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Preface

Graphical models provide a flexible and yet powerful language to describe high di-

mensional probability distributions. Over the last 20 years, graphical models methods

have been successfully applied to a broad range of problems, from computer vision to

error correcting codes to computational biology, to name a few.

In a graphical model, the graph structure characterizes the conditional indepen-

dence properties of the underlying probability distributions. Roughly speaking, it

encodes key information about which variables influence each other. It allows us to

answer questions of the type: are variablesX and Y dependent because they ‘interact’

directly, or because they are both dependent on a third variable Z? In many applica-

tions, this information has utmost practical importance, and it is therefore crucial to

develop efficient algorithms to learn the graphical structure from data. This problem

is largely unsolved and for a long time several heuristics have been used without a

solid theoretical foundation in place.

In the first part of this work, we consider the problem of learning the structure

of Ising models (pairwise binary Markov random fields) from i.i.d. samples. While

several methods have been proposed to accomplish this task, their relative merits and

limitations remain somewhat obscure. By analyzing a number of concrete examples,

we show that low-complexity algorithms often fail when the Markov random field

develops long-range correlations. More precisely, this phenomenon appears to be

related to the Ising model phase transition (although it does not coincide with it).

An example of an important algorithm that exhibits this behavior is the ℓ1-

regularized logistic regression estimator introduced by Ravikumar et al. [94]. Raviku-

mar et al. [94] proved a set sufficient conditions under which this algorithm exactly
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learns Ising models, the most interesting being a so-called incoherence condition. In

this thesis we show that this incoherence condition is also necessary and analytically

establish whether it holds for several families of graphs. In particular, denoting by θ

the edge strength and by ∆ the maximum degree, we prove that regularized logistic

regression succeeds on any graph with ∆ ≤ 3/(10θ) and fails on most regular graphs

with ∆ ≥ 2/θ.

In the second part of this work, we address the important scenario in which data

is not composed of i.i.d. samples. We focus on the problem of learning the drift

coefficient of a p-dimensional stochastic differential equation (SDE) from a sample

path of length T . We assume that the drift is parametrized by a high-dimensional

vector, and study the support recovery problem in the case where p is allowed to grow

with T .

In particular, we describe a general lower bound on the sample-complexity T

by using a characterization of mutual information as a time integral of conditional

variance, due to Kadota, Zakai, and Ziv. For linear SDEs, the drift coefficient is

parametrized by a p-by-p matrix which describes which degrees of freedom interact

under the dynamics. In this case, we analyze an ℓ1-regularized least-squares estimator

and describe an upper bound on T that nearly matches the lower bound on specific

classes of sparse matrices.

We describe how this same algorithm can be used to learn non-linear SDEs and

in addition show by means of a numerical experiment why one should expect the

sample-complexity to be of the same order as that for linear SDEs.
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Chapter 1

Introduction

In a nutshell, in this thesis we look at stochastic models parametrized by an unknown

graph - graphical models - and address the following question:

Question. Is it possible to recover the graph from data?

1.1 Graphical models

Graphical models are a language to compactly describe large joint probability dis-

tributions using a set of ‘local’ relationships among neighboring variables in a graph

[33, 74, 77, 71]. The ‘local’ relationships are described by functions involving neigh-

boring variables in this graph that are related to conditional probability distributions

over these variables. The product of these functions equals the joint distribution. Let

us be precise. Given a set of variables x = {x1, ..., xp} that take a value in {−1,+1},
we can start from a local model of how likely it is that any two variables assume the

same value, −1 or +1, and obtain a joint model for the probability that x takes a

certain value in {−1, 1}p. For example, the local model can describe two scenarios:

any two variables xi, xj , are either ‘connected’ with strength θij 6= 0 or ‘disconnected’,

θij = 0. If two variables xi and xj are connected, we include a factor eθijxixj in the

joint probability distribution, and if disconnected, we include a factor 1. Given a

1



CHAPTER 1. INTRODUCTION 2

weighted graph G = (V,E) with vertex set V and edge set E, (V = [p] ≡ {1, ..., p},
E = {(i, j) : θi,j 6= 0}) and assuming every two variables obey the same local model

described above, the joint probability distribution of a configuration of x is given by

PG(x) =
1

ZG

∏

(i,j)∈E
eθijxixj , (1.1.1)

where ZG is a normalization constant. The above model is an example of a graphical

model and is known as the Ising model.

Graphical models find many applications. For example, the above model has been

used to understand the evolution of opinions in closed communities [105]. There, G

describes a set of acquaintanceships among individuals in a community. Individuals

‘connected’ by a positive bond θij > 0 are more likely to assume the same opinion,

−1 or −1, on a given matter. Ising models are also used in computer vision, where

G describes a set of pixels in an image to be de-noised [112, 79] or pixels in a pair of

stereoscopic images to be used for depth perception [106]. Computational biologists

use other graphical models where G represents a network of interacting genes that

regulate cell activities [48, 47, 73, 58] or the amino-acids in a protein that interact

with themselves and other bio-entities to determine their shape and function [59,

111]. In digital communications, codes are constructed by designing graphs that

represent parity-check constraints on the bits of codewords and decoding is done

by computations on these graphs [50, 28, 80, 95]. In computational neurobiology,

to understand the functioning of the brain, scientists use graphical models where G

represents a map of neural connections in the brain [34, 64, 22, 113]. Graphical models

also find applications in meteorology [23].

These applications pose different challenges related to graphical models. Four

of the main problems are: representation, sampling, inference and learning. See

[69, 18, 75] for a review on the several research questions associated with graphical

models. Representation concerns choosing the right model for the application at

hand. Different kinds of graphical models include Markov random fields (based on

undirected graphs) , Bayesian networks (based on directed graphs) and factor graphs.

In this thesis we focus only on pair-wise Markov random fields and on stochastic
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differential equations. Sampling refers to the problem of generating samples from

the model’s probability distribution. Inference is about using the model to answer

probabilistic queries - for example, computing marginal probabilities or inferring the

value of unobserved variables. The problem of learning focuses on recovering the

model from data, as when we estimate the values of the parameters {θij} in model

(1.1.1). This is important because often we start with no details about the model.

In many applications the interest is specifically in recovering the support of these

parameters. For the Ising model, this corresponds to determining which coefficients

{θij} are non-zero. Herein lies the focus of this thesis, which can be described as an

investigation into how the graph G can be learned from data. Concerning this last

problem, we note that several variants can be conceived which we do not address.

For example, how do we learn the graph from partially hidden data? Regarding the

questions addressed in this thesis, these hidden data can come, for example, from

unobserved nodes in the graph [97, 46, 7]. This is relevant in evolutionary biology as

a way to model the change in gene-data along the evolution-tree of a group of species

[84, 99]. Hidden data can also arise from points in the trajectory of a stochastic

differential equation which are not sampled [31, 91, 5]. This is the case in many

applications where sampled data come at a very low frequency compared with the

dominant frequency modes in the system.

1.2 Structural learning in graphical models

One of the most important properties of graphical models is that the underlying graph

describes a set of conditional independence relations among variables. This relation

is made precise by the Hammersley-Clifford theorem [57, 17],

Theorem 1.2.1. Let G = (V = [p], E) be an undirected graph and CG the set of all

maximal cliques in G. A probability distribution P(x1, ..., xp) > 0 factorizes according

to G

P(x) =
1

Z

∏

c∈CG

Φc(xc) (1.2.1)
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if and only if,

P(xi|xG\i) = P(xi|x∂i), for all i ∈ V . (1.2.2)

In the expressions above, Z is a normalization constant, for any set c ⊆ V , xc = {xj :

j ∈ c} and ∂i = {j ∈ V : (i, j) ∈ E}.

