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Abstract—Consider the problem of learning the drift coefficient
of a p-dimensional stochastic differential equation from a sample
path of length T . We assume that the drift is parametrized
by a high-dimensional vector, and study the support recovery
problem when both p and T can tend to infinity. In particular,
we prove a general lower bound on the sample-complexity T
by using a characterization of mutual information as a time
integral of conditional variance, due to Kadota, Zakai, and Ziv.
For linear stochastic differential equations, the drift coefficient is
parametrized by a p×p matrix which describes which degrees of
freedom interact under the dynamics. In this case, we analyze a
`1-regularized least squares estimator and prove an upper bound
on T that nearly matches the lower bound on specific classes of
sparse matrices.

Index Terms—Stochastic differential equation, sparse recovery,
dynamical systems, maximum likelihood

I. INTRODUCTION

Consider a continuous-time stochastic process {x(t)}t≥0,
x(t) = [x1(t), . . . , xp(t)] ∈ Rp, that is defined by a stochastic
differential equation (SDE) of diffusion type

dx(t) = F (x(t); Θ0) dt+ db(t) , (I.1)

where b(t) is a p-dimensional standard Brownian motion and
the drift coefficient1

F (x(t); Θ0) = [F1(x(t); Θ0), . . . , Fp(x(t); Θ0)] ∈ Rp,
is a function of x(t) parametrized by Θ0. This is an unknown
vector, with dimensions scaling polynomially with p.

In this paper we consider the problem of learning the
support of the vector Θ0 from a sample trajectory XT

0 ≡
{x(t) : t ∈ [0, T ]}. More precisely, we focus on the
high-dimensional scenario where p and T are allowed to
increase simultaneously. Our goal is to determine necessary
and sufficient conditions for recovering the support of Θ0

and the sign of its entries with high probability. We refer
to the smallest T that allows to achieve a prescribed suc-
cess probability as the ‘sample-complexity’ of the problem
(although the number of samples is, strictly speaking, infinite).
We are particularly interested in achieving the optimal scaling
of sample complexity with the problem dimensions through
computationally efficient procedures.

Concretely, given a SDE parametrized by Θ0 and an algo-
rithm Alg = Alg(XT

0 ) that outputs an estimate Θ̂, we define
the sample-complexity TAlg(Θ0) as

inf
{
T0 ∈ R+ : PΘ0,T {sign(Θ̂) = sign(Θ0)} ≥ 1− δ,

for all T ≥ T0

}
.

(I.2)

1Throughout the paper, vectors are ‘column vector’ even if they are
represented in row form for typographical reasons.

In the expression above, PΘ0,T denotes probability with re-
spect to the trajectory XT

0 . The function sign(.) acts element-
wise on its vector-valued argument and to each scalar applies
the mapping sign : R 7→ {−1, 0, 1} such that

sign(x) =

 −1 if x < 0,
+1 if x > 0,
0 if x = 0.

Obviously, TAlg(Θ0) defined above is an upper bound for
sample-complexity of learning the support alone. In addition
to this definition, given some class A of parameters, we define

TAlg(A) = sup
Θ0∈A

TAlg(Θ
0). (I.3)

Models based on SDEs play a crucial role in several
domains of science and technology, ranging from chemistry
to finance. Consequently, estimating their parameters has been
a topic of great interest in several fields. We refer to Section
III for a brief overview. A complete understanding of support
recovery in a high-dimensional setting is nevertheless missing.

Our results address these challenges for special classes of
SDEs of immediate relevance. A first class is constituted by
drift coefficients that are parametrized linearly. Explicitly, we
are given a set of basis functions

F(x) = [f1(x), f2(x), . . . , fm(x)], (I.4)

with fi : Rp → R. The drift is then given as F (x; Θ0) =
Θ0F(x), with matrix Θ0 ≡

{
θ0
ij

}
i∈[p],j∈[m]

∈ Rp×m, [p] =

{1, ..., p} and [m] = {1, ...,m}. We then have, for each i ∈
Rp,

dxi(t) =

m∑
j=1

θ0
ijfj(x(t)) dt+ dbi(t) . (I.5)

Suitable sets of basis functions can be provided by domain-
specific knowledge. As an example, within stochastic models
of chemical reactions, the drift coefficient is a low-degree
polynomial. For instance, the reaction A+2B→ C is modeled
as dxC = kC,AB xAx

2
Bdt − kAB,C xC + dbC where xA, xB

and xC denote the concentration of the species A, B and
C respectively, and dbC is a chemical noise term. In order
to learn a model of this type, one can consider a basis of
functions F(x) that comprises all monomials up to a maximum
degree. In this case, the support of Θ0 tells which species react
with which species, i.e. a network interactions. The sign of
its entries distinguishes “inhibitory” effects from “excitatory”
effects. In the end of this section we give a concrete example
of using our method to learn chemical reactions.

An important subclass of models of the last type is provided
by linear SDEs. In this case, the drift is a linear function of
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x(t), namely F (x; Θ0) = Θ0x(t) with Θ0 ≡
{
θ0
ij

}
i,j∈[p]

∈
Rp×p. Explicitly, for each i ∈ Rp,

dxi(t) =

p∑
j=1

θ0
ijxj(t) dt+ dbi(t) . (I.6)

A model of this type is a good approximation for many
systems near a stable equilibrium. The model (I.6) can be used
to trace fluctuations of the species’ concentrations in proximity
of an equilibrium point in chemical reactions. In this case, the
matrix Θ0 would represent the linearized interactions between
different chemical factors.

More generally, we can associate to the model (I.6) a
directed graph G = (V,E) with edge weight θ0

ij ∈ R

associated to the directed edge (j, i) from j ∈ V to i ∈ V .
Each component xi(t) of the vector x(t) describes the state
of a node i ∈ V . The graph G describes which nodes interact:
the rate of change of xi(t) is given by a weighted sum of the
current values of its neighbors, corrupted by white noise. In
other words, linear SDEs can be seen as graphical models –
a probabilistic model parametrized by a graph.

This paper establishes lower bounds on the sample-
complexity for estimating the support of Θ0 in the general
model (I.1). These are based on information theoretic tech-
niques and apply irrespective of computational considerations.
For linear models of the form (I.6), we put forward a low-
complexity estimator and derive upper bounds on its sample-
complexity. Upper and lower bounds are shown to be within
a constant factor for special classes of sparse networks Θ0.

Before stating our results more formally, it is useful to stress
two key differences with respect to other high-dimensional
estimation problems.

(i) Samples are not independent.
(ii) Infinitely many samples are given as data (in fact a

collection indexed by t ∈ [0, T ]).
A simple approach would be to select a finite subsam-
ple set. For instance, one can select a sampling interval
η > 0 and only use samples at regularly spaced times
{x(η), x(2η), x(3η), . . . }. At first sight, this reduces the prob-
lem to a more classical one. A closer consideration illustrates
instead the new challenges posed by the present model.
• If η is small, one obtains a large number of strongly

dependent samples and earlier analysis does not apply.
In particular, a careful analysis must reveal that there is
limited information to be harnessed from a given time
interval T .

• One might be lead into the conclusion that η must be
taken sufficiently large as to make samples approximately
independent. However, this approach will waste important
information contained in the sample path. For example,
for a linear SDE, the matrix Θ0 contains more informa-
tion than the stationary distribution of the process (I.6)2.

Our results confirm in a detailed and quantitative way these
intuitions.

2Let Θ0
1 = {{−2,−1,−1}, {1,−2,−1}, {1, 1,−2}} and

Θ0
2 = {{−2, 1, 0}, {−1,−2, 1}, {0,−1,−2}}. The linear systems

defined by these matrices have different support. Yet, their
stationary behavior is described by the same covariance matrix
Σ = {{1/4, 0, 0}, {0, 1/4, 0}, {0, 0, 1/4}}.

A. Regularized least squares

Regularized least squares, Rls, is an efficient and well-
studied method for support recovery. We discuss relations
with existing literature in Section III. In this paper we study
its application to estimating the drift coefficient of a high-
dimensional diffusion and show that its sample-complexity
compares favorably with our information-theoretic lower
bounds.

Its use is better explained for the general linearly
parametrized model (I.5). For this model, we estimate inde-
pendently each row of the matrix Θ0 ∈ Rp×m. The rth row,
denoted by Θ0

r , is estimated by solving the following convex
optimization problem for Θr ∈ Rp

minimize L(Θr;X
T
0 ) + λ‖Θr‖1 , (I.7)

where the log-likelihood function L is defined by

L(Θr;X
T
0 ) =

1

2T

∫ T

0

〈Θr,F(x(t))〉2 dt

− 1

T

∫ T

0

〈Θr,F(x(t))〉 dxr(t) . (I.8)

Here and below 〈u, v〉 denotes the standard scalar product of
vectors u, v ∈ RN .

We denote this algorithm by Rls(λ). The `1 regularization
term in Eq. (I.7) has the role of shrinking to 0 all the entries
θrj , except the most significant ones, thus effectively selecting
the support of Θ.

By minimizing the function L alone, i.e. setting λ = 0, one
obtains the maximum likelihood estimator for the diffusion
process (I.1). Maximum likelihood optimization has been used
before in the context of estimating diffusions in the low-
dimension setting 3. See [1] and other references in Section III.
In particular, the normalized log-likelihood function (I.8) is the
appropriate generalization of the sum of square residuals for
a continuous-time process. To see this heuristically, one can
formally write ẋr(t) = dxr(t)/dt. A careless sum of square
residuals would take the form

∫
(〈Θr,F(x(t))〉 − ẋr(t))2dt.

Unfortunately, this expression is not defined because xr(t) is
not differentiable. On the other hand, expanding the square,
we get 2TL(Θr;X

T
0 )+

∫
(ẋr(t))

2dt. The first term is well de-
fined, as is clear from Eq. (I.8), and the second is independent
of Θ and hence can be dropped.

Notice that constructing a well-defined cost function as
in Eq. (I.8) is not a purely academic problem. Indeed, a
cost function that included the time derivative ẋ(t) would in
practice require to estimate ẋ(t) itself. This is all but hopeless
because ẋ(t) does not exist in the model.

II. MAIN RESULTS

Our main contributions are the followings:
Information-theoretic lower bound: We establish a general
lower bound on the sample-complexity for estimating the drift
coefficient of a diffusion of the form (I.1). By specializing this
result, we obtain bounds for the linearly parametrized model

3Low-dimensional in the sense of keeping the number of degrees of
freedom, p, fixed and letting T converge to infinity.
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(I.5), and the linear model (I.6).
Upper bound via regularized least squares: For the linear
model (I.6), and suitable class of sparse matrices Θ0, we prove
high-dimensional consistency of the penalized least-squares
method introduced in Section I-A. The resulting upper bound
on sample-complexity matches the information theoretic lower
bound up to constant factors in p.

For the sake of simplicity, in this section we focus on the
case of sparse linear SDEs, stating upper and lower bounds, cf.
Section II-B. We then illustrate the general theory by analyzing
a specific but rich problem: learning the Laplacian of a sparse
graph, cf. Section II-C. In Section IV we give numerical
illustrations of our main results. Extensions, in particular,
general lower bounds on the sample complexity, are discussed
in Section V. Finally, in Section VI, we present numerical
illustrations of these extensions, part of which are motivated
by real-world applications.

Proofs for the technical lemmas are provided in the ap-
pendix.

A. Notation

For any N ∈ N, we let [N ] = {1, 2, . . . , N}.
Given any matrix Q, its transpose is denoted by Q∗ and its

support, supp(Q), is the 0−1 matrix such that supp(Q)ij = 1
if and only if Qij 6= 0.

For a vector v ∈ RN , supp(v) is defined analogously. With
a slight abuse of notation, we occasionally write supp(v) for
the subset of indices i ∈ [N ] such that vi 6= 0. The signed
support of a matrix (or vector) Q, denoted by sign(Q), is the
matrix defined by sign(Q)ij = sign(Qij) where the function
sign(Qij) is defined as

sign(Q)ij =

 +1 if Qij > 0
0 if Qij = 0
−1 if Qij < 0

(II.1)

The r-th row of a matrix Q is denoted by Qr. Given a matrix
Q ∈ RM×N , and sets L ⊆ [M ], R ⊆ [N ], we denote by QL,R
the sub-matrix QL,R ≡ (Qij)i∈L,j∈R.

For q ≥ 1, the `q norm of a vector v ∈ RN is given by
‖v‖q ≡ (

∑
i∈[N ] |vi|q)1/q . This is extended in the usual way to

q =∞. As usual, the misnomer ‘0-norm’ is used for the size
of the support of v, namely ‖v‖0 is the number of non-zero
entries of v. The `q operator norm of a matrix Q ∈ RM×N is
denoted by |||Q|||q . In particular the `∞ operator norm is given
by |||Q|||∞ ≡ maxr∈[M ] ‖Qr‖1.

If Q ∈ RN×N is symmetric, then its eigenvalues are
denoted by λ1(Q) ≤ λ2(Q) ≤ · · · ≤ λN (Q). The minimum
and maximum eigenvalues are denoted as λmin(Q) ≡ λ1(Q)
and λmax(Q) ≡ λN (Q). For a general (non-symmetric) matrix
Q ∈ RM×N we let 0 ≤ σ1(Q) ≤ · · · ≤ σmin{M,N}(Q)
denote its singular values. Further σmin(Q) = σ1(Q) and
σmax(Q) = σmin{M,N}(Q) are the minimum and maximum
singular values.

Throughout the paper, we denote by C, C1, C2, etc,
constants that can be adjusted from point to point.

B. Sample complexity for sparse linear SDEs

In order to state our results, it is convenient to define the
class of sparse matrices A(S), depending on parameters k, p ∈
N, k ≥ 3, θmin, ρmin > 0,

A(S) = A(S)(k, p, θmin, ρmin) ⊆ Rp×p (II.2)

by letting Θ ∈ A(S) if and only if
(i) ‖Θr‖0 ≤ k for all r ∈ [p].

