is a strictly de-

creasing function. Since limρ→0 =
√
αG(ρ/

√
α) =

√
α

and limρ→∞ ρ
√
αG(ρ/

√
α) = α it follows that there is a

constant C ′ independent of α or ρ such that
√
αG(ρ/α) ≤√

αmin{1, C ′
√
α/ρ}. The result now follows by replacing

α = a2min/2.
Proof (Theorem II.4): Like in the proof of Theorem

II.3 we start by dividing both numerator and denominator
of (13) in Lemma III.1 by p. By multiplying the resulting
expression by an appropriately small constant we can replace
the denominator and limp→∞ I(x0;A)/p by their limits when
p → ∞ and get an expression that is still valid for all p
large enough. Since H(M(A))/p = (1+p))

4 log 4, and since by
Lemma A.1 we already know the limiting expression of the
denominator, all we have to do is find limp→∞ I(x0;A)/p.
By an analysis very similar to that in the proof of Theorem
II.3 one can show that

lim
p→∞

1

p
I(x0;A) ≤ −1 +

√
(z + 2)C(1, z) ≤ 1. (40)

where C(α, ρ) was defined in (38), which finishes the proof.
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