In fact, when the above equivalence holds, all the following three conditional

independence relations hold:

• A variable is conditionally independent of all other variables given its neighbors;

• Any two non-connected variables ((i, j) /∈ E) are conditionally independent

given all other variables;

• Any two subsets of variables, A, B, are conditionally independent given a sep-

arating subset C, where every path from A to B passes through C.

For the Ising model (1.1.1) over a graph G, since PG(x) > 0 and PG(x) factorizes

according to G, all conditional independence property above hold.

Understanding the dependencies among a set of variables is of great importance

for many applications and is almost always a prerequisite for further modeling efforts.

In particular, it allows us to solve the confounding variable problem: Given three

different variables - X , Y and Z - does X affect Z directly, or only through Y ?

For concrete examples, these conditional dependencies can have interesting in-

terpretations. Consider the Ising model where the vertices represent people holding

one of two opinions, −1 or +1, on a certain matter. The edges, all with equal posi-

tive weight, represent influence links. Two people who are connected have a higher

chance of holding the same opinion. Now let A, B and C be groups of individuals

(A,B,C ⊂ V ) such that, if members of group C were to disappear, there would be

no connection between group A and B. Then, conditioned on the opinion of all the

members of group C being fixed, the members of group A and B cannot influence

each other.

The question formulated in the beginning which motivates the work in this thesis

amounts to recovering this set of dependencies. For the Ising model (1.1.1), a partic-

ular instance of this problem can be written as
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Question. Is it possible to recover G given n independent identically distributed

(i.i.d.) samples from PG(x)?

This problem appears in the literature under the name of structural learning of

graphical models (e.g. [25, 42, 47, 18, 3, 29, 2]). Learning G is equivalent to learning

which coefficients of θ ≡ {θij} are non-zero, i.e. learning the support of θ, i.e. supp(θ).
The problem of learning G is a special case of the general estimation problem [78,

41]. In the general estimation problem, given samples {x(ℓ)} from a parametrized

probability distribution Pθ(x), the objective is to compute an estimate θ̂ for θ under

an appropriate loss function. Structural learning is estimation under the loss function

C(θ, θ̂) = I(supp(θ) 6= supp(θ̂)). (1.2.3)

When related to graphical models, the estimation problem often goes under the sim-

pler name of learning graphical models, to distinguish it from structural learning, and

often the cost function assumed is the Euclidean norm of the difference between true

and estimated parameters.

This difference in norms does change our problem from the usual estimation prob-

lem in a fundamental way. In particular, there is a difference between knowing

whether a given coefficient is approximately zero (approximating θ) and knowing

whether a coefficient is exactly zero, i.e., estimating G. Recovering G = (V,E) from

data allows us, for example, to find a sets A,B,C ∈ V such that, conditioned on the

variables in C, the variables in A and B are independent. However, from a set real

parameters {θij}, some of smaller magnitude than others, it is unclear how we should

select such sets.

In addition, in parameter learning for graphical models we know from the start

the structure of the solution, i.e., which coefficients are non-zero [86]; while in this

thesis, finding them is our objective.
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1

Figure 1.1: Topology of G5: PG5(x1, ..., x5) = exp(x1x3 + x1x4+ x1x5+ x2x3 +x2x4 +
x2x5).

2

3

5

4

1

θ = 0.1θ = 1θ = 1

Figure 1.2: From left to right: Graph for variant 1, variant 2 and variant 3.

1.2.1 Sample-complexity and computational-complexity

To illustrate some of the challenges of structural learning we now focus on a particular

instance of the model (1.1.1). There is a set of five nodes connected by two kinds

of links: any two nodes are either connected, θij = 1, or disconnected, θij = 0. In

this model, the graph, G5, has the topology shown in Figure 1.1. Since (1.1.1) is an

exponential family, given n i.i.d samples from PG5(x), the set of empirical covariances

Ĉij = (1/n)
∑n

ℓ=1 x
(ℓ)
i x

(ℓ)
j is a sufficient statistic to recover G5 [78]. As a first attempt

to recover G5, we compute all Ĉij and use the following threshold rule: If Ĉij > τ ,

we conclude that (i, j) ∈ E; otherwise, we do not. However, even in the favorable

case where n = ∞, one can see that such an attempt would not work. For n = ∞,

Ĉ12 ≈ 0.963 > Ĉ13 ≈ 0.946 and the threshold rule says either that both edges (1, 2)

and (1, 3) are in E or that E excludes both. In either case, we do not recover G5

correctly. Consider now the following three variants of the network of Figure 1.1.

These variants are illustrated in Figure 1.2.

• Variant 1 (topological change): Start fromG5 and remove edges (1, 5) and (5, 2).
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• Variant 2 (topological change): Start from G5 and add edges (3, 4) and (4, 5).

• Variant 3 (edge-strength change): Start from G5 and reduce the edge-weights

from θij ∈ {0, 1} to θij ∈ {0, 0.1}.

Surprisingly, for these three variants, at least when n = ∞, we can recover the

underlying graph from this simple threshold rule. When n = ∞, successful recon-

struction by thresholding for variant 1 and variant 3 is equivalent, by symmetry,

to Ĉ13 > max{Ĉ34, Ĉ12}. Namely, for variant 1, Ĉ13 ≈ 0.100, Ĉ34 ≈ 0.020 and

Ĉ12 ≈ 0.020 and for variant 3, Ĉ13 ≈ 0.102, Ĉ34 ≈ 0.020 and Ĉ12 ≈ 0.030. For variant

2, when n = ∞, the success is equivalent, by symmetry, to min{Ĉ13, Ĉ34} > Ĉ12.

Correspondingly, Ĉ13 ≈ 0.989, Ĉ34 ≈ 0.993 and Ĉ12 ≈ 0.987.

The above examples show that while some graphs are recoverable by fairly simple

algorithms, other similar graphs might be harder to learn. Because of this, most

algorithms proposed in the literature are only guaranteed to work under specific

restrictions on the class of graphs [3, 21, 94, 1]. In addition, the class of graphs that in

principle it might be possible to learn does not seem to have a simple characterization.

Making a graph denser (by adding edges) or sparser (by removing edges) sometimes

makes a particular algorithm succeed and other times fail. Furthermore, not only the

topology, but also the edges-weights, must be taken into account.

There are other nuances: among graphs that are recoverable with simple algo-

rithms there are also differences. The gap between the correlation of connected and

disconnected nodes is greater than 0.07 in variants 1 and 3 but in variant 2 is smaller

than 0.002. Using the thresholding algorithm to recover variant 1 and 3 therefore

requires using less samples (smaller n) than to recover variant 2. The notions of

sample-complexity and computational-complexity are introduced to quantify these dif-

ferences. Given an algorithm Alg that receives as input n samples from PG(x) and

outputs a graph Ĝ, the sample-complexity is defined by

NAlg(G) ≡ min
{
n0 ∈ N : PG,n{Ĝ = G} ≥ 1− δ for all n ≥ n0

}
(1.2.4)

where PG,n denotes probability with respect to n i.i.d. samples with distribution PG,n.

The computational complexity χAlg(G) is the running time of Alg on an input of size
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n = NAlg(G). The question generally addressed in this thesis can be expressed using

these two quantities:

Question. What are the values of NAlg(G) and χAlg(G) for different families of graphs

and algorithms?

We are particularly interested in understanding how NAlg(G) and χAlg(G) scale

with the size p of G (recall |V | = p). This is different from the classical learning

setting where n ≫ p. The recent explosion of data collection and storage puts many

applications in the regime n ≫ p, but for many problems, the number of variables

involved is unavoidably greater than the amount of data. To attack these problems,

we wish to find algorithms for which both the sample-complexity and computational-

complexity scale slowly with p. How slowly can these quantities scale? As a reference

for computational-complexity, notice that the thresholding algorithm used above,

one of the simplest algorithms we can think of, has a running time that scales likes

O(np2) 1. As a reference for sample-complexity, consider the minimum number of i.i.d.

samples needed to identify a graph among the class of graphs of degree bounded by

∆. Each sample on a graph with p nodes gives p bits of information and the number

of graphs of degree bounded by ∆ on p nodes is O
((

p
∆

)p)
hence pn = O

(
p log

(
p
∆

))

or n = O(∆ log p).