(ii) |θij | ≥ θmin for all i, j ∈ [p] such that θij 6= 0.
(iii) λmin(−(Θ + Θ∗)/2) ≥ ρmin > 0.
Notice in particular that condition (iii) implies that the system
of linear ODEs ẋ(t) = Θx(t) is stable. Equivalently, the spec-
trum of Θ is contained in the half plane {z ∈ C : Re(z) < 0}.
As a consequence, if Θ0 ∈ A(S), then the diffusion process
(I.6) has a unique stationary measure which is Gaussian with
covariance Q0 ∈ Rp×p and is given by the unique solution of
Lyapunov’s equation [2]

Θ0Q0 +Q0(Θ0)∗ + I = 0. (II.3)

Hence XT
0 = {x(t) : t ∈ [0, T ]} is a stationary trajectory

distributed according to the linear model (I.6) if x(t = 0) ∼
N(0, Q0) is a Gaussian random variable independent of b(t).

We consider the linear model (I.6) with Θ0 ∈ A(S). Given
a row index r ∈ [p], let S0 = S0(r) be the support of Θ0

r .
Assumption 1 (Restricted convexity). For Cmin > 0, we have

λmin(Q0
S0,S0) ≥ Cmin . (II.4)

Assumption 2 (Irrepresentability): For some α > 0, we have

|||Q0
(S0)C ,S0

(
Q0

S0,S0

)−1 |||∞ ≤ 1− α . (II.5)

We refer to [3], [4] for the original development of these
conditions in the context of sparse regression.

Our first theorem establishes high-dimensional consistency
of `1-penalized least squares for estimating sign(Θ0) from a
stationary trajectory XT

0 according to the linear model (I.6)
when Θ0 ∈ A(S).

Theorem II.1. If Θ0 ∈ A(S)(k, p, θmin, ρmin) satisfies as-
sumptions 1 and 2 above for all r ∈ [p] and some Cmin, α > 0,
then there exists λ = λ(T ) > 0 such that

TRls(λ)(Θ
0) ≤ 2 · 104k2(k ρ−2

min + θ−2
min)

α2ρminC2
min

log
(4pk

δ

)
. (II.6)

In particular, one can choose

λ =

√
36

Tα2ρmin
log
(4p

δ

)
. (II.7)

Remark II.1. Note that the notions of sample-complexity
introduced in I.2 and I.3 are well-defined for reconstruction
algorithms that depend on T , the length of the stationary
trajectory XT

0 . This is the case with the regularized least
squares algorithm Rls(λ), since λ can depend on T .

Remark II.2. If there exists Cmin, α > 0 such that as-
sumptions 1 and 2 hold for all r ∈ [p] and for all Θ0 ∈
A(S)(k, p, θmin, ρmin), then we can replace TRls(λ)(Θ

0) by
TRls(λ)(A(S)) in (II.6).
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The next theorem establishes a lower bound on the sample-
complexity of learning the signed support of Θ0 ∈ A(S) from
a stationary trajectory, XT

0 , distributed according to the linear
model (I.6).

Theorem II.2. Let Alg = Alg(XT
0 ) be an estimator of

sign(Θ0). There is a constant C(k, δ), such that, for all p
large enough,

TAlg(A(S)) ≥ C(k, δ) max
{ρmin

θ2
min

,
1

θmin

}
log p . (II.8)

Remark II.3. Theorem II.2 cannot be used to conclude that,
if T is ‘small’, then Rls(λ) always fails to reconstruct Θ0

from XT
0 regardless of the choice of λ. What the lower bound

says is that, if T is ‘small’, then, for every choice of λ =
λ(XT

0 ), there exists a Θ0 ∈ A(S) that cannot be reconstructed.
The particular Θ0 that cannot be reconstructed, however, can
depend on the choice of λ.

These two theorems establish that, under assumptions 1 and
2 above, the time-complexity of learning the signed support
of the diffusion coefficient for sparse linear SDEs in the class
A(S) is O(log p).

Notice that both upper and lower bounds depend in a non-
trivial way on the parameter ρmin. In order to gain intuition on
this quantity, consider Eq. (I.6) in absence of the driving term
dbi(t). By using the Lyapunov function ‖x(t)‖22, it is easy to
verify that ‖x(t)‖2 ≤ ‖x(0)‖2 e−ρmint/2. Hence ρ−1

min provides
a general upper bound on the mixing time of the diffusion
(I.6). The upper bound is essentially tight if the matrix Θ0 is
symmetric.

Theorems II.1 and II.2 can therefore be used to characterize
the dependence of the sample complexity on the mixing time.
One subtle aspect is that Cmin and ρmin cannot be varied
independently because of the Lyapunov equation, Eq. (II.3). In
order to clarify this dependency, we apply our general results
to the problem of learning the Laplacian of an undirected
graph.

C. Learning the laplacian of graphs with bounded degree

Given a simple graph G = (V, E) on vertex set V = [p],
its Laplacian ∆G is the symmetric p × p matrix which is
equal to the adjacency matrix of G outside the diagonal, and
with entries ∆Gii = −deg(i) on the diagonal [5]. (Here deg(i)
denotes the degree of vertex i.)

It is well known that ∆G is negative semidefinite, with
one eigenvalue equal to 0, whose multiplicity is equal to the
number of connected components of G. The matrix Θ0 =
−mI + ∆G fits into the setting of Theorem II.1 for m > 0.
The corresponding model (I.6) describes the over-damped
dynamics of a network of masses connected by springs of
unit strength, and connected by a spring of strength m to the
origin.

Let Gbounded = Gbounded(k, p) be the class of graphs on p
nodes with maximum vertex degree bounded by k. Define,

A(L)(m, p, k) =

{Θ0 = −mI + ∆G | m > 0, G ∈ Gbounded} (II.9)

The following theorem holds regarding the sample-complexity
of learning the signed support of Θ0 from a stationary trajec-
tory XT

0 of a linear SDE with Θ0 ∈ A(L).

Theorem II.3. If Θ0 ∈ A(L)(m, p, k) then there exists λ =
λ(T ) > 0 such that

TRls(λ)(A(L)) ≤ 4 · 105k2
(k +m

m

)5

(k +m2) log
(4pk

δ

)
,

In particular one can take,

λ =
√

36(k +m)2 log(4p/δ)/(Tm3).

In other words, for m bounded away from 0 and ∞,
regularized least squares regression correctly reconstructs the
graph G from a trajectory of time length which is polynomial
in the degree and logarithmic in the graph size.

Using this theorem we can write the following corollary that
helps compare the bounds obtained in Theorems II.1 and II.2
above.

Corollary II.4. Assume the same setting as in Theorem II.3.
There exist constants λ = λ(T ), C1 = C1(k, δ) and C2 =
C2(k, δ) such that, for all p large enough,

m < k ⇒ C1 log p ≤ TRls(λ)(A(L)) ≤ C2m
−5 log p,

m ≥ k ⇒ C1m log p ≤ TRls(λ)(A(L)) ≤ C2m
2 log p .

In addition, the lower-bounds hold regardless of the choice of
λ.

Proof: The proof of this corollary follows immediately
from Theorem II.3 and Theorem II.2.

Notice that the upper bound on TRls presents a non-trivial
behavior in m. It diverges both at large m, and at small m.
The reasons of these behaviors are different. For small m, the
mixing time of the diffusion (which is proportional to 1/m)
gets large, and hence a large time is necessary to accumulate
information about Θ0. Vice-versa for large m, Θ0 gets close
to −mI and hence it depends weakly on the graph structure.

Notice that the lower bound also diverges as m→∞, hence
confirming the above picture. On the other hand, the behavior
of TRls as m → 0 remains an open question since our lower
bound stays bounded in that limit.

III. RELATED WORK

The problem of estimating the parameters of a diffusion
plays a central role in several applied domains, examples being
econometrics, chemistry and system biology.

In the first context, diffusions are used to model the
evolution of price indices [6]. While the most elementary
process is the (geometric) Brownian motion [7], [8], a number
of parametric families have been introduced to account for
nonlinearities. The number of parameters is usually small and
parameter estimation is addressed via maximum likelihood
(ML). We refer to [1], [9], [10] for proofs of consistency and
asymptotic normality of the ML estimator. Much of the recent
research has focused on dealing with the challenges posed by
the fact that the diffusion is sampled at discrete intervals, and
the transition probabilities cannot be computed in closed form.



5

A short list of contributions on this problem includes [11]–
[14]. In particular, asymptotically consistent methods based
on approximate transition probabilities exist, see for instance
[15], [16]. Nonparametric estimation of the drift coefficient
has been studied as well [17]–[19].

However, all of these works focus on the low-dimensional
setting: the vector of parameters to be estimated is p-
dimensional, and the diffusion is observed for a time T →
∞. Hence there is little overlap with the present work. In
particular, simple ML estimators are not viable in the high-
dimensional setting. At the same time, it would be interesting
to address the problems posed by discrete sampling and non-
parametric estimation in the high-dimensional setting as well.

Applications to chemistry and system biology have been
mentioned in Section I. A large variety of chemical reactions
are modeled by diffusions with suitably parametrized drift
terms [20], [21]. Of particular interest here are special classes
of drift coefficients, for instance those exhibiting time-scale
separation [22] or gradients of a potential [23]. [24] use
regularized least squares to learn SDEs and from them recover
both intracellular and intercellular biological networks. In this
work, several regularizations are studied, including `-1 regular-
ization, but no guarantees are proved. In a different work, [25],
the same method is applied to study the functional connectivity
of the brain. As with the econometrics applications, these
works have focused on low-dimensional diffusions.

Technically, our work fits on recent developments in learn-
ing high-dimensional graphical models. The typical setting
assumes that the data are independent and identically dis-
tributed (i.i.d.) samples from a high-dimensional Gaussian
distribution with sparse inverse covariance. The underlying
graph structure (the support of the inverse covariance) is
estimated using convex regularizations that promote sparsity.
Well known examples include the graphical LASSO [26] and
the pseudo-likelihood method of [4]. In the context of binary
pairwise graphical models, similar methods were developed in
[27].

More closely related to our paper is the work reported in
[28]. It proposes an algorithm to learn the interference graph in
a wireless network from passive measurements of the traffic.
The paper is concerned with the number of samples required
in order to recover the interference graph correctly. Both
information theoretic lower bounds and upper bounds using a
practical algorithm are provided. The model used in this work
is a time-evolving discrete time model and the algorithm is
domain specialized. In contrast, the emphasis of our work is
on the continuous time models and indeed a significant portion
of our effort is dedicated to obtaining the right scaling in this
scenario. Furthermore, the algorithms analyzed in these two
works are completely different.

To the best of our knowledge the present work is the first one
moving beyond the assumption of independent samples from
a continuous time diffusion process when dealing with the
sample complexity of learning the structure of the underlying
graph. While we extend ideas and methods from this literature,
dealing with dependent samples raises new mathematical
challenges.

Our methods build on the work on `1-regularized least

squares, and its variants [29]–[33]. The most closely related
results are the one concerning high-dimensional consistency
for support recovery [3], [4], [27]. Our proof for our upper
bound follows indeed the approach developed in these papers,
with two important challenges. First, the design matrix in our
case is produced by a stochastic diffusion, and it does not
necessarily satisfy the irrepresentability conditions used by
these works. Second, the observations are not independent
and therefore elementary concentration inequalities are not
sufficient.

Most of these proofs build on the technique of [3]. A
naive adaptation to the present case allows to prove some
performance guarantee for the discrete-time setting. However
the resulting bounds are not uniform as the sampling interval
η tends to 0 for nη = T fixed. In particular, they do not allow
to prove an analogous of our continuous time result, Theorem
II.1. A large part of our effort is devoted to proving more
accurate probability estimates that capture the correct scaling
for small η.

Finally, the related topic of learning graphical models for
autoregressive processes was studied recently in [34]–[36].
These papers propose a convex relaxation that is different from
the one studied in this paper, without however establishing
high-dimensional consistency for model selection.

Preliminary report of our work were presented at NIPS
2010 [37] and ISIT 2011 [38]. Subsequent work by Bol-
stad, Van Veen and Nowak [39] establishes high-dimensional
consistency for estimating autoregressive models through a
related approach. These guarantees are non-uniform in the
sampling rate η. The work of [40] provides upper bounds
on the error of regularized least square when observations
are not independent. Although bounding the error of Rls is
related to our problem of support recovery, in the context of
learning SDEs, the conditions under which their result holds
are never reduced or related to properties of the dynamics
of the SDE alone. In addition, it is unclear whether their
conditions hold uniformly with the sampling rate η( the results
presented only apply directly to discrete time). The more
recent work of [41] relates to ours by showing that, under
suitable conditions, sparse linear quadratic systems can be
estimated and adaptively controlled with few observations.
Finally, [42] provides a framework for filtering XT

0 which
could be used to estimate Θ0. It is an interesting open problem
to investigate how an estimator obtained from their framework
compares to ours.

IV. NUMERICAL ILLUSTRATIONS OF THE MAIN
THEORETICAL RESULTS

In this section we illustrate our main results on synthetic
data. These numerical results agree with our observations
in Theorems II.1, II.2 and II.3 that the time-complexity for
learning linear sparse SDEs scales logarithmically with the
number of nodes in the network p, given a constant maximum
degree. They also agree with the implication of Theorem
V.1 that the time-complexity is roughly independent of the
sampling rate, assuming that we are in the regime of small
η. Or, in other words, that our reconstruction guarantees are
uniform in the sampling rate for small η.
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Fig. 1. (top) Probability of success vs. length of the observation interval nη.
(bottom) Sample complexity for 90% probability of success vs. p.

Note that, in order to obtain numerical values for the time-
complexity that do not depend on λ, we use a definition
for sample-complexity and time-complexity that is slightly
different than the one used when stating our main results.