1.2.2 Dependencies in data

In our discussion of learning the Ising model, we have assumed data are composed of

i.i.d. samples from the constructed probability distribution. However, in many ap-

plications data are gathered in time and samples are not independent but correlated.

This reality brings additional questions to the problem of structural learning. This

thesis addresses some of them. Going back to the Ising model, a simple dynamical

model can be obtained by constructing a Gibbs sampler for (1.1.1) [51, 24]: If at time

1There are p2 empirical correlations to be computed each taking O(n) time steps to be computed.
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t the configuration is x(t), we form the configuration at time t+1, x(t+1), by choos-

ing a node i uniformly at random from V and ‘flipping’ its value with probability

min{1, exp(−2xi

∑
j θijxj(t))}. This dynamical model is a reversible Markov chain

with unique stationary measure equal to the model (1.1.1). If we have an algorithm

Alg for learning G that provably works when the input values are i.i.d. samples, one

can now think of circumventing the correlation among samples by inputting to Alg the

subsequence x(m), x(2m), ..., x(m⌊n/m⌋). If m is sufficiently large, {x(im} is close to

set of i.i.d. samples and we expect that Alg({x(im}) = G with high probability. But

is this the best we can do? Discarding information increases the sample-complexity,

hence the general question:

Question. How does NAlg(G) change when learning is done from correlated samples?

The answer to this question depends on the stochastic process generating the

correlated samples. In this thesis we study an extreme case of structural learning

with correlations in data: dynamical processes in continuous time. In particular,

our focus is on stochastic differential equations parametrized by graphs. A good

introduction to SDEs is found in [88]. At this point it is easier to have in mind a

concrete example. One of the simplest SDE models represents the fluctuation of the

value of a node i, xi(t), as a linear combination of the fluctuation of the value of

neighboring nodes in a graph G. More precisely, given a weighted graph G = (V,E)

with V = [p], E = {(i, j) : θij 6= 0}, we define

dxi(t) =
∑

j

θijxj(t)dt+ dbi(t), (1.2.5)

where b(t) is a p-dimensional standard Brownian motion. The above equation is a

linear stochastic differential equation and is also a graphical model: the support of the

matrix Θ = {θij} defines the adjacency matrix of the graph G. Given the evolution

of these values, x(t), in a time window of length T , the particular question we are

interested in is:
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Question. It is possible to recover G from {x(t)}Tt=0?

Unlike in the previous questions, no matter how small T is, we now have at our

disposal an infinite number of samples, since the trajectories are continuous. Perhaps,

then, we only need an arbitrarily small time window to recover G? But samples

obtained close it time exhibit a strong correlation, and it is reasonable to expect that

larger graphs (bigger p) require longer observation time windows to be recovered.

Hence, perhaps T scales like O(p)? Given an algorithm Alg that receives as input

a trajectory {x(t)}Tt=0 and outputs a graph Ĝ, we introduce the following modified

notion of sample-complexity for SDEs,

TAlg(G) = inf
{
T0 ∈ R

+ : PG,T{Ĝ = G} ≥ 1− δ for all T ≥ T0

}
, (1.2.6)

where PG,T denotes probability with respect to a trajectory of length T . The problem

of structural learning for SDEs that we address in this thesis is now precisely defined:

Question. What are the values of TAlg(G) and χAlg(G) for different families of SDEs

and algorithms?

Here also, our focus is on the regime of ‘large-systems and few data’, or p ≫ T .

The more classical problem of estimating the values of Θ [76, 12], known as system-

identification or drift-estimation, is again related to the problem we address, under

a suitable choice of error function. However, past work has not focused on support

recovery.

1.3 Contributions

Apart from the Introduction and Conclusion, this thesis is divided into two main

chapters. Chapter 2 concerns learning the structure the Ising model. This model



CHAPTER 1. INTRODUCTION 11

is interesting because of its applications (e.g., in computer vision and biology) and

its simplicity: it is the simplest model on binary variables for which the set of all

pair-wise correlations forms a sufficient statistic. While several methods have been

proposed to recover G in the Ising model, their relative merits and limitations remain

somewhat obscure. We analyze three different reconstruction algorithms and relate

their success or failure to a single criterion [68]:

Contribution. When the Ising model develops long-range correlations these algo-

rithms fail to reconstruct G in polynomial time (χG = O(poly(p))).

More concretely, for three polynomial time algorithms, and for Ising models of

bounded degree ∆ with homogeneous edge-weights of strength θ, there are constants C

and C ′ such if ∆θ < C then NAlg(G) = O(log p) and if if ∆θ > C ′ then NAlg(G) = ∞.

Among the three algorithms studied, most of our focus was on the regularized lo-

gistic regression algorithm introduced by by Ravikumar et al. [94]. [94]. [94] proved

a set sufficient conditions under which this algorithm exactly learns Ising models,

the most interesting being a so-called incoherence condition. In Chapter 2, we show

that this incoherence condition is also necessary and analytically establish whether it

holds or not for several families of graphs. In particular, for this algorithm we obtain

a sharp characterization of the two unspecified constants above [16].

Contribution. Regularized logistic regression succeeds on any graph with ∆θ ≤ 3/10

and fails on most regular graphs with ∆θ ≥ 2.

These results are well illustrated by Figure 1.3. The plot illustrates the probability

of successful reconstruction of regular graphs of degree 4 using regularized logistic

regression as a function of θ when θij ∈ {0, θ}. When θ > θc, it is no longer possible

to learn G. θc is the critical temperature of the lattice and, for regular graphs, scales

like 1/∆, just as predicted by our sharp bounds.
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Figure 1.3: Learning uniformly generated random regular graphs of degree ∆ = 4 for
the Ising model from samples using regularized logistic regression. Red curve: success
probability as a function of the edge-strength, i.e. θij ∈ {0, θ} .

Chapter 3 treats of learning systems of SDEs. There we prove a general lower

bound on the sample-complexity TAlg(G) by using a characterization of mutual in-

formation as time a integral of conditional variance, due to Kadota, Zakai, and Ziv.

For linear SDEs, we analyze an ℓ1-regularized least-squares algorithm, Rls, and prove

an upper bound on TRls(G) which nearly matches the general lower bound [14, 15, 13].

Contribution. For linear and stable SDEs, if G has maximum degree bounded by

∆ then TRls(G) = O(log p) and any algorithm Alg with probability of success greater

than 1/2 on this class of graphs has TAlg(G) = Ω(log p). If G is a dense graph then

TRls(G) = O(p) and any algorithm Alg with probability of success greater than 1/2 on

this class of graphs has TAlg(G) = Ω(p). In both cases, the upper bound is achieved by

Rls and χRls = O(poly(p)).

Although our theoretical results only apply for linear SDEs, the algorithm pro-

posed has much greater applicability. In particular, it seems to be able to learn

even non-linear SDEs. This result is summarized in Figure 1.4 for the case of sparse

graphs. As the figure shows, even for non-linear SDEs, the sample-complexity in
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Figure 1.4: Reconstruction of non-linear SDEs. Curves show minimum observation
time TRls required to achieve a probability of reconstruction of Psucc = 0.1, 0.5 and
0.9 versus the size of the network p. All non-linear SDEs are associated to random
regular graphs of degree 4 sampled uniformly at random. The points in the plot are
averages over different graphs and different SDEs trajectories.
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reconstructing sparse graphs scales like O(log p).
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1.4 Notation

Throughout this thesis, notation is introduced as needed. However, for convenience,

we summarize here the main conventions used, unless stated otherwise.

N Set of natural numbers {1, 2, ...};
Z Set of integer numbers {...,−2,−1, 0, 1, 2, ...};
R Set of real numbers;

[i] Subset of integer numbers {1, 2, ..., i};
supp(.) Support of a vector/matrix, i.e., the set of indices

with non-zero values;

sign(.) Signed support of a vector/matrix, i.e., the set of

indices with positive values and the set of indices

with negative values;

AC ⊆ B If A is a subset of B then AC is the complement

of A in B. It will be clear from the context what B is;1 All-ones vector;I Identity matrix;

v∗,M∗ Transpose of vector v or matrix M ;

‖.‖0, ‖.‖1, ‖.‖2, ‖.‖F , ‖.‖∞ 0-norm, 1-norm, euclidean norm, Frobenius norm,

infinity norm;

Λmax(M),Λmin(M) Maximum and minimum eigenvalue of matrix M ;

σmax(M), σmin(M) Maximum and minimum singular of matrix M ;

〈v, w〉 Inner product of vector v and w (dot-product in

euclidean space);

Tr(A) Trace of matrix A;

|A| Determinant of matrix A;

vA,MAB If A and B are subset of indices then vA is the vector

formed by the entries of v whose indices are in A

and MAB is matrix formed by the entries of M whose
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row indices are in A and column indices are in B;

∇f Gradient of function f ;

Hess(f) Hessian of function f ;

J(f) Jacobian of function f ;

θ, θ,Θ Parameters describing probability distributions;

θ0,Θ0 Unknown value of parameters whose support

estimation is this thesis’ main focus;

θ̂, Θ̂ Estimate of parameters θ0 and Θ0;

S, S0 support of θ and θ0;

Ŝ Estimate of S0;

z0 Sub-gradient of ‖θ‖1 evaluated at θ0;

ẑ Sub-gradient of ‖θ‖1 evaluated at θ̂;

P(.) Probability distribution parameterized by (.);

‘i.i.d.’ Independent and identically distributed;

P(.),n Probability distribution of n i.i.d samples from P(.);

E(.) Expected value over the probability distribution P(.);

E(.),n Expected value over the probability

distribution P(.),n;

Var(.) Variance with respect to the probability

distribution P(.);

Psucc Probability of successful reconstruction of a graph

G = (V,E) (successful reconstruction means full exact

recovery of E);

b(t) Standard Brownian motion;

x,X Sample from P(.) (deterministic and random variables

respectively);

x(ℓ), X(ℓ), x(t), X(t) Samples from P(.) indexed by integer number ℓ and

indexed by real number t;

Xn
0 , X

T
0 Samples {x(ℓ)}nℓ=0 and {x(t)}Tt=0;

G = (V,E) Graph with edge set E and vertex set V ;

∆G Laplacian of graph G;
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∂r ⊆ V Neighborhood of node r ∈ V of

a graph G;

deg(r) Degree of node r, i.e., number of neighbors of node

r ∈ V of a graph G;

∆ Maximum degree across all nodes in a graph G;

p Number of nodes in graph G, the dimension of θ or

the ‘width’ of a matrix Θ ∈ R
m×p;

Gone Family of ‘one-edge’ graphs introduced in

Section 2.6.3;

Gdiam Family of ‘diamond’ graphs introduced in

Section 2.6.3;

Grand Family of regular graphs introduced in Section 2.6.3;

n Number of samples being used for reconstruction;

T Length of trajectory being used for reconstruction;

Alg General reconstruction algorithm;

Thr Thresholding algorithm of Section 2.3.1;

Ind Conditional independence algorithm of Section 2.3.2;

Rlr Regularized logistic regression algorithm of

Section 2.3.3;

Rls Regularized least squares algorithm of Section 3.3.2;

λ Regularization parameter;

NAlg(G) Minimum number of samples that Alg requires to

reconstruct the graph G of a specific graphical model;

NAlg(G, θ) Minimum number of samples that Alg requires to

reconstruct G for an homogeneous-edge-strength Ising

model of edge-strength θ;

NAlg(p,∆, θ) Minimum number of samples required

by Alg to reconstruct any graph G with p

nodes and maximum degree ∆ for an

homogeneous-edge-strength Ising model of

edge-strength θ;
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TAlg(G) Minimum observation time that Alg requires to

reconstruct the graph G of a SDE parametrized by G;

TAlg(Θ) Minimum observation time that Alg requires to

reconstruct the signed support of Θ of a

SDE parametrized by Θ;

TAlg(A) Minimum observation time required by Alg to

reconstruct a family of SDEs denoted by A;

χAlg(G) Number of computation steps that Alg requires to

reconstruct the graph G of a specific graphical model

when run on NAlg(G) samples;

χAlg(G, θ) Number of computation steps that Alg requires to

reconstruct G for an homogeneous-edge-strength Ising

model of edge-strength θ when run on NAlg(G, θ)

samples;

χAlg(p,∆, θ) Number of computation steps required to

reconstruct any graph G with p nodes and maximum

degree ∆ for an homogeneous-edge-strength Ising

model of edge-strength θ when run on NAlg(p,∆, θ)

samples;

SDE Stochastic differential equation;

NRMSE Normalized root mean squared error

(‖Θ0 − Θ̂‖2/‖Θ0‖2);



Chapter 2

Learning the Ising model

This chapter is devoted to studying the sample-complexity and computational-complexity

of learning the Ising model for a number of reconstruction algorithms and graph mod-

els. The Ising model has already appeared in Chapter 1 in equation (1.1.1), but is

introduced in more detail in Section 2.1. In particular, we consider homogeneous

edge-strengths, i.e. θij ∈ {0, θ}, and graphs of maximum degree bounded by ∆.

Results of this analysis are presented in Section 2.3 for three algorithms. A sim-

ple thresholding algorithm is discussed in Section 2.3.1. In Section 2.3.2, we look

at the conditional independence test method of [21]. Finally, in Section 2.3.3, we

study the penalized pseudo-likelihood method of [94]. In Section 2.5, we validate our

analysis through numerical simulations, and Section 2.6 contains the proofs of these

conclusions, with some technical details deferred to the appendices.

Our analysis unveils a general pattern: when the model develops strong correla-

tions, several low-complexity algorithms fail, or require a large number of samples.

What does ‘strong correlations’ mean? Correlations arise from a trade-off between

the degree (which we characterize here via the maximum degree ∆), and the interac-

tion strength θ. It can be ascribed to a few strong connections (large θ) or to a large

number of weak connections (large ∆). Is there any meaningful way to compare and

combine these quantities (θ and ∆)? An answer is suggested by the theory of Gibbs

measures which predicts a dramatic change of behavior of the Ising model when θ

crosses the so-called ‘uniqueness threshold’ θuniq(∆) = atanh(1/(∆ − 1)) [52]. For

19
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θ < θuniq(∆), Gibbs sampling mixes rapidly and far-apart variables in G are roughly

independent [85]. Conversly, for any θ > θuniq(∆), there exist graph families on which

Gibbs sampling is slow, and far-apart variables are strongly dependent [53]. While

polynomial sampling algorithms exist for all θ > 0 [70], for θ < 0, in the regime

|θ| > θuniq(∆) sampling is #-P hard [101]. Related to the uniqueness threshold is the

critical temperature, which is graph-dependent, with typically θcrit ≤ const./∆.

In this chapter we see that the theory of Gibbs measure is indeed a relevant

way of comparing interaction strength and graph degree for the problem of structural

learning. All the algorithms we analyzed provably fail for θ ≫ const./∆, for a number

of ‘natural’ graph families. This chapter raises several fascinating questions, the

most important being the construction of structural learning algorithms with provable

performance guarantees in the strongly dependent regime θcrit ≫ const./∆. The

question as to whether such an algorithm exists is left open by the present thesis (but

see Section 2.2 for an overview of earlier work).