We start by analyzing the performance of Rls for the discrete
analogue of (I.6) (See equation (V.1) in Section V). Our
results are summarized in Figures 1 and 2. First, we generate
data as follows. We draw Θ̃0 as a random sparse matrix in
{0, 1}p×p with elements chosen independently at random with
P(θ0

ij = 1) = k/p, k = 5, and form Θ0 = −7I + Θ̃0 4.
Second, a sample path Xn

0 ≡ {x(t) : 0 ≤ t ≤ n} is obtained
from Eq. (V.1). Finally, we choose an r ∈ [p] uniformly at
random and solve the regularized least squares problem 5 for
a different number of observations n and different values of
λ. We record a 1 or a 0 if the correct signed support of Θ0

r is
recovered or not. For every value of n and λ, the probability of
successful recovery is then estimated by taking the average of
these errors over all realizations of Θ0, Xn

0 and r. Finally, for
each fixed n, we take the maximum over λ of these probability
of success. The top plot in Figure 1 depicts the probability of
success vs. nη for η = 0.1 and different values of p. Each
curve is obtained using 211 instances, and each instance is
generated using a new random matrix Θ0. In addition, from
this plot of n vs. probability of success, we generate the bottom
plot in Figure 1: sample-complexity vs. p. To be explicit, the

4For p large, the SDE generated is stable with high-probability.
5For discrete-time SDEs, the cost function is given explicitly in Eq. (V.2).

definition of sample-complexity in use is

NRls(A) = inf{n0 ∈ N0 : sup
λ>0

Ê{P̂Θ0,n{Rls(λ) = sign(Θ0)}}

≥ 1− δ for all n ≥ n0}, (IV.1)

where we choose a probability of success of δ = 0.9. Above,
Ê represents empirical expectation over Θ0 and P̂ empirical
probability over Xn

0 , and, A is the class of all matrices that
can be generated by the random procedure described before. In
agreement with Theorem II.3, the curve shows the logarithmic
scaling of the sample-complexity with p.

In Figure 2 we turn to the continuous-time model (I.6).
Trajectories are generated by ‘discretizing’ this stochastic dif-
ferential equation with step η′ much smaller than the sampling
rate η. We draw random matrices Θ0 as above and plot the
probability of success for p = 16, k = 4 and different values
of η, as a function of T . We used 211 instances for each curve.
The time-complexity in use for these plots is the continuous-
time analog of (IV.1). Again in agreement with Theorem V.1,
for a fixed observation interval T , the probability of success
converges to some limiting value as η → 0.
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Fig. 2. (top) Probability of success vs. length of the observation interval
nη for different values of η. (bottom) Probability of success vs. η for a fixed
length of the observation interval, (nη = 150) . The process is generated for
a small value of η and sampled at different rates.

V. EXTENSIONS

In this section we present some extensions to our previous
results. We begin by presenting an analogous theorem of
Theorem II.1 for the case of a discrete time system. This is
an important result in itself and also constitutes the basis for
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the proof of Theorem II.1. In fact, Theorem II.1 is proved
by letting η → 0 in the result below. We then present
a general lower bound on the time-complexity of learning
continuous stochastic differential equations. Using this result,
lower bounds for the time-complexity of linear SDEs with
dense matrices Θ0 and non-linear SDEs are derived.

A. Discrete-time model
The problem of learning stochastic differential equations

in discrete time is important in itself and also because it
relates to the problem of learning a continuous-time stochastic
differential equation from discretely sampling its continuous
trajectory. Focusing on continuous-time dynamics allowed us
to obtain the elegant statements of Section II-B. However,
much of the theoretical analysis concerning the regularized
least square algorithm is in fact devoted to the analysis of the
following discrete-time dynamics, with parameter η > 0:

x(t) = x(t− 1) + ηΘ0x(t− 1) + w(t), t ∈ N0 . (V.1)

Here x(t) ∈ Rp is the vector collecting the dynamical
variables, Θ0 ∈ Rp×p specifies the dynamics as above, and
{w(t)}t≥0 is a sequence of i.i.d. normal vectors with covari-
ance η Ip×p (i.e. with independent components of variance
η). We assume that n + 1 consecutive samples are given,
Xn

0 ≡ {x(t) : 0 ≤ t ≤ t}, and ask under which conditions
regularized least squares reconstructs the signed support of
Θ0.

The parameter η has the meaning of a time-step size. The
continuous-time model (I.6) is recovered, in a sense made
precise below, by letting η → 0. Indeed, for this discrete time
model, we prove reconstruction guarantees that are uniform
in this limit as long as the product nη (which corresponds
to the time interval T in the Section II-B ) is kept constant.
For a formal statement we refer to Theorem V.1. Theorem
II.1 is indeed proved by carefully controlling this limit. The
mathematical challenge in this problem is related to the
fundamental fact that the samples {x(t)}0≤t≤n are dependent
(and strongly dependent as η → 0).

Discrete time models of the form (V.1) can arise either
because the system under study evolves by discrete steps,
or because we are sub-sampling a continuous time system
modeled as in Eq. (I.1). Notice that in the latter case the ma-
trices Θ0 appearing in Eq. (V.1) and (I.1) coincide only to the
zeroth order in η. Neglecting this technical complication, the
uniformity of our reconstruction guarantees as η → 0 has an
appealing interpretation already mentioned above. Whenever
the samples spacing is not too large, the time-complexity (i.e.
the product nη) is roughly independent of the spacing itself.

Consider a system evolving in discrete time according to
the model (V.1), and let Xn

0 be the observed portion of the
trajectory. The rth row of Θ0, Θ0

r , is estimated by solving the
following convex optimization problem

minimize
Θr∈Rp

L(Θr;X
n
0 ) + λ‖Θr‖1 , (V.2)

where the log-likelihood function L(Θr;X
n
0 ) is defined as

1

2η2n

n−1∑
t=0

{xr(t+ 1)− xr(t)− η 〈Θr, x(t)〉}2 . (V.3)

Apart from an additive constant, the η → 0 limit of this cost
function can be shown to coincide with the cost function in
the continuous time case, cf. Eq. (I.8). Indeed the proof of
Theorem II.1 will amount to a more precise version of this
statement. Furthermore, L(Θr;X

n
0 ) is easily seen to be the

log-likelihood of Θr within model (V.1).
Let us introduce the class of sparse matrices A′(S) as being

exactly equal to the class A(S) introduced in Section II-B but
with condition (iii) replaced by

1− σmax(I + ηΘ0)

η
≥ D > 0 (V.4)

If Θ0 ∈ A′(S) then, under the model (V.1), x(t) has a
unique stationary measure which is Gaussian with covariance
Q0 determined by the following modified Lyapunov equation

Θ0Q0 +Q0(Θ0)∗ + ηΘ0Q0(Θ0)∗ + I = 0 . (V.5)

It will be clear from the context whether Θ0 (or Q0) refers to
the dynamics matrix (or covariance of the stationary distribu-
tion) from the continuous or discrete time system.

The following theorem establishes the conditions under
which `1-regularized least squares recovers sign(Θ0) with
high probability.

Theorem V.1. Assume that Θ0 ∈ A′(S)(k, p, θmin, D) and
that Θ0

r satisfies assumptions 1 and 2 of Section II-B. Let Xn
0

be a stationary trajectory distributed according to the linear
model (V.1). If

nη >
104k2(kD−2 + θ−2

min)

α2DC2
min

log
(4pk

δ

)
, (V.6)

then there exists λ = λ(nη) > 0 such that `1-regularized
least squares recovers the signed support of Θ0

r with prob-
ability larger than 1 − δ. This is achieved by taking λ =√

(36 log(4p/δ))/(Dα2nη).

In other words the discrete-time sample complexity, n,
is logarithmic in the model dimension, polynomial in the
maximum network degree and inversely proportional to the
time spacing between samples. The last point is particularly
important. It enables us to derive the bound on the continuous-
time sample complexity as the limit η → 0 of the discrete-time
sample complexity. It also confirms our intuition mentioned in
the Introduction: although one can produce an arbitrary large
number of samples by sampling the continuous process with
finer resolutions, there is limited amount of information that
can be harnessed from a given time interval [0, T ].

Remark V.1. The form of Theorem V.1 is different than that
of Theorem II.1. In Theorem V.1 we do not compute a bound
on

NRls(λ)(Θ
0) ≡ min

{
n0 > 0 : PΘ0,n{sign(Θ̂)

= sign(Θ0)} ≥ 1− δ for all n ≥ n0

}
,

the sample-complexity of reconstructing sign(Θ0), but rather
a bound on the sample-complexity of reconstructing the signed
support of a particular row r, sign(Θ0

r). Obviously, if assump-
tions 1 and 2 hold for the same constants Cmin, α > 0 across
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r ∈ [p], then replacing δ by δ/p in (V.6) allows us to use
union bound and conclude that there exists λ for which

NRls(λ)(Θ
0) η ≤ 2 · 104k2(kD−2 + θ−2

min)

α2DC2
min

log
(4pk

δ

)
.

(Notice the factor of 2). The reason why we present Theorem
V.1 in a different form is to emphasize the fact that the proofs
for the upper bounds are based on the success of Rls for
reconstructing a particular row r.

B. General lower bound on time-complexity
In this section we derive a general lower bound on the

minimum time T required to learn a property M(Θ0) associ-
ated to Θ0 from a trajectory XT

0 distributed according to the
general model (I.1). For our problem, M(Θ0) is the signed-
support of Θ0. However, the bound holds in general. This
result is used afterwards to derive lower bounds for the time-
complexity of learning linear SDEs with dense matrices Θ0

(Section V-C) and for the time-complexity of learning non-
linear SDEs (Section V-D).

The general form of the results in this section, and in the
remainder of Section V, is as follow: If M̂T (XT ), an estimator
of M(Θ0) based on XT , achieves successful recovery with
probability greater than 1/2 for every Θ0 in a class A, then
T must be greater then a certain value that is dependent on
properties of A (cf. Theorems V.4 and V.5). These results
however are a corollary of a more relaxed result (Theorem V.2
and Corollary V.3) where we only require that the expected
rate of miss-estimation is small when Θ0 is drawn at random
from the ensemble A. Clearly, if an estimator performs well
over all Θ0 ∈ A then it must also perform well in expectation
regardless of the distribution assumed over A.

Without loss of generality, in the remainder of Section
V-B, the parameter Θ0 is a random variable chosen with
some unknown prior distribution PΘ0 (subscript will be often
omitted). Also, in the following theorems we assume that
M(Θ0) can be described by an alphabet M of finite size
|M| < ∞. For example, if Θ0 ∈ Rp×p and M(.) = supp(.)
thenM can be a set of 2p

2

symbols, one per possible support
of Θ0. If M(.) = sign(.) then |M| = 3p

2

symbols suffice to
describe all possible signed-supports of Θ0.

Remark V.2 (Special notation). In this section we make a
small change in our notation. Outside Section V-B, where Θ0

is a matrix of real numbers, PΘ0 represents a probability
distribution over XT

0 parametrized by Θ0. In this section
however, subscripts indicate that probabilities and expecta-
tions are to be taken with respect to the random variable in
the subscript. Hence, PΘ0 is a probability distribution for the
random variable Θ0

Unless specified otherwise, P and E denote probability and
expectation with respect to the joint law of {x(t)}t≥0 and
Θ0. As mentioned above XT

0 ≡ {x(t) : t ∈ [0, T ]} denotes
the trajectory up to time T . Also, we define the variance of
a vector-valued random variable as the sum of the variances
over all components. In particular,

VarΘ0|Xt0(F (x(t); Θ0)) =

p∑
i=1

VarΘ0|Xt0(Fi(x(t); Θ0)),

where VarΘ0|Xt0 is the variance with respect to Θ0 conditioned
on Xt

0.

The following general lower bound, is a consequence of
an identity between mutual information and the integral of
conditional variance proved by Kadota, Zakai and Ziv [43]
and a similar result by Duncan [44].

Theorem V.2. Let XT
0 be a trajectory of system (I.1) with

initial state x(0) for a specific realization of the random vari-
ables x(0) and Θ0. Let M̂T (XT

0 ) be an estimator of M(Θ0)

based on XT
0 . If Px(0),Θ0,XT0

(M̂T (XT
0 ) 6= M(Θ0)) < 1

2 then

T ≥ 2H(M(Θ0))− log(|M|)− 2I(Θ0;x(0))− 2
1
T

∫ T
0
EXt0{VarΘ0|Xt0(F (x(t); Θ0))}dt

; (V.7)

where |M| is the size of the alphabet of M(Θ0).

Proof: Equation (I.1) can be regarded as describing a
white Gaussian channel with feedback where Θ0 denotes the
message to be transmitted. For this scenario, Kadota et al. [43]
give the following identity for the mutual information between
XT

0 and Θ0 when the initial condition is x(0) = 0,

I(XT
0 ; Θ0) =

1

2

∫ T

0

EXt0{VarΘ0|Xt0(F (x(t); Θ0))}dt.

For the general case where x(0) might depend on Θ0 (if, for
example, x(0) is the stationary state of the system) we can
write I(XT

0 ; Θ0) = I(x(0); Θ0) + I(XT
0 ; Θ0|x(0)) and apply

the previous identity to I(XT
0 ; Θ0|x(0)). Taking into account

that I(M̂T (XT
0 ));M(Θ0)) ≤ I(XT

0 ; Θ0) and making use of
Fano’s inequality I(M̂T (XT

0 ));M(Θ0)) ≥ H(M(Θ0))− 1−
(P(M̂T (XT

0 ) 6= M(Θ0))) log(|M|) the results follows.
The bound in Theorem V.2 is often too complex to be

evaluated. Instead, the following corollary provides a more
easily computable bound for the case when XT

0 is a stationary
process.