Let us finally emphasize that we do not think that any of the specific families

of graphs studied in the present thesis is intrinsically ‘hard’ to learn. For instance,

we show in Section 2.3.3 that the regularized logistic regression method of [94] fails

on random regular graphs, while it is easy to learn such graphs using the simple

thresholding algorithm of Section 2.3.1. The specific families were indeed chosen

mostly because they are analytically tractable.

The work in this chapter is based on joint work with Montanari [68, 16].

2.1 Introduction

Given an undirected graph G = (V = [p], E), and a positive parameter θ > 0, the

ferromagnetic Ising model on G is the pair-wise Markov random field

PG,θ(x) =
1

ZG,θ

∏

(i,j)∈E
eθxixj (2.1.1)

over binary variables x = (x1, x2, . . . , xp), xi ∈ {+1,−1}. Apart from being one of the

best-studied models in statistical mechanics [66, 56], the Ising model is a prototypical
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undirected graphical model. Since the seminal work of Hopfield [65] and Hinton

and Sejnowski [62], it has found application in numerous areas of machine learning,

computer vision, clustering and spatial statistics. The obvious generalization of the

distribution (2.1.1) to edge-dependent parameters θij , (i, j) ∈ E is of central interest

in such applications

Pθ(x) =
1

Zθ

∏

(i,j)∈E(Kp)

eθijxixj , (2.1.2)

where E(Kp) ≡ {(i, j) : i, j ∈ V } is the edge set of the complete graph and

θ = {θij}(i,j)∈E(Kp) is a vector of real parameters. The support of the parameter

θ specifies a graph. In fact, model (2.1.1) corresponds to θij = 0, ∀(i, j) /∈ E and

θij = θ, ∀(i, j) ∈ E. Let us stress that we follow the statistical mechanics convention

of calling (2.1.1) an Ising model even if the graph G is not a grid.

In this section we focus on the following structural learning problem:

Given n i.i.d. samples x(1), x(2),. . . , x(n) ∈ {+1,−1}p with distribution

PG,θ( · ), reconstruct the graph G.

For the sake of simplicity, we assume the parameter θ is known, and that G has no

double edges (it is a ‘simple’ graph). It follows from the general theory of exponential

families that, for any θ ∈ (0,∞), the model (2.1.1) is identifiable [78]. In particular,

the structural learning problem is solvable with unbounded sample complexity and

computational resources. The question we address is: for which classes of graphs

and values of the parameter θ is the problem solvable under realistic complexity

constraints? More precisely, given a graph G, an algorithm Alg that outputs an

estimate Ĝ = Alg(x(1), x(2), . . . , x(n)), a value θ of the model parameter, and a small

δ > 0, the sample complexity is defined as

NAlg(G, θ) ≡ min
{
n0 ∈ N : PG,θ,n{Ĝ = G} ≥ 1− δ for all n ≥ n0

}
, (2.1.3)

where PG,θ,n denotes probability with respect to n i.i.d. samples with distribution

PG,θ. Further, we let χAlg(G, θ) denote the number of operations of the algorithm Alg,

when applied to NAlg(G, θ) samples. The general problem is therefore to characterize
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the functions NAlg(G, θ) and χAlg(G, θ), and to design algorithms that minimize the

complexity.

Let us emphasize that these are not the only possible definitions of sample and

computational complexity. Alternative definitions are obtained by requiring that the

reconstructed structure Alg(x(1), . . . , x(n)) is only partially correct. However, for the

algorithms considered in this paper, such definitions should not result in qualitatively

different behavior1

General upper and lower bounds on the sample complexity NAlg(G, θ) were proved

by Santhanam and Wainwright [108, 98], without however taking into account com-

putational complexity. At the other end of the spectrum, several low complexity

algorithms have been developed in the last few years (see Section 2.2 for a brief

overview). Yet the resulting sample complexity bounds only hold under specific as-

sumptions on the underlying model (i.e., on the pair (G, θ)). A general understanding

of the trade-offs between sample complexity and computational complexity is largely

lacking.

This paper is devoted to the study of the tradeoff between sample complexity

and computational complexity for some specific structural learning algorithms, when

applied to the Ising model. An important challenge consists in the fact that the

model (2.1.1) induces subtle correlations between the binary variables (x1, . . . , xp).

The objective of a structural learning algorithm is to disentangle pairs xi, xj that are

conditionally independent given the other variables (and hence are not connected by

an edge) from those that are instead conditionally dependent (and hence connected

by an edge in G). This becomes particularly difficult when θ becomes large and hence

pairs xi, xj that are not connected by an edge in G become strongly dependent. The

next section sets the stage for our work by discussing a simple and concrete illustration

of this phenomenon.
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Figure 2.1: Two families of graphs Gp and G′
p whose distributions PGp,θ and PG′

p,θ
′

merge as p gets large.

2.1.1 A toy example

As a toy illustration2 of the challenges of structural learning, we will study the two

families of graphs in Figure 2.4. The two families will be denoted by {Gp}p≥3 and

{G′
p}p≥3 and are indexed by the number of vertices p. Later on, in Section 2.6.3, the

family {Gp} will again be studied under the name of Gdiam(p).

GraphGp has p vertices and 2(p−2) edges. Two of the vertices (vertex 1 and vertex

2) have degree (p−2), and (p−2) have degree 2. GraphG′
p has also p vertices, but only

one edge between vertices 1 and 2. In other words, graph G′
p corresponds to variables

x1 and x2 interacting ‘directly’ (and hence not in a conditionally independent way),

while graph Gp describes a situation in which the two variables interact ‘indirectly’

through numerous weak intermediaries (but they are still conditionally independent

since they are not connected). Fix p, and assume that one of Gp or G′
p is chosen

randomly and i.i.d. samples x(1), . . . , x(n) from the corresponding Ising distribution

are given to us.

Can we efficiently distinguish the two graphs, i.e., infer whether the samples were

generated using Gp or G′
p? As mentioned above, since the model is identifiable, this

task can be achieved with unbounded sample and computational complexity. Further,

since model (2.1.1) is an exponential family, the p×p matrix of empirical covariances

(1/n)
∑n

ℓ=1 x
(ℓ)(x(ℓ))T provides a sufficient statistic for inferring the graph structure.

In this specific example, we assume that different edge strengths are used in the

1Indeed the algorithms considered in this paper reconstruct G by separately estimating the neigh-
borhood of each node i. This implies that any significant probability of error results in a substantially
different graph.

2A similar example was considered in [87].
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two graphs: θ for graph Gp and θ′ for graph G′
p (i.e. we have to distinguish between

PGp,θ and PG′
p,θ

′). We claim that, by properly choosing the parameters θ and θ′, we

can ensure that the covariances approximately match |EGp,θ{xixj} − EG′
p,θ

′{xixj}| =
O(1/

√
p). Indeed the same remains true for all marginals involving a bounded

number of variables. Namely, for all subsets of vertices U ⊆ [p] of bounded size

|PGp,θ(xU) − PG′
p,θ

′(xU)| = O(1/
√
p). Low-complexity algorithms typically estimate

each edge using only a small subset low–dimensional marginal. Hence, they are bound

to fail unless the number of samples n diverges with the graph size p. On the other

hand, a naive information-theoretic lower bound (in the spirit of [108, 98]) only yields

NAlg(G, θ) = Ω(1). This sample complexity is achievable by using global statistics to

distinguish the two graphs.

In other words, even for this simple example, a dichotomy emerges: either the

number of samples has to grow with the number of parameters, or the algorithms

have to exploit a large number of marginals of PG,θ.

To confirm our claim, we need to compute the covariances of the Ising measures

distributions PGp,θ, PG′
p,θ

′. We easily obtain, for the latter graph

EG′
p,θ

′{x1x2} = tanh θ′ , (2.1.4)

EG′
p,θ

′{xixj} = 0 . (i, j) 6= (1, 2) . (2.1.5)

The calculation is somewhat more intricate for graph Gp. The details can be found

in [67]. Here we report only the result for p ≫ 1, θ ≪ 1:

EGp,θ{x1x2} = tanh
{
pθ2 − O(pθ4)

}
, (2.1.6)

EGp,θ{xixj} = O(θ + pθ3) , i ∈ {1, 2}, j ∈ {3, . . . , p} , (2.1.7)

EGp,θ{xixj} = O(θ2 + pθ4) , i, j ∈ {3, . . . , p} . (2.1.8)

In other words, variables x1 and x2 are strongly correlated (although not connected),

while all the other variables are weakly correlated. By letting θ =
√

θ′/p this covari-

ance structure matches Eqs. (2.1.4), (2.1.5) up to corrections of order 1/
√
p.

Notice that the ambiguity between the two models Gp and G′
p arises because
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several weak, indirect paths between x1 and x2 in graph Gp add up to the same

effect as a strong direct connection. This toy example is hence suggestive of the

general phenomenon that strong long-range correlations can ‘fake’ a direct connection.

However, the example is not completely convincing for several reasons:

i. Most algorithms of interest estimate each edge on the basis of a large number

of low-dimensional marginals (for instance all pairwise correlations).

ii. Reconstruction guarantees have been proved for graphs with bounded degree

[3, 21, 108, 98, 94], while here we are letting the maximum degree be as large

as the system size. The graph is sparse but only on ‘average’.

iii. It may appear that the difficulty in distinguishing graphGp from G′
p is related to

the fact that in the former we take θ = O(1/
√
p). This is however the natural

scaling when the degree of a vertex is large, in order to obtain a non-trivial

distribution. If the graph Gp had θ bounded away from 0, this would result in a

distribution µGp,θ(x) concentrated on the two antipodal configurations: all-(+1)

and all-(−1). Structural learning would be equally difficult in this case.

Despite these shortcommings, this model provides already a useful counter-example.

In Appendix A.4.1 show why, even for bounded p (and hence θ bounded away from

0) the model Gp in Figure 2.1 ‘fools’ the regularized logistic regression algorithm of

Ravikumar, Wainwright and Lafferty [94]. Regularized logistic regression reconstructs

G′
p instead of Gp.

2.2 Related work

Traditional algorithms for learning Ising models were developed in the context of

Boltzmann machines [62, 4, 61]. These algorithms try to solve the maximum likelihood

problem by gradient ascent. Estimating the gradient of the log-likelihood function

requires to compute expectations with respect to the Ising distribution. In these

works, expectations were computed using the Markov Chain Monte Carlo (MCMC)

method, and more specifically Gibbs sampling.
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This approach presents two type of limitations. First of all, it does not output a

‘structure’ (i.e. a sparse subset of the
(
p
2

)
potential edges): because of approximation

errors, it yields non-zero values for all the edges. This problem can in principle

be overcome by using suitably regularized objective functions, but such a modified

algorithm was never studied.

Second, the need to compute expectation values with respect to the Ising distribu-

tion, and the use of MCMC to achieve this goal, poses some fundamental limitations.

As mentioned above, the Markov chain commonly used by these methods is simple

Gibbs sampling. This is known to have mixing time that grows exponentially in the

number of variables for θ > θuniq(∆), and hence does not yield good estimates of the

expectation values in practice. While polynomial sampling schemes exist for models

with θ > 0 [70], they do not apply to θ < 0 or to general models with edge-dependent

parameters θij . Already in the case θ < 0, estimating expectation values of the Ising

distribution is likely to be #-P hard [100, 101].

Abbeel, Koller and Ng [3] first developed a method with computational complex-

ity provably polynomial in the number of variables, for bounded maximum degree,

and logarithmic sample complexity. Their approach is based on ingenious use of

the Hammersley-Clifford representation of Markov random fields. Unfortunately, the

computational complexity of this approach is of order p∆+2 which becomes imprac-

tical for reasonable values of the degree and network size (and superpolynomial for

∆ diverging with p). The algorithm by Bresler, Mossel and Sly [21] mentioned in

Section 2.3.2 presents similar limitations, that the authors overcome (in the small θ

regime) by exploiting the correlation decay phenomenon.

An alternative point of view consists in using standard regression methods. This

approach was pionereed by Meinshausen and Bühlmann [82] in the context of Gaus-

sian graphical models. More precisely, [82] proposes to reconstruct the graph G by

sequentially reconstructing the neighborhood of each vertex i ∈ V . In order to achieve

the latter, the observed values of variable xi are regressed against the observed value

of all the other variables, using ℓ1-penalized least squares (a.k.a. the Lasso [107]).

The neighborhood of i is hence identified with the subset of variables xj , j ∈ V \ i

whose regression coefficients are non-vanishing. The regularized logistic regressionn



CHAPTER 2. LEARNING THE ISING MODEL 27

method of [94] studied in the present paper extends the work of Meinshausen and

Bühlmann [82] to non-Gaussian graphical models. Let us notice in passing that max-

imum likelihood or ℓ1-regularized maximum likelihood are computationally tractable

in the case of Gaussian graphical models [43].

More recently, several interesting results were obtained in research directions to

the ones addressed in this thesis.

Anandkumar, Tan and Willsky [1, 9] considered Gaussian graphical models under

a ‘local- separation property’, and proposed a conditional independence test that is

effective under the so-called walk-summability condition. The latter can be thought

of as a sufficient condition for correlation decay, and is hence related to the general

theme of the present Chapter.

The same authors considered Ising models in [1, 8], and prove structural consis-

tency of a conditional independence test under a condition θmax ≤ θ0. Here θ0 depends

on the graph family but is related once more to the correlation decay property. For

instance, in the case of random regular graphs, they prove ∆ tanh θ0 = 1 (while, as

already stated, the correlation decay threshold is (∆− 1) tanh θ = 1). In the case of

random irregular graphs, the average degree is showed to play a more important role

(again, in correspondence with correlation decay).

The conditional independence tests of [1, 9, 8] have complexity O(pη+2) with η

depending on the graph family. For general graphs of maximum degree ∆, we have

η = ∆, but η can be significantly smaller for locally tree-like graphs.

In a recent paper, Jalali, Johnson and Ravikumar [2] study a reconstruction al-

gorithm that optimizes the likelihood function (2.3.14) over sparse neighborhoods

through a greedy procedure. They prove that this procedure is structurally consis-

tent under weaker conditions than the one of [94], and has lower sample complexity,

namely n = O(∆2 log p). It would be interesting to investigate whether an analogous

of Theorem 2.3.6 hold for this algorithm as well.

Finally, Cocco and Monasson [29] propose an ‘adaptive cluster’ heuristics and

demonstrated empirically good performances for specific graph families, also in the

highly correlated regime i.e. for θ∆ large. A mathematical analysis of their method

is lacking.
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2.3 Main results

Our main results mostly concern learning Ising models of maximum degree bounded

by ∆. As such, and before we proceed, it is convenient to introduce special notions

of sample-complexity and computational-complexity.

First, consider an algorithm Alg whose full specification requires choosing a value

for the set of parameters s in some domain D. Strictly speaking, a priori, Alg(s) and

Alg(′s) can be different algorithms. In particular, NAlg(s)(G, θ) and NAlg(s′)(G, θ)might

have different values. When dealing with algorithms whose output Ĝ(s) depends on

a free parameter s ∈ D that must be chosen, we use the following definition for

sample-complexity

NAlg(G, θ) ≡ min

{
n0 ∈ N : max

s∈D
PG,θ,n{Ĝ(s) = G} ≥ 1− δ for all n ≥ n0

}
.(2.3.1)

This is to be distinguished from NAlg(s)(G, θ) for any particular s ∈ D. Similarly,

χAlg(G, θ) is defined as the running time of Alg(s0) when running onNAlg(G, θ) samples

and where s0 = argmaxs∈D PG,θ,NAlg(G,θ){Ĝ(s) = G}. This is to be distinguished from

χAlg(s)(G, θ) for any particular s ∈ D.