Corollary V.3. Assume that (I.1) has a stationary distribution
for every realization of Θ0 and let XT

0 be a trajectory follow-
ing any such stationary distribution for a specific realization
of the random variable Θ0. Let M̂T (XT

0 ) be an estimator of
M(Θ0) based on XT

0 . If PΘ0,XT0
(M̂T (XT

0 ) 6= M(Θ0)) < 1
2

then

T ≥ 2H(M(Θ0))− log(|M|)− 2I(Θ0;x(0))− 2

Ex(0){VarΘ0|x(0)(F (x(0); Θ0))} , (V.8)

where |M| is the size of the alphabet of M(Θ0).

Proof: Since conditioning reduces variance, we have

EXt0{VarΘ0|Xt0(F (x(t); Θ0))}
≤ Ex(t){VarΘ0|x(t)(F (x(t); Θ0))}.

Using stationarity, we have

Ex(t){VarΘ0|x(t)(F (x(t); Θ0))}
= Ex(0){VarΘ0|x(0)(F (x(0); Θ0))},

which simplifies (V.7) to (V.8).
In the rest of section V, we apply this lower bound to special

classes of SDEs, namely linear SDEs with dense matrices Θ0
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and non-linear SDEs. In all of our applications it is to be
understood that the process {xt}t≥0 is stationary.

C. Learning dense linear SDEs

A different regime of interest in learning the network of
interactions for a linear SDE is the case of dense matrices.
As we shall see shortly, this regime exhibits fundamentally
different behavior in terms of sample-complexity compared to
the regime of sparse matrices.

Let A(D) ⊂ Rp×p be the set of dense matrices defined as
Θ ∈ A(D) if and only if,
(i) θmin ≤ |θij |p1/2 ≤ θmax∀i, j : θij 6= 0,

(ii) λmin(−(Θ + Θ∗)/2) ≥ ρmin > 0.
The following theorem provides a lower bound for learning

the signed support of models from the class A(D) from
stationary trajectories XT

0 of (I.6).

Theorem V.4. Let Alg = Alg(XT
0 ) be an estimator of

sign(Θ0). There is a constant C(δ) such that, for all p large
enough,

TAlg(A(D)) ≥ C(δ) max
{ρmin

θ2
min

,
1

θmin

}
p. (V.9)

The sample-complexity bound is similar to the one in
Theorem II.2 but the scaling with p has now changed from
O(log p) to O(p). The lack of structure in Θ0 requires ex-
ponentially more samples for successful reconstruction. The
proof is deferred to Section B-C in the appendix.

Remark V.3. Although the above theorem only gives a
lower bound on TRls(λ)(A(D)), it is not hard to upper bound
TRls(λ)(A(D)) for linear dense systems of SDEs and certain
values of λ. In particular, it is not hard to upper bound
TRls(λ=0)(A(D)) by O(p). This can be done in two steps. First,
taking λ = 0, one can compute a closed form solution for
Rls. This solution is an unbiased estimator involving sums of
dependent Gaussian random variables. Second, one can prove
concentrations bounds similar to the ones proved for Theorem
II.1, and compute the trajectory length T required to guarantee
that

‖Θ̂−Θ0‖∞ ≤ θmin/2 (V.10)

with probability greater than 1 − δ. This value of T is an
upper bound on TRls(0)(A(D)) since (V.10) plus a simple
thresholding decision rule 6 is enough to guarantee that

sign(Θ̂) = sign(Θ0). (V.11)

We start Section VI with a numerical illustration of this
behaviour.

D. Learning (sparse) non-Linear SDEs

We now assume that the observed samples XT
0 come from

a stochastic process driven by a general SDE of the form (I.1).
In what follows, vi denotes the ith component of vector v.

For example, x3(2) is the 3th component of the vector x(t)

6If |θ̂ij | < θmin/2 declare 0, if θ̂ij < −θmin/2 declare −1 and if
θ̂ij > θmin/2 declare +1.

at time t = 2. JF ( · ; Θ0) ∈ Rp×p denotes the Jacobian of the
function F ( · ; Θ0).

For fixed L, B and D ≥ 0, define the class of functions
A(N) = A(N)(L,B,D) by letting F (x; Θ) ∈ A(N) if and
only if
(i) the support of JF (x; Θ) has at most k non-zero entries

for every x,
(ii) the SDE (I.1) admits a stationary solution with covariance

matrix, Q, satisfying λmin(Q) ≥ L,
(iii) Varx(0)|Θ(xi(0)) ≤ B ∀i,
(iv) |∂Fi(x; Θ)/∂xj | ≤ D for all x ∈ Rp i, j ∈ [p].

For simplicity we write F (x; Θ0) ∈ A(N) by Θ0 ∈ A(N).
Note that our objective is different than before. Given Θ0 ∈

A(N), we are interested in recovering the smallest support,
M(Θ0), for which supp(JF (x; Θ0)) ⊆ M(Θ0) ∀x. Hence,
we consider the following modified definition of sample-
complexity that can be applied to learning SDEs of the form
(I.1),

TAlg(A(N)) = sup
Θ0∈A(N)

inf
{
T0 ∈ R+ : PΘ0,T {Alg(XT

0 )

= M(Θ0)} ≥ 1− δ for all T ≥ T0

}
.

The following theorem holds for learning M(Θ0), Θ0 ∈
A(N), from a stationary trajectory of (I.1).

Theorem V.5. Let Alg = Alg(XT
0 ) be an estimator of M(Θ0).

Then
TAlg(A(D)) ≥ k log p/k − logB/L

C + 2k2D2B
, (V.12)

where C = maxi∈[p] E{Fi(Ex(0)|Θ0(x(0)); Θ0)}.
Remark V.4. The assumption that F is Lipschitz is not very
restrictive as it is a sufficient condition commonly used to
guarantee existence and uniqueness of a solution of the SDE
(I.1) with finite expected energy, [45].

VI. NUMERICAL ILLUSTRATION OF SOME EXTENSIONS

In Theorem II.1 we describe a set of conditions under which
Rls successfully reconstructs the dynamics of a sparse system
of linear SDEs. These sufficient conditions naturally raise
several questions: do they hold when the entries of Θ0 are
related to some real world problem? Can Rls perform well
even when these conditions do not hold? Even more generally,
can Rls learn SDEs in a scenario completly different than the
one described in Theorem II.1, e.g. in the presense of non-
linearities? Answering these questions is non-trivial because
it is hard to get a clear intuition of what assumptions like
Assumption 1 and Assumption 2 of Section II-B mean in
practice. The same difficulty arises with analogous results on
the high-dimensional consistency of the LASSO method [3],
[27].

In this section we provide concrete illustrations of the
performance of Rls when applied to scenarios for which our
upper bounds on time-complexity do not hold. We compare
its performance to the performance predicted by our lower
bounds, that hold in greater generality, and observe that, in
these examples, they match. Finally, although not the focus of
this paper, our last example also illustrates the effect of λ on
the performance of Rls(λ).
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A. Time-complexity for dense linear SDEs

First we study the time-complexity for learning dense linear
SDEs. We repeat the experiment of Section IV for continuous-
time linear SDEs but with a dense matrix Θ0 that we generate
as follows.
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Fig. 3. Time-complexity to learn linear dense SDEs as a function of the
dimension of Θ0 for different probabilities of success.

Generate Θ̃0 ∈ Rp×p by sampling each entry from a
standard Gaussian distribution; set every entry to zero with
probability 1/2; set Θ0 = −(ρ+

√
2)I + p−1/2Θ̃0. For large

p, almost all such generated matrices lead to a stable SDE.
The time-complexity curves we obtain are depicted in the

figure above. Just like pointed out in Remark V.3, we observe
that the time-complexity scales linearly with p, compared to
O(log p) for sparse matrices. The slope is larger for larger
probabilities of success.

B. Time-complexity for non-linear SDEs

The example in this subsection illustrates that the time-
complexity of Rls scales like O(log p) even when learning
sparse non-linear systems of SDEs.

Consider a system of p masses in Rd connected by damped
springs that is vibrating under the influence of white-noise.
These can be thought of, for example, as points on a vibrating
object whose physical structure we are trying to reconstruct
from the measured amplitude of vibrations over time on a grid
of points at its surface.

Let C0 be the corresponding adjacency matrix, i.e. C0
ij = 1

if and only if masses i and j are connected, and D0
ij be the

rest length of the spring (i, j). Assuming unit masses, unit
rest lengths and unit elastic coefficients, the dynamics of this
system in the presence of external noisy forces can be modeled
by the following damped Newton equations

dv(t) = −γv(t)dt−∇U(q(t)) dt+ σ db(t), (VI.1)
dq(t) = v(t)dt , (VI.2)

U(q) ≡ 1

2

∑
(i,j)

C0
ij(‖qi − qj‖ −D0

ij)
2 ,

where q(t) = (q1(t), . . . , qp(t)), v(t) = (v1(t), . . . , vp(t)),
and qi(t), vi(t) ∈ Rd denote the position and velocity of mass
i at time t. This system of SDEs can be written in the form
(I.1) by letting x(t) = [q(t), v(t)] and Θ0 = [C0, D0]. A

straightforward calculation shows that the drift F (x(t); Θ0)
can be further written as a linear combination of the following
basis of non-linear functions

F(x(t)) =
[
{vi(t)}i∈[p], {∆ij(t)}i,j∈[p],{ ∆ij(t)

‖∆ij(t)‖
}
i,j∈[p]

]
,

where ∆ij(t) = qi(t)−qj(t) and [p] = {1, . . . , p}. Hence, the
system can be modeled according to (I.5). In many situations,
only specific properties of the parameters are of interest, for
instance one might be interested only in the network structure
of the springs.

We consider the trajectories of three masses in a two-
dimensional network of 36 masses and 90 springs evolving
according to Eq. (VI.1) and Eq. (VI.2). How long does one
need to observe these (and the other masses) trajectories in
order to learn the structure of the underlying network? Notice
that the system being considered is non-linear and hence, a
priori, we cannot apply any of our theorems to guarantee that
correct reconstruction will be achieved for any T . Figure 4
reproduces the network structure reconstructed using the RLS
algorithm described in Sec. I-A for increasing observation
intervals T .

Fig. 4. From left to right, top to bottom: structures reconstructed using Rls
with observation time T = 500, 1500, 2500, 3500 and 4500. For T = 4500
exact reconstruction is achieved.

Despite the non-linearities, the inferred structure converges
to the true one when T is large enough 7.

To quantify the efficiency of the regularized least-squares in
learning non-linear SDEs, we generate multiple spring-mass
networks of sizes p = 8, 16, 32, 64 and 128 and study the
mean minimum length of the observation window required for
successful reconstruction. The spring-mass networks are sam-
pled uniformly from the ensemble of regular graphs of vertex
degree 4. Like for the previous system, the data is generated
by simulating the dynamics using an Euler approximation with
a time step of 0.1s. The noise level, σ, is set to 0.5 and the
damping parameter, γ, is set to 0.1.

Figure 5–top shows the probability of success versus the
length of the observation time window for systems of different
sizes (p = 8, 16, 32, 64 and 128) and Figure 5–bottom shows
the minimum length of observation window for successful
reconstruction of the networks versus their size for different

7The data was generated by a simulation of Newton’s equations of motion
using an Euler approximation with discrete time step of size 0.1s
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Fig. 5. (top) Probability of success versus length of observation time window,
T , for different network sizes (p = 8, 16, 32, 64 and 128). (bottom) Minimum
number of samples required to achieve a probability of reconstruction of
Psucc = 0.1, 0.5 and 0.9 versus the size of the network p. All networks
where generated from random regular graphs of degree 4 sampled uniformly
at random. The dynamics’ parameters were set to σ = 0.5 and γ = 0.1

probabilities of success (Psucc = 0.1, 0.5 and 0.9). In both
pictures, error bars represent ± two standard errors. We define
a successful reconstruction by an exact recovery of the whole
network. Since networks are sampled uniformly over regular
graphs, the probability of full exact reconstruction of the
network equals the probability of full exact reconstruction of
any node’s neighborhood in the network. This fact is used
to minimize the number of simulations required to achieve a
small fluctuation in our numerical results.

In agreement with the lower bound of Theorem V.5 for
non-linear SDEs, the time-complexity of Rls in learning these
sparse non-linear system of SDEs also scales logarithmically
with p. The behavior of the plot also agrees with the O(log p)
time-complexity for sparse linear SDEs, even though the mass-
spring system is non-linear (compare Figure 5 with Figure 1).
A careful look into the proof of our main theorem suggests that
as long as the correlation between consecutive samples decays
exponentially with time, the same proof should follow despite
the non-linearities. The difficulty in proving a generalization
of Theorem II.1 to general non-linear SDEs of the from (I.5)
stems from the fact that it is hard in to know what kind
of correlations a general SDE will induce on its trajectory.
However, given a sufficiently ’nice’ trajectory the success of
the least-square method should not be affected by the fact that

we are considering a non-linear basis of functions. In fact,
even in this case, the method still consists of minimizing a
quadratic function under a norm-1 constrain.

C. Learning biochemical pathways and the effect of the reg-
ularization parameter

We now look at a biochemical pathway describing a gen-
eral response of a cell to a change in its environment. We
model the pathway behavior using non-linear SDEs, produce
synthetic data by simulation and then try to recover it from
the data using Rls. In this example, we also analyze how the
regularization parameter, λ, affects the support recovery and
the (normalized) error in estimating the values of Θ0.

The pathway in consideration is described in [46] and
reproduced below.

R+ L
kf1−−⇀↽−−
kr1

(LR∗), (VI.3)

(LR∗) +K
kf2−−⇀↽−−
kr2

(LR∗K), (VI.4)

(LR∗K)
kf3−−→ (LR∗) +K∗, (VI.5)

K∗ + S
kf4−−⇀↽−−
kr4

(K∗S), (VI.6)

(K∗S)
kf5−−→ K∗ + S∗. (VI.7)

This pathway can describe, for example, the response of cells
to a lesion on the skin. The lesion causes some cells to generate
diffusible ligands (L). These ligands come upon receptors (R)
on the cell membrane, which act like antennas. Receptors that
have caught a ligand can then be modified (phosphorylated ∗)
by enzymes called kinases (K). These modifications enable
interactions with other substrates (S) which eventually turn on
the genetic program of platelets to move towards the source of
the injury. This sequence of events is what is called a chemical
pathway and can be thought of as a sequence of chemical
reactions describing the interaction between difference species
inside and outside the cell. The symbols, kf and kr are the
forward and backward rates of reaction. Expressions inside
parenthesis, e.g. (LR∗), represent specific intermediary stages
or compounds along the pathway.