Second, consider the family G(p,∆) of graphs on p nodes with maximum degree

∆ and an algorithm Alg (dependent or not on free parameters) that attempts to

reconstruct G from n i.i.d. samples from (2.1.1). We define (with a slight abuse of

notation)

NAlg(p,∆, θ) ≡ max
G∈G(p,∆)

NAlg(G, θ) . (2.3.2)

In words, NAlg(p,∆, θ) is the minimax sample complexity for learning graphs with p

vertices, maximum degree ∆ and edge strength θ, using Alg 3. Similarly, we define,

χAlg(p,∆, θ) ≡ max
G∈G(p,∆)

χAlg(G, θ) . (2.3.3)

3In fact, using Alg in the best possible way if there is a set of parameters s for tunning.
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2.3.1 Simple thresholding algorithm

In order to illustrate the interplay between graph structure, sample-complexity and

interaction strength θ, it is instructive to consider a simple example. The thresholding

algorithm reconstructs G by thresholding the empirical correlations

Ĉij ≡
1

n

n∑

ℓ=1

x
(ℓ)
i x

(ℓ)
j , (2.3.4)

for i, j ∈ V .

Thresholding( samples {x(ℓ)}, threshold τ )

1: Compute the empirical correlations {Ĉij}(i,j)∈V×V ;

2: For each (i, j) ∈ V × V

3: If Ĉij ≥ τ , set (i, j) ∈ E;

We denote this algorithm by Thr(τ). Notice that its complexity is dominated by

the computation of the empirical correlations, i.e. χThr(G, θ) = O(p2n). The sample

complexity NThr(G, θ) is bounded for specific classes of graphs as follows (for proofs

see Section A.1).

Theorem 2.3.1. If G is a tree, then

NThr(G, θ) ≤ 32

(tanh θ − tanh2 θ)2
log

2p

δ
. (2.3.5)

In particular Thr(τ) with τ(θ) = (tanh θ + tanh2 θ)/2, achieves this bound.

Theorem 2.3.2. If G has maximum degree ∆ > 1 and if θ < atanh(1/(2∆)) then

NThr(G, θ) ≤ 32

(tanh θ − 1
2∆

)2
log

2p

δ
. (2.3.6)

Further, Thr(τ) with the choice τ(θ) = (tanh θ + (1/2∆))/2 achieves this bound.

Theorem 2.3.3. There exists a numerical constant K such that the following is

true. If ∆ > 3 and θ > K/∆, there are graphs of bounded degree ∆ such that,
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NThr(G, θ) = ∞, i.e. for these graphs the thresholding algorithm always fails with

high probability regardless of the value of τ .

These results confirm the idea that the failure of low-complexity algorithms is

related to long-range correlations in the underlying graphical model. If the graph G

is a tree, then correlations between far apart variables xi, xj decay exponentially with

the distance between vertices i, j. Hence trees can be learnt from O(log p) samples

irrespectively of their topology and maximum degree (assuming θ 6= ∞). The same

happens on bounded-degree graphs if θ ≤ const./∆. However, for θ > const./∆, there

exists families of bounded degree graphs with long-range correlations.

2.3.2 Conditional independence test

A recurring approach to structural learning consists in exploiting the conditional

independence structure encoded by the graph [3, 21, 30, 49].

Let us consider, to be definite, the approach of [21], specializing it to the model

(2.1.1). Fix a vertex r, whose neighborhood ∂r we want to reconstruct, and consider

the conditional distribution of xr given its neighbors4: PG,θ(xr|x∂r). Any change of

xi, i ∈ ∂r, produces a change in this distribution which is bounded away from 0. Let

U be a candidate neighborhood, and assume U ⊆ ∂r. Then changing the value of xj ,

j ∈ U will produce a noticeable change in the marginal of Xr, even if we condition

on the remaining values in U and in any W , |W | ≤ ∆. On the other hand, if U * ∂r,

then it is possible to find W (with |W | ≤ ∆) and a node i ∈ U such that, changing

its value after fixing all other values in U ∪W will produce no noticeable change in

the conditional marginal. (Just choose i ∈ U\∂r and W = ∂r\U). This procedure

allows us to distinguish subsets of ∂r from other sets of vertices, thus motivating the

following algorithm.

4If a is a vector and R is a set of indices then we denote by aR the vector formed by the components
of a with index in R.
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Local Independence Test( samples {x(ℓ)}, thresholds (ǫ, γ) )
1: Select a node r ∈ V ;

2: Set as its neighborhood the largest candidate neighbor U of

size at most ∆ for which the score function Score(U) > ǫ/2;

3: Repeat for all nodes r ∈ V ;

The score function Score( · ) depends on ({x(ℓ)},∆, γ) and is defined as follows,

min
W,j

max
xi,xW ,xU ,xj

|P̂G,θ,n{Xi = xi|XW = xW , XU = xU}−

P̂G,θ,n{Xi = xi|XW = xW , XU\j = xU\j , Xj = xj}| . (2.3.7)

In the minimum, |W | ≤ ∆ and j ∈ U . In the maximum, the values must be such

that

P̂G,θ,n{XW = xW , XU = xU} > γ/2

P̂G,θ,n{XW = xW , XU\j = xU\j , Xj = xj} > γ/2 (2.3.8)

P̂G,θ,n is the empirical distribution calculated from the samples {x(ℓ)}nℓ=1. We denote

this algorithm by Ind(ǫ, γ). The search over candidate neighbors U , the search for

minima and maxima in the computation of the Score(U) and the computation of

P̂G,θ,n all contribute for χInd(G, θ).

Both theorems that follow are consequences of the analysis of [21], hence proofs

are omitted.

Theorem 2.3.4. Let G be a graph of bounded degree ∆ ≥ 1. For every θ there exists

(ǫ0, γ0), and a numerical constant K, such that

NInd(G, θ) ≤ 100∆

(ǫ0)2(γ0)4
log

2p

δ
, (2.3.9)

χInd(G, θ) ≤ K (2p)2∆+1 log p . (2.3.10)

More specifically, one can take ǫ0 = 1
4
sinh(2θ), γ0 = e−4∆θ 2−2∆.
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This first result implies in particular that G can be reconstructed with polyno-

mial computational-complexity for any bounded ∆. However, the degree of such

polynomial is pretty high and non-uniform in ∆. This makes the above approach

impractical.

A way out was proposed in [21]. The idea is to identify a set of ‘potential neighbors’

of vertex r via thresholding:

B(r) = {i ∈ V : Ĉri > κ/2} . (2.3.11)

For each node r ∈ V , we evaluate Score(U) by restricting the minimum in Eq. (2.3.7)

over W ⊆ B(r), and search only over U ⊆ B(r). We call this algorithm IndD(ǫ, γ, κ).

The basic intuition here is that Cri decreases rapidly with the graph distance between

vertices r and i. As mentioned above, this is true at low temperature.

Theorem 2.3.5. Let G be a graph of bounded degree ∆ ≥ 1. Assume that θ < K ′/∆

for some small enough constant K ′. Then there exists ǫ0, γ0, κ0 such that

NIndD(G, θ) ≤ 16× 8∆ log
4p

δ
, (2.3.12)

χIndD(G, θ) ≤ K ′p∆
∆ log(4/(∆κ0))

log(1/K′) +K ′∆p2 log p . (2.3.13)

More specifically, we can take κ0 = tanh θ, ǫ0 = 1
4
sinh(2θ) and γ0 = e−4∆θ 2−2∆.