We assume the following correspondence between the con-
centration of each species and the variables xi(t), i ∈ [9]:
x1 ↔ R, x2 ↔ L, x3 ↔ (LR∗), x4 ↔ (LR∗K), x5 ↔ K,
x6 ↔ K∗, x7 ↔ S, x8 ↔ (K∗S), x9 ↔ (S∗). With this
notation, the model proposed in [46] takes the form of a system
of non-linear SDEs. Bellow are a few of the equations in the
model.

dx1(t) = (kr1x3(t)− kf1x1(t)x2(t))dt+ db1(t)

dx2(t) = (kr1x3(t)− kf1x1(t)x2(t))dt+ db2(t)

...

dx8(t) = (kf4x6(t)x7(t)− (kr4 + kf5)x8(t))dt+ db8(t)

dx9(t) = (kf5x8(t))dt+ db9(t)

The data we use for learning are synthetic sample-trajectories
for the concentrations, {xi(t)}9i=1,t≥0, obtained from these
equations using the Euler-Maruyama method.
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We learn the network of interaction as the support of a
non-linear SDE of the form (I.5) with a basis of functions
consisting of monomials up to order two, i.e., all the functions
of the form xα1

i xα2
j with α1, α2 ∈ {0, 1}. Although there

are only 9 species in the model, the adjacency matrix whose
support we want to learn is Θ0 ∈ R9×46 which translates into
414 parameters to be estimated.

Figure 6 summarizes the performance of Rls in recovering
the support of Θ0. Figure 6-top shows that, for a fixed value
of λ, as the length of the observation increases from T = 150
to T = 3000, in steps of 285, the number of species that do
not interact that are estimated as interacting (false positives)
decreases and the number of species that do interact that are
estimated as interacting (true positives) increases. It also shows
that one can go from a high true positive rate and a high false
positive rate to a low true positive rate and a low false positive
rate by increasing λ. Figure 6-bottom shows the area under the
previous curves as a function of T . In this case, the area under
the curve does not have the usual probabilistic interpretation,
but it does provide a metric of performance for Rls that is
independent of λ. The area increases with T and approaches
1, i.e. Rls can recover the exact structure of the biochemical
pathway if enough data is available.
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Fig. 6. (top) True positive rate versus false positive rate for the recover of
the entries in the support of Θ0 using Rls. The regularization parameter λ
changes along each curve. As λ decreases (from ∞ to 0), the true positive
rate increases but the false positive rate also increases. (bottom) Area under
the curves above as a function of T .

Although the focus of this paper is on support recovery, Rls
also outputs real-value estimates for the entries of Θ0. Hence

one can look at the normalized RMSE |||Θ̂ − Θ0|||fro/|||Θ0|||fro
and its relation with λ. Figure 7-top shows this relation when
running Rls on T = 1200 seconds of data. The curve follows
the typical behavior described in [47]. In particular, there is
a value of λ that gives best parameter estimation. In Figure
7-bottom we show the evolution of the value of the minimum
normalized RMSE as a function of T up to the maximum
duration we simulated.
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[37] José Bento, Morteza Ibrahimi, and Andrea Montanari, “Learning
networks of stochastic differential equations,” Advances in Neural
Information Processing Systems 23, pp. 172–180, 2010.
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The appendix is divided into two parts. The first half
contains the proofs of the upper bounds on the sample-
complexity and the second half the proofs of the lower bounds.

APPENDIX A
PROOFS OF THE UPPER BOUNDS ON THE

SAMPLE-COMPLEXITY OF THE REGULARIZED LEAST
SQUARE ALGORITHM

Our bounds for the continuous model follow from an
analysis of the problem for discrete case (introduced in Section
V-A) when taking the limit when η → 0. Hence, we first
prove Theorem V.1. We begin by giving an outline of the
proof in Section A-A based on three propositions. The three
propositions are proved in Section A-D and, in particular, the
details of how to combine them to complete the proof of
Theorem V.1 are in Section A-D3. Afterwards, in Section A-B,
we prove Theorem II.1. Finally, in Section A-C, we specialize
this bound to the case of the Laplacian of a graph and prove
Theorem II.3 .

A. Proof of Theorem V.1

In this Section we detail the proof of our main result for
discrete-time dynamics, i.e., Theorem V.1. We start by stating
a set of sufficient conditions for regularized least squares to
recover the correct support and sign of the entries of Θ0. Then
we present a series of concentration lemmas to be used to
prove the validity of these conditions, and then finalize the
proof.

As mentioned in the main text, the proof strategy, and in
particular the following proposition, Proposition A.1, which
provides a compact set of sufficient conditions for the sign-
support to be recovered correctly, is analogous to the one in
[3]. A proof of this proposition can be found in in Section
A-D1.

In the following we denote by X ∈ Rp×n the matrix whose
(t + 1)th column corresponds to the configuration x(t), i.e.
X = [x(0), x(1), . . . , x(n − 1)]. Furthermore, ∆X ∈ Rp×n
is the matrix containing consecutive state changes, namely
∆X = [x(1) − x(0), . . . , x(n) − x(n − 1)]. It is important
not to confuse Xn

0 ≡ {x(t) : t− 1 ∈ [n− 1]} with X defined
here. These are not the same, although both are related. In
addition, Xn

0 should not be confused with the nth power of
X (which is never mentioned in this paper). Finally we write
W = [w(1), . . . , w(n− 1)] ∈ Rp×n for the matrix containing
the Gaussian noise realization and observe that

W = ∆X − ηΘX .

The rth row of W is denoted by Wr.
In order to lighten the notation, we omit the reference to

Xn
0 in the likelihood function (V.3) and simply write L(Θr).

We define its normalized gradient and Hessian by

Ĝ = −∇L(Θ0
r) =

1

nη
XW ∗r and

Q̂ = ∇2L(Θ0
r) =

1

n
XX∗ . (A.1)

Proposition A.1. Let α,Cmin > 0 be defined by

λmin(Q0
S0,S0) ≡ Cmin

|||Q0
(S0)C ,S0

(
Q0
S0,S0

)−1 |||∞ ≡ 1− α . (A.2)

If the following conditions hold then the regularized least
square solution (V.2) correctly recovers the signed-support of
Θ0, i.e. sign(Θ0

r):

‖Ĝ‖∞ ≤
λα

3
, (A.3)

‖ĜS0‖∞ ≤
ΘminCmin

4k
− λ, (A.4)

|||Q̂(S0)C ,S0 −Q0
(S0)C ,S0 |||∞ ≤

α

12

Cmin√
k
, (A.5)

|||Q̂S0,S0 −Q0
S0,S0 |||∞ ≤

α

12

Cmin√
k
. (A.6)

Further the same statement holds for the continuous model
I.8, provided Ĝ and Q̂ are the gradient and the Hessian of
the likelihood (I.8).

The proof of Theorem V.1 consists in checking that, under
the hypothesis (V.6) on the number of consecutive config-
urations, conditions (A.4) to (A.6) hold with high proba-
bility. Checking these conditions can be regarded in turn
as concentration-of-measure statement. Indeed, if expectation
is taken with respect to a stationary trajectory, we have
E{Ĝ} = 0, E{Q̂} = Q0.

1) Technical lemmas: In this section we state the necessary
concentration lemmas for proving Theorem V.1. These are
non-trivial because Ĝ, Q̂ are quadratic functions of dependent
random variables

(
the samples {x(t)}0≤t≤n

)
. The proofs of

Proposition A.2 and Proposition A.3 can be found in Section
A-D2.

Our first Proposition implies concentration of Ĝ around 0.

Proposition A.2. Let S ⊆ [p] be any set of vertices and ε <
1/2. If σmax ≡ σmax(I + ηΘ0) < 1, then

P
{
‖ĜS‖∞ > ε

}
≤ 2|S| exp

(
−n(1− σmax) ε2/4

)
. (A.7)

Furthermore, we need to bound the matrix norms as per
(A.6) in proposition A.1. First we relate bounds on |||Q̂JS −
Q0

JS |||∞ with bounds on |Q̂ij −Q0
ij |, (i ∈ J, j ∈ S) where J

and S are any subsets of {1, ..., p}. Namely, we have

P(|||Q̂JS −Q0
JS)|||∞ > ε)

≤ |J ||S| max
i∈J,j∈S

P(|Q̂ij −Q0
ij | > ε/|S|). (A.8)

Then, we bound |Q̂ij −Q0
ij | using the following proposition

Proposition A.3. Let i, j ∈ {1, ..., p}, σmax ≡ σmax(I +
ηΘ0) < 1, T = ηn > 3/D and 0 < ε < 2/D where D =
(1− σmax)/η then,

P(|Q̂ij −Q0
ij)| > ε) ≤ 2 exp

(
− n

32η2
(1− σmax)3ε2

)
.

(A.9)

Finally, the next corollary follows from Proposition A.3 and
Eq. (A.8).
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Corollary A.4. Let J, S (|S| ≤ k) be any two subsets of
{1, ..., p} and σmax ≡ σmax(I + ηΘ0) < 1, ε < 2k/D and
nη > 3/D (where D = (1− σmax)/η) then,

P(|||Q̂JS −Q0
JS |||∞ > ε)

≤ 2|J |k exp

(
− n

32k2η2
(1− σmax)3ε2

)
. (A.10)

2) Outline of the proof of Theorem V.1: With these concen-
tration bounds we can now easily prove Theorem V.1. All we
need to do is to compute the probability that the conditions
given by Proposition A.1 hold. From the statement of the
theorem we have that the first two conditions (α,Cmin > 0)
of Proposition A.1 hold. In order to make the first condition
on Ĝ imply the second condition on Ĝ, we assume that
λα/3 ≤ (θminCmin)/(4k) − λ which is guaranteed to hold
if

λ ≤ θminCmin/8k. (A.11)

We also combine the two last conditions on Q̂, thus obtaining
the following sufficient condition

|||Q̂[p],S0 −Q0
[p],S0 |||∞ ≤

α

12

Cmin√
k
, (A.12)

since [p] = S0 ∪ (S0)C . We then impose that both the
probability of the condition on Q̂ failing and the probability
of the condition on Ĝ failing are upper bounded by δ/2 using
Proposition A.2 and Corollary A.4. It is shown in the end of
this section, Section A-D3, that this is satisfied if condition
(V.6) holds.

B. Proof of Theorem II.1

To prove Theorem II.1 we recall that Proposition A.1 holds
provided the appropriate continuous time expressions are used
for Ĝ and Q̂, namely

Ĝ = −∇L(Θ0
r) =

1

T

∫ T

0

x(t) dbr(t) ,

Q̂ = ∇2L(Θ0
r) =

1

T

∫ T

0

x(t)x(t)∗ dt . (A.13)

These are of course random variables. In order to distinguish
these from the discrete time version, we will adopt the notation
Ĝn, Q̂n for the latter. We claim that these random variables
can be coupled (i.e. defined on the same probability space)
in such a way that Ĝn → Ĝ and Q̂n → Q̂ almost surely as
n → ∞ for fixed T . Under assumption (II.6), and making
use of Lemma A.5 it is easy to show that (V.6) holds for all
n > n0 with n0 a sufficiently large constant.

Therefore, by the proof of Theorem V.1, the conditions in
Proposition A.1 hold for gradient Ĝn and Hessian Q̂n for any
n ≥ n0, with probability larger than 1−δ. But by the claimed
convergence Ĝn → Ĝ and Q̂n → Q̂, they hold also for Ĝ and
Q̂ with probability at least 1− δ which proves the theorem.

We are left with the task of showing that the discrete and
continuous time processes can be coupled in such a way that
Ĝn → Ĝ and Q̂n → Q̂. With slight abuse of notation, the
state of the discrete time system (V.1) will be denoted by x(i)

where i ∈ N and the state of continuous time system (I.1)
by x(t) where t ∈ R. We denote by Q0 the solution of (II.3)
and by Q0(η) the solution of (V.5). It is easy to check that
Q0(η) → Q0 as η → 0 by the uniqueness of stationary state
distribution. We couple the process as follows.

The initial state of the continuous time system x(t = 0) is
a N(0, Q0) random variable independent of b(t) and the initial
state of the discrete time system is defined to be x(i = 0) =
(Q0(η))1/2(Q0)−1/2x(t = 0). At subsequent times, x(i) and
x(t) are assumed to be generated by the respective dynamical
systems using the same matrix Θ0 using common randomness
provided by the standard Brownian motion {b(t)}0≤t≤T inRp.
In order to couple x(t) and x(i), we construct w(i), the noise
driving the discrete time system, by letting w(i) ≡ (b(Ti/n)−
b(T (i− 1)/n)).

The almost sure convergence Ĝn → Ĝ and Q̂n → Q̂
follows then from standard convergence of random walk to
Brownian motion.

Lemma A.5. Let σmax ≡ σmax(I + ηΘ0) and ρmin =
−λmax((Θ0 + (Θ0)∗)/2) > 0 then,

−λmin

(
Θ0 + (Θ0)∗

2

)
≥ lim sup

η→0

1− σmax

η
, (A.14)

lim inf
η→0

1− σmax

η
≥ −λmax

(
Θ0 + (Θ0)∗

2

)
. (A.15)

Proof:

1− σmax

η
=

1− λ1/2
max((I + ηΘ0)∗(I + ηΘ0))

η
(A.16)

=
1− λ1/2

max(I + η(Θ0 + (Θ0)∗) + η2(Θ0)∗Θ0)

η
(A.17)

=
1− (1 + ηu∗(Θ0 + (Θ0)∗ + η(Θ0)∗Θ0)u)1/2

η
,

(A.18)

where u is some unit vector that depends on η. Thus, since√
1 + x = 1 + x/2 + O(x2),

lim inf
η→0

1− σmax

η
= − lim sup

η→0
u∗
(

Θ0 + (Θ0)∗

2

)
u

≥ −λmax

(
Θ0 + (Θ0)∗

2

)
. (A.19)

The other inequality is proved in a similar way.

C. Proof of Theorem II.3

In order to prove Theorem II.3 we first state and prove the
following lemma,

Lemma A.6. Let G be a simple connected graph of vertex
degree bounded above by k. Let Θ̃ be its adjacency matrix
and Θ0 = −hI+ Θ̃ with h > k. Then, for this Θ0, the system
in (I.1) has Q0 = −(1/2)(Θ0)−1 and,

|||Q0
(S0)C ,S0(Q0

S0,S0)−1|||∞ = |||(Θ0
(S0)C ,(S0)C )−1Θ0

(S0)C ,S0 |||∞
≤ k/h. (A.20)
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Proof: Θ̃ is symmetric so Θ0 is symmetric. Since Θ̃
is irreducible and non-negative, Perron-Frobenious theorem
tells that λmax(Θ̃) ≤ k and consequently λmax(Θ0) ≤
−h + λmax(Θ̃) ≤ −h + k. Thus h > k implies that Θ0 is
negative definite and using equation (II.3) we can compute
Q0 = −(1/2)(Θ0)−1.

Now notice that, by the block matrix inverse formula, we
have

(Q0
S0,S0)−1 = −2C−1, (A.21)

Q0
(S0)C ,S0 =

1

2
((Θ0

(S0)C ,(S0)C )−1Θ0
(S0)C ,S0C), (A.22)

where C = Θ0
S0,S0 − Θ0

S0,(S0)C (Θ0
(S0)C ,(S0)C )−1Θ0

(S0)C ,S0

and thus

|||Q0
(S0)C ,S0(Q0

S0,S0)−1|||∞ = |||(Θ0
(S0)C ,(S0)C )−1Θ0

(S0)C ,S0 |||∞.
(A.23)

Recall the definition of the infinity norm of a matrix B, |||B|||∞,

|||B|||∞ = max
i

∑
j

|Bij |. (A.24)

Let z = h−1 and write,

(Θ0
(S0)C ,(S0)C )−1 = −z(I − zΘ̃(S0)C ,(S0)C )−1

= −z
∞∑
n=0

(zΘ̃(S0)C ,(S0)C )n, (A.25)

Θ0
(S0)C ,S0 = z−1zΘ̃(S0)C ,S0 . (A.26)

This allows us to conclude that

|||(Θ0
(S0)C ,(S0)C )−1Θ0

(S0)C ,S0 |||∞

is in fact the maximum over all path generating functions of
paths starting from a node i ∈ (S0)C and hitting S0 for a first
time. Let Ωi denote this set of paths, ω a general path in G
and |ω| its length. Let k1, ..., k|ω| denote the degree of each
vertex visited by ω and note that km ≤ k,∀m. Then each of
these path generating functions can be written in the following
form,∑
ω∈Ωi

z|ω| ≤
∑
ω∈Ωi

1

k1...k|ω|
(kz)|ω| = EG((kz)Ti,S0 ), (A.27)

where Ti,S0 is the first hitting time of the set S0 by a random
walk that starts at node i ∈ S0C and moves with equal
probability to each neighboring node. But Ti,S0 ≥ 1 and
kz < 1 so the previous expression is upper bounded by kz.

Now what remains to complete the proof of Theorem II.3
is to compute values for the upper bound constants α, θmin,
ρmin and Cmin in Theorem II.1 . From Lemma A.6 we can
set α = 1 − k/(k + m). In addition, clearly, we can choose
θmin = 1. We also have that σmin(Θ0) ≥ k+m−σmax(Θ̃) ≥

m+ k − k = m so we set ρmin = m. Finally, notice that

λmin(Q0
S0,S0) =

1

2
λmin(−(Θ0)−1)

=
1

2

1

λmax(−Θ0)

≥ 1

2

1

m+ k + k

≥ 1

4(m+ k)
, (A.28)

where in the last step we made use of the fact that m+k > k.
Hence, we choose Cmin = 1/(4(m + k)). Substituting these
values in the inequality from Theorem II.1 gives the desired
result.

D. Proofs of auxiliary results for the discrete-time model

1) Proof of Proposition A.1: In order to prove Proposition
A.1 we first introduce two technical lemmas.

The following Lemma is taken from the proof of Lemma 6
in [48].

Lemma A.7. For any subset S ⊆ [p] the following decompo-
sition holds,

Q̂SC ,S

(
Q̂S,S

)−1

= T1+T2+T3+Q0
SC ,S

(
Q0
S,S

)−1
, (A.30)

where,

T1 = Q0
SC ,S

((
Q̂S,S

)−1

−
(
Q0
S,S

)−1
)
, (A.31)

T2 = (Q̂SC ,S −Q0
SC ,S)

(
Q0
S,S

)−1
and (A.32)

T3 = (Q̂SC ,S −Q0
SC ,S)

((
Q̂S,S

)−1

−
(
Q0
S,S

)−1
)
. (A.33)

(A.34)

In addition, if |S| ≤ k, if |||Q0
SC ,S

(
Q0
S,S

)−1 |||∞ < 1 and
λmin(Q̂S,S) ≥ Cmin/2 > 0 the following relations hold,

|||T1|||∞ ≤
2
√
k

Cmin
|||Q̂S,S −Q0

S,S |||∞, (A.35)

|||T2|||∞ ≤
√
k

Cmin
|||Q̂SC ,S −Q0

SC ,S |||∞ and (A.36)

|||T3|||∞ ≤
2
√
k

C2
min

|||Q̂SC ,S −Q0
SC ,S |||∞|||Q̂S,S −Q0

S,S |||∞.
(A.37)

The following lemma, directly obtained from the proofs of
Proposition 1 in [48] and Proposition 1 in [3] respectively,
resumes the conditions that guarantee correct signed-support
reconstruction of Θ0

r .

Lemma A.8. If Q̂S0,S0 > 0, then the dual vector ẑ from the
KKT conditions of the optimization problem (V.2) satisfies the
following inequality,

‖ẑ(S0)C‖∞ ≤ |||Q̂(S0)C ,S0

(
Q̂S0,S0

)−1

|||∞(
1 +
‖ĜS0‖∞

λ

)
+
‖Ĝ(S0)C‖∞

λ
. (A.38)
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R̃(j) =



0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 0
ρ(m, j) ρ(m− 1, j) . . . ρ(1, j) ρ(0, j) 0 . . . 0 0

ρ(m+ 1, j) ρ(m, j) . . . ρ(2, j) ρ(1, j) ρ(0, j) . . . 0 0
...

...
. . .

...
...

...
. . . 0 0

ρ(m+ n− 1, j) ρ(m+ n− 2, j) . . . ρ(n, j) ρ(n− 1, j) ρ(n− 2, j) . . . ρ(0, j) 0


. (A.29)

In addition, if

‖ĜS0‖∞ ≤
θminλmin(Q̂S0,S0)

2k
− λ (A.39)

then ‖Θ0
r − Θ̂r‖∞ ≤ θmin/2. The same result holds for

problem (I.7).

Proof of Proposition A.1: To guarantee that our estimated
support is at least contained in the true support we need
to impose that ‖ẑSC‖∞ < 1. To guarantee that we do not
introduce extra elements in estimating the support and also to
determine the correct sign of the solution we need to impose
that ‖Θ0

r − Θ̂r‖∞ ≤ θmin/2.
Now notice that since λmin(Q0

S0,S0) = Cmin the relation
λmin(Q̂S0,S0) ≥ Cmin/2 is guaranteed as long as |||Q̂S0,S0 −
Q0
S0,S0 |||∞ ≤ Cmin/2. Using the norm triangle inequality

together with Lemma A.7 to bound |||...|||∞ in (A.38), it
is easy to see that the bounds of Proposition A.1 lead to
|ẑ(S0)C |∞ < 1 and to (A.39) being verified. In turn, these
lead to a correct recovery of the sign and support of Θ0

r .
2) Proof of Propositions A.2 and A.3: To prove the con-

centration bounds of Propositions A.2 and A.3 we need the
following lemmas.

Lemma A.9. Let r, j ∈ [p] and let ρ(τ, j) represent a p × p
matrix with all rows equal to zero except the rth row which
equals the jth row of (I + ηΘ0)

τ (the τ th power of I+ηΘ0 ).
Let R̃(j) ∈ R(n+m+1)p×(n+m+1)p be defined as in Eq. A.29.

Define R(j) = 1/2(R̃ + R̃∗) and let νi denote its ith

eigenvalue and assume σmax ≡ σmax(I + ηΘ0) < 1. Then,
p(n+m+1)∑

i=1

νi = 0, (A.41)

max
i
|νi| ≤

1

1− σmax
and (A.42)

p(n+m+1)∑
i=1

ν2
i ≤

1

2

n

1− σmax
. (A.43)

Proof: First it is immediate to see that
∑p(n+m+1)
i=1 νi =

Tr(R) = 0. Let I1τ represent a (n+m+ 1)× (n+m+ 1)
matrix with zeros everywhere and ones in the block-positions
of R(j) where ρ(τ, j) appears and I2τ represent a similar
matrix but with ones in the block-position of R(j) where
ρ(τ, j)∗ appears. Then R can be written as,

R =
1

2

(
m+n−1∑
τ=0

I1τ ⊗ ρ(τ, j) + I2τ ⊗ ρ(τ, j)∗

)
, (A.44)

where ⊗ denotes the Kronecker product of matrices. This
expression can be used to compute an upper bound on |νi|.
Namely,

max
i
|νi| = σmax(R)

≤
∞∑
τ=0

σmax(I1τ ⊗ ρ(τ, j))

≤
∞∑
τ=0

σmax(I1τ )σmax(ρ(τ, j))

≤
∞∑
τ=0

σmax(ρ(τ, j))

≤
∞∑
τ=0

στmax =
1

1− σmax
. (A.45)

For the other bound we do,
(n+m+1)p∑

i=1

ν2
i = Tr(R2)

≤ 2

4
n

∞∑
τ=0

Tr(ρ(τ, j)ρ(τ, j)∗)

=
1

2
n

∞∑
τ=0

‖ρ(τ, j)‖22

≤ 1

2
n
∞∑
τ=0

σ2τ
max

≤ 1

2

n

1− σmax
, (A.46)

where in the last step we used the fact that 0 ≤ σmax < 1.

Lemma A.10. Let j ∈ [p]. Define 8 ρ(τ, j) ∈ R1×p to be the
jth row of (I + ηΘ0)τ . Let Φj ∈ Rn×(n+m)p be defined as
in Eq. (A.40)

Let νl denote the lth eigenvalue of the matrix R(i, j) =
1/2(Φ∗jΦi + Φ∗iΦj) ∈ R(n+m)p×(n+m)p (where i ∈ [p]) and
assume σmax ≡ σmax(I + ηΘ0) < 1 then,

|νl| ≤
1

(1− σmax)2
and (A.47)

1

n

(n+m)p∑
l=1

ν2
l ≤

2

(1− σmax)3

(
1 +

3

2n

1

1− σmax

)
. (A.48)

8Note that, with regards to Lemma A.9, we are redefining the meaning of
ρ(τ, j)
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Φj =


ρ(m, j) ρ(m− 1, j) . . . ρ(1, j) ρ(0, j) 0 . . . 0

ρ(m+ 1, j) ρ(m, j) . . . ρ(2, j) ρ(1, j) ρ(0, j) . . . 0
...

...
. . .

...
...

...
. . . 0

ρ(m+ n− 1, j) ρ(m+ n− 2, j) . . . ρ(n, j) ρ(n− 1, j) ρ(n− 2, j) . . . ρ(0, j)

 . (A.40)

Proof: The first bound can be proved in a trivial manner.
In fact, since for any matrix A and B we have σmax(A+B) ≤
σmax(A) + σmax(B) and σmax(AB) ≤ σmax(A)σmax(B) we
can write

max
l
|νl| = σmax(1/2(Φ∗jΦi + Φ∗iΦj))

≤ 1/2(σmax(Φ∗jΦi) + σmax(Φ∗iΦj)) (A.49)

≤ σmax(Φ∗iΦj)

≤ 1

(1− σmax)2
, (A.50)

where in the last inequality we used the fact σmax(Φj) ≤
1/(1− σmax). The proof of this last fact is just a copy of the
proof of the bound (A.42) in Lemma A.9.

Now notice that Φ∗iΦj can be written as a block matrix(
Ã D̃

C̃ B̃

)
(A.51)

where Ã, B̃, C̃ and D̃ are block-matrices. Each block is a p
by p matrix. Ã has p× p blocks, B̃ has n× n blocks, C̃ has
n×m blocks and D̃ has m×n blocks. If we index the blocks
of each matrix with the indices x, y these can be described in
the following way

Ãxy =

m∑
s=1

ρ(m− x+ s, i)∗ρ(m− y + s, j) (A.52)

B̃xy =

n−x∑
s=0

ρ(s, i)∗ρ(s+ x− y, j), x ≥ y (A.53)

B̃xy =

n−y∑
s=0

ρ(s+ y − x, i)∗ρ(s, j), x ≤ y (A.54)

C̃xy =

n−x∑
s=0

ρ(s, i)∗ρ(m− y + x+ s, j) (A.55)

D̃xy =

n−y∑
s=0

ρ(m− x+ y + s, i)∗ρ(s, j). (A.56)

With this in mind and denoting by A,B,C and D the
‘symmetrized’ versions of these same matrices (e.g.: A =
1/2(Ã+ Ã∗)) we can write,
(n+m)p∑
l=1

ν2
l = Tr(R(i, j)2) = Tr(A2) + Tr(B2) + 2Tr(CD).

(A.57)
We now compute a bound for each one of the terms. We
exemplify in detail the calculation of the first bound only.
First write,

Tr(A2) =

m∑
x=1

m∑
y=1

Tr(AxyA
∗
xy). (A.58)

Now notice that each Tr(AxyA∗xy) is a sum over τ1, τ2 ∈ [m]
of terms of the type,

(ρ(m− x+ τ1, i)
∗ρ(m− y + τ1, j)

+ ρ(m− x+ τ1, j)
∗ρ(m− y + τ1, i))

× (ρ(m− y + τ2, j)
∗ρ(m− x+ τ2, i)

+ ρ(m− y + τ2, i)
∗ρ(m− x+ τ2, j)). (A.59)

The trace of a matrix of this type can be easily upper bounded
by

(σmax)m−x+τ1+m−y+τ1+m−y+τ2+m−x+τ2

= (σmax)2(m−x)+2(m−y)+2τ1+2τ2 (A.60)

which finally leads to

Tr(A2) ≤ 1

(1− σmax)4
. (A.61)

Similarly for the other terms

Tr(B2) ≤
n,n∑
x,y

∑
τ1,τ2

σ2τ1+2τ2+2|x−y|
max ≤ 2n

(1− σmax)3

(A.62)

Tr(DC) =

m∑
x=1

n∑
y=1

Tr(CxyDyx)

≤
m,n,n−y,n−y∑
x,y,τ1,τ2

σ2(m−x)+2y+2τ1+2τ2
max

≤ 1

(1− σmax)4
. (A.63)

Putting all these together leads to the desired bound.

Proof of Proposition A.2: We will start by proving that
this exact same bound holds when the probability of the
event {‖ĜS‖∞ > ε} is computed with respect to a trajectory
{x(t)}nt=−m that is initiated at instant t = −m with the value
x(−m) = w(−m). Assume we have done so. Now notice
that as m→∞, X converges in distribution to n consecutive
samples from the model (V.1) when this is initiated from
stationary state. Since ‖ĜS‖∞ is a continuous function of
X = [x(0), ..., x(n − 1)], by the Continuous Mapping The-
orem, ‖ĜS‖∞ converges in distribution to the corresponding
random variable in the case when the trajectory {x(i)}ni=0

is initiated from stationary state. Since the probability bound
does not depend on m we have that this same bound holds
for stationary trajectories too.

We now prove our initial claim. Recall that Ĝj =
(XjW

∗
r )/(nη). Since X is a linear function of the indepen-

dent Gaussian random variables W we can write XjW
∗
r =

ηz∗R(j)z, where z ∈ Rp(n+m+1) is a vector of i.i.d. N(0, 1)
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random variables and R(j) ∈ Rp(n+m+1)×p(n+m+1) is the
symmetric matrix defined in Lemma A.9.

Now apply the standard Bernstein method. First by union
bound we have

P
{
‖ĜS‖∞ > ε

}
≤ 2|S| max

j∈S
P
{
z∗R(j)z > nε

}
.

Next denoting by {νi}1≤i≤p(n+m+1) the eigenvalues of R(j),
we have, for any γ > 0,

P
{
z∗R(j)z > nε

}
= P

{ p(n+m+1)∑
i=1

νiz
2
i > nε

}
≤ e−nγε

p(n+m+1)∏
i=1

E
{
eγνiz

2
i
}

= exp

−n(γε+
1

2n

(n+m+1)p∑
i=1

log(1− 2νiγ)
) .

Let γ = 1
2 (1−σmax)ε. Using the bound obtained for maxi |νi|

in Eq. (A.42) (Lemma A.9) we have |2νiγ| ≤ ε. Now notice
that if |x| < 1/2 then log(1 − x) > −x − x2. Thus, if we
assume ε < 1/2 and given that

∑(n+m+1)p
i=1 νi = 0 (see

Eq. (A.41) in Lemma A.9) we can continue the chain of
inequalities,

P(‖ĜS‖∞ > ε)

≤ 2|S|max
j

exp

−n(γε− 2γ2 1

n

(n+m+1)p∑
i=1

ν2
i

)
≤ 2|S| exp

(
−n

2
(1− σmax)ε2

(
1 +

1

2

1− σmax

1− σmax

))
≤ 2|S| exp

(
−n

4
(1− σmax)ε2

)
. (A.64)

where the second inequality is obtained using the bound in
Eq. (A.43) from Lemma A.9.

Proof of Proposition A.3: The proof is very similar to that
of proposition A.2. We will first show that the bound

P(|Q̂ij − E(Q̂ij)| > ε) ≤ 2e
− n

32η2
(1−σmax)3ε2

, (A.65)

holds in the case where the probability measure and expecta-
tion are taken with respect to trajectories {x(i)}ni=0 that started
at time instant t = −m with x(−m) = w(−m). Assume we
have done so. Now notice that as m → ∞, X converges in
distribution to n consecutive samples from the model V.1 when
this is initiated from stationary state. In addition, as m→∞,
we have from lemma A.11 that E(Q̂ij) → Q0

ij . Since Q̂ij is
a continuous function of X = [x(0), ..., x(n − 1)], a simple
application of the Continuous Mapping Theorem plus the fact
that the upper bound is continuous in ε leads us to conclude
that the bound also holds when the system is initiated from
stationary state.

To prove our initial statement first recall the definition of Q̂
and notice that we can write,

Q̂ij =
η

n
z∗R(i, j)z, (A.66)

where z ∈ Rm+n is a vector of i.i.d. N(0, 1) and R(i, j) ∈
R(n+m)×(n+m) is defined as in lemma A.10. Letting νl denote
the lth eigenvalue of the symmetric matrix R(i, j) we can
further write,

Q̂ij − E(Q̂ij) =
η

n

(n+m)p∑
l=1

νl(z
2
l − 1). (A.67)

By Lemma A.10 we know that,

|νl| ≤
1

(1− σmax)2
and (A.68)

1

n

(n+m)p∑
l=1

ν2
l ≤

2

(1− σmax)3

(
1 +

3

2n

1

1− σmax

)
≤ 3

(1− σmax)3
, (A.69)

where we applied T > 3/D in the last line.
Now we are done since applying Bernstein method, this

time with γ = 1/8 (1− σmax)3ε/η, and making again use of
the fact that log(1− x) > −x− x2 for |x| < 1/2 we get,

P(Q̂ij − E(Q̂ij) > ε)

= P
( (n+m)p∑

l=1

νl(z
2
l − 1) > εn/η

)
≤ e− γεnη e−γ

∑(n+m)p
l=1 νle−1/2

∑(m+n)p
l=1 log(1−2γνl)

≤ e− γεnη −γ
∑(n+m)p
l=1 νl+γ

∑(n+m)p
l=1 νl+2γ2 ∑(n+m)p

l=1 ν2
l

≤ e−
n

32η2
(1−σmax)3ε2

. (A.70)

Above, in order to apply the bound on log(1−x), we require
that ε < 2/D.

An analogous reasoning leads us to,

P(Q̂ij − E(Q̂ij) < −ε) ≤ e−
n

32η2
(1−σmax)3ε2 (A.71)

and the results follows.

Lemma A.11. As before, assume σmax ≡ σmax(I+ηΘ0) < 1
and consider that model (V.1) was initiated at time −m with
x(−m) = w(−m) then

|E(Q̂ij)−Q0
ij | ≤

1

n+m

η

(1− σmax)2
. (A.72)

Proof: Let ρ = I + ηΘ0. Taking the expectation of Q̂ij
in (A.66), and recalling that z is a vector of i.i.d. standard
Gaussian variables, we can write,

E(Q̂ij) = η

n+m−1∑
l=0

m+ n− l
n+m

(ρlρ∗l)ij . (A.73)

We also have that

Q0
ij = η

∞∑
l=0

(ρlρ∗l)ij . (A.74)
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This last expression can be proved, for example, by taking
n→∞ in (A.73). Putting these two expressions together we
obtain

Q0
ij − E(Q̂ij)

= η

( ∞∑
l=m+n

(ρlρ∗l)ij +

n+m−1∑
l=1

l

m+ n
(ρlρ∗l)ij

)
.

(A.75)

Using the fact that for any matrix A and B maxij(Aij) ≤
σmax(A), σmax(AB) ≤ σmax(A)σmax(B) and σmax(A +
B) ≤ σmax(A) + σmax(B), and introducing the notation
ζ = ρ2, we can write,

|E(Q̂ij)−Q0
ij | ≤ η

(
ζn+m

1− ζ +
ζ

n+m

m+n−2∑
l=0

ζl

)

=
η(ζ2 + ζn+m − 2ζm+n+1)

(m+ n)(1− ζ)2

≤ η

(m+ n)(1− σmax)2
. (A.76)

Above, we used the fact that for ζ ∈ [0, 1] and n ∈ N we
have 1− ζ ≥ 1−√ζ and ζ2 + ζn − 2ζ1+n ≤ 1.

3) Proof of Theorem V.1 for discrete case system: In order
to prove Theorem V.1 we need to compute the probability that
the conditions given by Proposition A.1 hold.

From the statement of the theorem we have that the two
conditions, α,Cmin > 0, of Proposition A.1 hold.

In order to make the first condition on Ĝ imply the second
condition on Ĝ we assume that

λα

3
≤ θminCmin

4k
− λ (A.77)

which is guaranteed to hold if

λ ≤ θminCmin/8k. (A.78)

We also combine the two last conditions on Q̂ and obtain
the sufficient condition

|||Q̂[p],S0 −Q0
[p],S0 |||∞ ≤

α

12

Cmin√
k
. (A.79)

Note that [p] = S0 ∪ (S0)c.
We then impose that both the probability that condition

(A.79) on Q̂ fails and the probability that condition (A.3) on
Ĝ fails are upper bounded by δ/2. Using Proposition A.2, we
can guarantee that the condition on Ĝ fails with probability
smaller than δ/2 if we set

λ2 = 36α−2(nηD)−1 log(4p/δ). (A.80)

Since we also want (A.78) to be satisfied, we substitute λ from
the previous expression in (A.78) and we conclude that n must
satisfy

n ≥ 2304k2Cmin
−2θmin

−2α−2(Dη)−1 log(4p/δ). (A.81)

Since in addition, the application of the probability bound in
Proposition A.2 requires that

λ2α2

9
< 1/4, (A.82)

we need to impose further that,

n ≥ 16(Dη)−1 log(4p/δ). (A.83)

To use Corollary A.4 for computing the probability that the
condition on Q̂ holds we need that,

nη > 3/D, (A.84)

and
αCmin

12
√
k
< 2kD−1. (A.85)

The last expression imposes the following conditions on k,

k3/2 > 24−1αCminD. (A.86)

We then have that the condition on Q̂ holds with probability
smaller than 1/2 if

n > 4608η−1k3α−2Cmin
−2D−3 log 4pk/δ. (A.87)

Note that the restriction (A.86) on k looks unfortunate but,
since k ≥ 1, we can actually show it always holds. Just notice
α < 1 and that

σmax(Q0
S0,S0) ≤ σmax(Q0) ≤ η

1− σmax

⇔ D ≤ σ−1
max(Q0

S0,S0) (A.88)

therefore CminD ≤ σmin(Q0
S0,S0)/σmax(Q0

S0,S0) ≤ 1. This
last expression also allows us to simplify the four restrictions
on n (namely (A.81), (A.83), (A.84) and (A.87)) into a single
one that dominates them. In fact, since CminD ≤ 1 we
also have C−2

minD
−2 ≥ C−1

minD
−1 ≥ 1 and this allows us to

conclude that the only two conditions on n that we actually
need to impose are the one at Equations (A.81), and (A.87).
A little more of algebra shows that these two inequalities are
satisfied if

nη >
104k2(kD−2 + θ−2

min)

α2DC2
min

log(4pk/δ). (A.89)

This concludes the proof of Theorem V.1.

APPENDIX B
PROOFS OF THE LOWER BOUNDS ON THE

SAMPLE-COMPLEXITY OF GENERAL RECONSTRUCTION
ALGORITHMS

In this section we prove Theorem II.2 and Theorem V.2 to
Theorem V.5.

Throughout, {x(t)}t≥0 is assumed to be a stationary pro-
cess. It is immediate to check that under the assumptions of
the Theorems II.2 and V.4, the SDE admit a unique stationary
measure, with bounded covariance Q0. Recall that

Q0 = E{x(0)x(0)∗} − E{x(0)}(E{x(0)})∗ (B.1)
= E{x(t)x(t)∗} − E{x(t)}(E{x(t)})∗. (B.2)
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A. A general bound for linear SDEs

Before passing to the actual proofs, it is useful to establish a
general bound for linear SDEs (I.6) with symmetric interaction
matrix Θ0.

Lemma B.1. Assume that {x(t)}t≥0 is a stationary pro-
cess generated by the linear SDE (I.6), with Θ0 symmetric.
Let M̂T (XT ) be an estimator of M(Θ0) based on XT . If
P(M̂T (XT ) 6= M(Θ0)) < 1

2 then

T ≥ H(M(Θ0))− log(|M|)− 2I(Θ0;x(0))− 2
1
2Tr{E{−Θ0} − (E {−(Θ0)

−1})−1}}
, (B.3)

where |M| is the size of the alphabet of M(Θ0).

Proof: The bound follows from Corollary V.3 after show-
ing that

Ex(0){VarΘ0|x(0)(Θ
0x(0)))

≤ (1/2)Tr{E{−Θ0} − (E {−(Θ0)
−1})−1}. (B.4)

First note that

Ex(0){VarΘ0|x(0)(Θ
0x(0))}

= Ex(0)‖Θ0x(0)− EΘ0|x(0)(Θ
0x(0)|x(0))‖22. (B.5)

The quantity in (B.5) can be thought of as the `2-
norm error of estimating Θ0x(0) based on x(0) us-
ing EΘ0|x(0)(Θ

0x(0)|x(0)). Since conditional expectation
is the minimal mean square error estimator, replacing
EΘ0|x(0)(Θ

0x(0)|x(0)) by any estimator of Θ0x(0) based on
x(0) gives an upper bound for the expression in (B.5). We
choose as an estimator a linear estimator, i.e., an estimator of
the form Bx(0) where B = (EΘ0Θ0Q0)(EΘ0Q0)−1. We then
have

Ex(0)||Θ0x(0)− EΘ0|x(0)(Θ
0x(0)|x(0))||22

≤ Ex(0)||Θ0x(0)−Bx(0)||22
= Tr{E{Θ0x(0)(x(0))∗Θ0∗}}
− 2Tr{BE{x(0)(x(0))∗Θ0∗}}
+ Tr{BE{x(0)(x(0))∗}B∗}. (B.6)

Furthermore, for a linear system, Q0 satisfies the Lyapunov
equation Θ0Q0 + Q0(Θ0)

∗
+ I = 0. For Θ0 symmetric, this

implies Q0 = −(1/2)(Θ0)
−1. Substituting this expression in

(B.5) and (B.6) finishes the proof.

B. Proof of Theorem II.2

We prove Theorem II.2 by showing that the same com-
plexity bound holds in the case when we are trying to
estimate the signed support of Θ0 for an Θ0 that is uniformly
randomly chosen with a distribution supported on A(S) and
we simultaneously require that the average probability of error
is smaller than 1/2. This guarantees that, unless the bound
holds, there exists A ∈ A(S) for which the probability of
error is bigger than 1/2. The complexity bound for random
matrices Θ0 is proved using Lemma B.1 together with Lemma
B.2 about random matrices.

More specifically, we generate Θ0 at random as follows.
Let G be the random matrix constructed from the adjacency

matrix of a uniformly random k-regular graph. Generate Θ̃0 by
flipping the sign of each non-zero entry in G with probability
1/2 independently. We define Θ0 to be the random matrix
Θ0 = −(γ+2θmin

√
k − 1)I+θminΘ̃0 where γ = γ(Θ̃0) > 0

is the smallest value such that the maximum eigenvalue of Θ
is smaller than −ρ. This guarantees that Θ0 satisfies the four
properties of the class A(S).

The following lemma encapsulates the necessary random
matrix calculations to prove the complexity bound for random
matrices.

Lemma B.2. Let Θ be a random matrix defined as above and

Q(θmin, k, ρ) ≡ lim
p→∞

1

p
{Tr{E(−Θ)} − Tr{(E(−Θ−1))−1}}.

Then, there exists a constant C ′ only dependent on k such that

Q(θmin, k, ρ) ≤ min
{C ′kθ2

min

ρ
,
kθmin√
k − 1

}
. (B.7)

Proof: First notice that

lim
p→∞

1

p
ETr{−Θ} = lim

p→∞
E(γ) + 2θmin

√
k − 1

= ρ+ 2θmin

√
k − 1 (B.8)

since by Kesten-McKay law [49], for large p, the spectrum of
Θ̃ has support in (−ε− 2θmin

√
k − 1, 2θmin

√
k − 1 + ε) with

high probability. Notice that unless we randomize each entry
of Θ̃ with {−1,+1} values, every Θ̃ will have k as its largest
eigenvalue and the above limit will not hold.

For the second term, Tr{(E(−Θ−1))−1}, we will compute a
lower bound. For that purpose let λi > 0 be the ith eigenvalue
of the matrix E(−Θ−1). We can write,

1

p
Tr{(E(−Θ−1))−1} =

1

p

p∑
i=1

1

λi

≥ 1
1
p

∑p
i=1 λi

=
1

E{ 1
pTr{(−Θ)−1}} (B.9)

where we applied Jensen’s inequality in the last step. By
Kesten-McKay law we now have that,

lim
p→∞

E
{1

p
Tr{(−Θ)−1}

}
= E

{
lim
p→∞

1

p
Tr{(−Θ)−1}

}
=

1

θmin
G(k, ρ/θmin + 2

√
k − 1) (B.10)

where

G(k, z) =

∫ −1

ν − zdµ(ν). (B.11)

Above, µ(ν) is the Kesten-McKay distribution and, inside its
support, ν ∈ [−2

√
k − 1,−2

√
k − 1], it is defined by

dµ(ν) =
k

2π

√
4(k − 1)− ν2

k2 − ν2
dν.

The integral (B.11) can be computed exactly

G(k, z) = − (k − 2)z − k
√
−4k + z2 + 4

2 (z2 − k2)
. (B.12)



22

From the closed form expression for G(k, z) one can see that

lim
ρ→0

Q(θmin, k, ρ) =
θmink√
k − 1

and (B.13)

lim
ρ→∞

ρQ(θmin, k, ρ) = k(θmin)2. (B.14)

Finally, notice that Q(θmin, k, ρ)/θmin can be see as func-
tion of k and ρ/θmin alone. In addition, because it is
strictly decreasing with ρ/θmin, the limits above imply that
Q(θmin, k, ρ)/θmin ≤ k/

√
k − 1 and that there is a large C ′

such that Q(θmin, k, ρ)/θmin ≤ C ′kθmin/ρ for ρ sufficiently
high. From these two bounds, the proof follows.

Proof (Theorem II.2): We now show that when Θ0 is
chosen at random from A(S), the right hand side of (B.3)
reduces to the right hand side of (II.8) in Theorem II.2.

Starting from the bound of Lemma B.1, we divide both
terms in the numerator and the denominator by p. Notice that
we can ignore the term 2/p in the numerator when p→∞.

Recall that Θ0 is built from the adjacency matrix of
a regular graph chosen uniformly at random and whose
entries have had their sign flipped with probability 1/2.
Therefore, since M(Θ0) is the sign-support of Θ0, we
have H(M(Θ0)) = log(|M|). Hence, we can write
p−1(2H(M(Θ0)) − log(|M|)) = p−1 log(|M|). In addition,
|M| = 2pk/2|R|, where |R| is the number of regular graphs
of degree k on p nodes and 2pk/2 accounts for the sign flips
in the non-zero non-diagonal entries 9. From [50], we know
that log(|R|) ≥ Cpk log(2p/k) for small enough constant C.
And therefore, log(|M|)/p ≥ (k/2) log(2) +Ck log(2p/k) ≥
C ′k log(2p/k) for all p large enough and small enough C ′.

Lemma B.2 gives an upper bound on the denominator when
p→∞.

To finish the proof of Theorem II.2, we show that
limp→∞ I(x(0); Θ0)/p ≤ 1. This finishes the proof since,
after multiplying by a small enough constant (only dependent
on k), the bound obtained by replacing the numerator and
denominator with the above limiting lower bounds will be
valid for all p large enough.

First notice that h(x(0)) ≤ (1/2) log(2πe)p|E(Q0)| and
hence,

I(x(0); Θ0) = h(x(0))− h(x(0)|Θ0) (B.15)

≤ 1

2
log(2πe)p|E(Q0)| − E

1

2
log(2πe)p|Q0|, (B.16)

where Q0 = −(1/2)(Θ0)
−1 is the covariance matrix

of the stationary process x(t) and |.| denotes the
determinant of a matrix. Then we write, I(x(0); Θ0) ≤
(1/2) log |E(−(βΘ0)−1)| + (1/2)E log(| − βΘ0|) ≤
1
2 TrE(−I − (βΘ0)−1) + 1

2ETr{−I − βΘ0} where β > 0 is
an arbitrary rescaling factor and the last inequality follows
from the matrix inequality log(I + (.)) ≤ Tr(.). From this
and equations (B.8) and (B.10) it follows that,

lim
p→∞

1

p
I(x(0); Θ0) ≤ −1 + (1/2)(β′z + β′−1G(k, z))

(B.17)

9Notice that diagonal entries are constant and equal to γ+ 2θmin

√
k − 1.

where z = ρ/θmin +2
√
k − 1 and β′ = βθmin. To finish, note

that optimizing over β′ and then over z gives,

β′z + β′−1G(k, z) ≤ 2
√
zG(k, z) ≤

√
8(k − 1)

k − 2
≤ 4.

(B.18)

C. Proof of Theorem V.4

The proof of this theorem follows closely the proof of
Theorem II.2. Basically, the claim follows by proving that
the bound (V.9) holds for an Θ0 chosen at random with a
distribution supported on A(D).

Again, in order to lower bound the sample-complexity for
random matrices, we make use of Lemma B.1.

Now, however, we construct the random matrix Θ0 as
follows. Let Θ̃0 be a random symmetric matrix with zero-
diagonal and with {θij}i<j i.i.d. random variables where
P(θij = θmin) = P(θij = −θmin) = 1/4, and P(θij =
0) = 1/2. Notice that the second moment of each entry
i 6= j is E(Θ2

ij) = θ2
min/2 ≡ α. We then define Θ0 =

−(γ + 2
√
α)I + Θ̃0/

√
p where γ = γ(Θ̃0) is the smallest

value that guarantees that λmin(−Θ) ≥ ρ.
The following Lemma contains a matrix theory calculation

that will be later used in this proof when applying Lemma
B.1. Recall that we defined α = θ2

min/2.

Lemma B.3. Let Θ be a random matrix defined as above and

Q(θmin, ρ) ≡ lim
p→∞

1

p
{Tr{E(−Θ)} − Tr{(E(−Θ−1))−1}}.

(B.19)

Then, there exists a constant C ′ such that

Q(Amin, ρ) ≤ min{C
′θ2

min

2ρ
,
θmin√

2
}. (B.20)

Proof: Using Wigner’s Semicircle law for random sym-
metric matrices [51] and the bound described in (B.9) it
follows that,

lim
p→∞

1

p
{Tr{E(−Θ)} = ρ+ 2

√
α and (B.21)

C(α, ρ) ≡ lim
p→∞

E{1

p
Tr{(−Θ)−1}} (B.22)

=
−
√
ρ (4
√
α+ ρ) + 2

√
α+ ρ

2α
. (B.23)

Since C(α, ρ) = α−1/2C(1, ρ/
√
α), we can write ρ +

2
√
α− (C(α, ρ))−1 =

√
αG(ρ/

√
α) where G(x) is a strictly

decreasing function. Since limρ→0 =
√
αG(ρ/

√
α) =

√
α

and limρ→∞ ρ
√
αG(ρ/

√
α) = α it follows that there is a

constant C ′ independent of α or ρ such that
√
αG(ρ/α) ≤√

αmin{1, C ′√α/ρ}. The result now follows by replacing
α = Θ2

min/2.

Proof (Theorem V.4): Like in the proof of Theorem
II.2 we start by dividing both numerator and denominator
of (B.3) in Lemma B.1 by p. By multiplying the resulting
expression by an appropriately small constant we can replace
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the denominator and limp→∞ I(x(0); Θ0)/p by their limits
when p → ∞ and get an expression that is still valid for all
p large enough.

Let us produce a lower bound for 2H(M(Θ0))− log(|M|).
First notice that we again have, H(M(Θ0)) = log(|M|) since
every M(Θ0) is equally likely. Therefore, 2H(M(Θ0)) −
log(|M|) = H(M(Θ0)).

Since H(M(Θ0))/p = p−1
2 H({1/2, 1/4, 1/4}) ≥

(p−1)
4 log 2 10, and since by Lemma B.3 we already know

the limiting expression of the denominator, all we have to do
is find limp→∞ I(x(0); Θ0)/p. By an analysis very similar to
that in the proof of Theorem II.2 one can show that

lim
p→∞

1

p
I(x(0); Θ0) ≤ −1 +

√
(z + 2)C(1, z) ≤ 1. (B.24)

where C(α, ρ) was defined in (B.22), which finishes the proof.

D. Proof of Theorem V.5

The proof consists in evaluating the lower bound in Corol-
lary V.3. We prove the theorem by showing the bound holds
for functions uniformly chosen over a specific subset of A(N).
Consider the set of functions such that for each possible
support of a p× p matrix with at most k non-zero entries per
row there is one and only one function in the family with JF
having that support for all x. Note that this implies that, when
evaluating V.3, here with M = A(N), we have log(|M|) =
H(M(Θ0)). Hence 2H(M(Θ0))− log(|M|) = H(M(Θ0)).

Now notice that Ex(0)Varx(0)|Θ0F (x(0); Θ0) ≤
E(||F (x(0); Θ0)||2). Secondly notice that, if x and x′

only differ on the jth component and (JF )ij 6= 0 then
|Fi(x; Θ0)| ≤ |Fi(x′; Θ0)| + D||x′ − x||. Since JF has
at most k non-zero entries per row, we get that for any
x and x′, |Fi(x; Θ0)| ≤ |Fi(x′; Θ0)| + kD||x′ − x||. If
x = x(0) and x′ = Ex(0)|Θ0(x(0)|Θ0) then squaring
the previous expression and taking expectations gives us
Ex(0)|Θ0(Fi(x; Θ0)2|Θ0) ≤ 2Fi(x

′; Θ0)2 + 2k2D2B. From
this we get that E(||F (x(0); Θ0)||2)/p ≤ C + 2k2D2B
where C is a constant independent of Θ0. For this sub
family of functions we have H(M(Θ0)) ≥ pk log(p/k)
(see [50]). By (B.16), we know that I(x(0); Θ0) ≤
(1/2) log((2πe)p|EQ0|) − (1/2)E log((2πe)p|Q0|). The first
term, which is the entropy of a p-dimensional Gaussian
with covariance matrix E{Q0}, can be upper bounded
by the sum of the entropy of its individual components,
which have variance upper bounded by B. Finally, since
λmin(Q0) ≥ L, we have log |Q0| ≥ p logL and therefore
I(x(0); Θ0) ≤ p/2 logB/L, which completes the proof.

10H({1/2, 1/4, 1/4}) is the entropy of the distribution {1/2, 1/4, 1/4}.
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