2.3.3 Regularized logistic regression

A common approach to learning the Ising model consists in maximizing an appropriate

empirical likelihood function [94, 63, 11, 114, 82, 107]. In order to control statistical

fluctuations, and select sparse graphs, a regularization term is often added to the

cost function. In this section we focus on a specific implementation of this idea, the

ℓ1-regularized logistic regression method of [94]. This algorithm is interesting because

of its low computational complexity and good empirical performance.
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For each node r, the following likelihood function is considered

Ln(θ; {x(ℓ)}nℓ=1) = −1

n

n∑

ℓ=1

logPθ(x
(ℓ)
r |x(ℓ)

\r ), (2.3.14)

where x\r = {xi : i ∈ V \ r} is the vector of all variables except xr. Henceforth,

to simplify notation, we denote the function Ln(θ; {x(ℓ)}nℓ=1) by Ln(θ). From the

definition of Pθ in (2.1.2) and Bayes rule we have

logPθ(xr|x\r) = − log
(
e
∑

j∈V \{r} θrjxj + e−
∑

j∈V \{r} θrjxj

)
+

∑

j∈V \{r}
θrjxrxj . (2.3.15)

In particular, the function Ln(θ) depends only on the parameters θr,· = {θrj : j ∈
V \{r}}. This is used to estimate the neighborhood of each node by the following

algorithm, denoted by Rlr(λ).

Regularized Logistic Regression( samples {x(ℓ)}nℓ=1, regularization (λ))

1: Select a node r ∈ V ;

2: Calculate θ̂r,· = arg min
θr,·∈Rp−1

{Ln(θr,·) + λ‖θr,·‖1};

3: If θ̂rj 6= 0, set (r, j) ∈ E;

For each node r ∈ V , Rlr(λ) solves a convex optimization problem in p variables

whose overall computational-complexity can be bounded by O(max{p, n}p3) [94]. In
this section we focus on the algorithm’s sample-complexity, i.e. in the smallest num-

ber of samples that are required to reconstruct the graph G. In particular, we are

interested in computing bounds for the sample-complexity when the regularization

parameter λ is tuned optimally, as a function of the graph G, and when the graph is

of bounded degree ∆. (see (2.3.1)).

This is a somewhat optimistic assumption, that makes our negative results stronger,

and is further discussed below. Our main result establishes an approximate dichotomy

for this sample complexity. It might be usefull to recall the definition of NAlg(p,∆, θ)

introduced in (2.3.2).

Theorem 2.3.6. There exists universal constants C (with C ≤ 106) and ∆0 (with
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∆0 ≤ 50), such that

θ∆ ≤ 3

10
=⇒ NRlr(p,∆, θ) ≤ C

∆

θ2
log
(p
δ

)
, (2.3.16)

2 ≤ θ∆ ≤ 3 =⇒ NRlr(p,∆, θ) = ∞, for ∆ ≥ ∆0 and all p large enough. (2.3.17)

In particular, for θ∆ ≤ (3/10), the above sample complexity is achieved by λ =

θ/(50
√
∆).

Further, for all θ∆ ≥ 2, ∆ ≥ 3 and ǫ > 0, for any λ1(p) → ∞ as p → ∞ and

λ2(n) → 0 as n → ∞,

max
λ∈[λ1(p)/

√
n,λ2(n)]

P{Ĝ(λ) = G} ≤ ǫ for all n ∈ N, (2.3.18)

for all but a vanishing fraction of regular graphs G with p vertices and degree ∆.

Notice that the requirement λ ∈ [λ1(p)/
√
n, λ2(n)] in the last part of this state-

ment is very natural. Indeed, λ ≥ λ1(p)/
√
n is needed for the regularizer to over-

come statistical fluctuations, and λ ≤ λ2(n) is reuired for the estimator θ̂(λ) to be

asymptotically consistent as n → ∞. Typical prescriptions for λ are of the form

λ ∼
√

(log p)/n. We also note that the universal constants C, ∆0 are in practice

significantly smaller than what stated formally.

Remark 2.3.1. The smallest value of the maximum degree ∆0 for which the negative

result (2.3.17) holds can be determined by optimizing a two-variable function (see

Appendix A.4.1). Numerical optimization implies that we can take ∆0 = 3, and that

the condition θ∆ ≤ 3 is not required.

Let us briefly outline the main technical developments in the proof. Ravikumar,

Wainwright and Lafferty [94] introduced a set sufficient conditions under which reg-

ularized logistic regression reconstructs graphs of maximum degree ∆. Under these

conditions the sample complexity was bounded5 in [94] as NRlr(λ,G, θ) = O(∆3 log p).

5Notice that the upper bound in Eq. (2.3.16) is consistent with the one of [94] since, for θ =
Θ(1/∆) it yields NRlr(p,∆, θ) = O(∆3 log p).
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A crucial role was played in particular by the so-called incoherence condition that de-

pends on the Hessian of the expected likelihood function

L(θ) ≡ EG,θ∗{logPθ(Xr|X\r)}. (2.3.19)

Bellow we use θ0 or θ∗ to denote the true values of the parameters whenever useful for

clarity. Further, X ∈ R
p is a random variable with law PG,θ0 and EG,θ0 the expectation

with respect to this law.

Definition 2.3.2. Define Q0 ≡ Hess(L)(θ0), where Hess(L) denotes the Hessian of

L( · ). Let S = {j : (r, j) ∈ E} and SC = V \ ({r} ∪ S). Define the matrices

Q0
SS = {Q0

ij : i, j ∈ S} and Q0
SCS = {Q0

ij : i ∈ SC , j ∈ S}. Then (G, θ) satisfies the

incoherence condition with parameter α if

‖Q0
SCS(Q

0
SS)

−1‖∞ ≤ 1− α, (2.3.20)

where the matrix sup-norm is defined by ‖M‖∞ = maxi
∑

j |Mij|.

The proof of Theorem 2.3.6 involves the following novel technical developments.

i. We prove that that incoherence is necessary, and when incoherence does not

hold, under some reasonable assumptions on λ, regularized logistic regression

fails with high probability.

ii. We prove that incoherence holds on bounded-degree graphs under the condition

∆ ≤ 3/(10θ), cf. Eq. (2.3.16). This requires bounding the entries of Hess(L).
To estabilish such bounds, we use a technique based on a self avoiding walks

representation, due to Fisher [40].

iii. We prove that, if G is a uniformly random regular graph of degree ∆, then

incoherence fails to hold, with high probability for large p, provided ∆ ≥ 2/θ,

cf. Eq. (2.3.17). In other words, regularized logistic regression fails on most

∆-regular graphs, if ∆ ≥ 2/θ, under some reasonable assuptions on λ.
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iv. We construct a family of simple graphs with degree ∆ and p = ∆ + 2 vertices

on which regularized logistic regression fails assymptotically (i.e. as n → ∞) if

∆ ≥ 2/θ and λ is bounded away from 0.

Theorem 2.3.6 follows by merging these developments.

Discussion and further results

Let us discuss a few extensions of Theorem 2.3.6, as well as some outstanding chal-

lenges.

Heterogeneous edge strengths. In the statement of Theorem 2.3.6 we assume

that all the edge strengths are equal, i.e. θij = θ > 0. In applications, it is more

realistic to assume unequal θij ’s. A natural class would be given by all models of the

form (2.1.2) with p nodes, degree bounded by ∆ and 0 < θmin ≤ |θij | ≤ θmax. We

denote this class of models (weighted graphs) by G(p,∆, θmin, θmax). The algorithm

Rlr remains unchanged in this case [94].

Consider first the negative result in Theorem 2.3.6, namely that for 2 ≤ θ∆ ≤ 3

regularized logistic regression fails irrespective of the number of samples. Of course

this conclusion does not change if we consider a more general class. In particular Rlr

fails on G(p,∆, θmin, θmax) if θmax∆ ≥ 2.

Next consider the positive part in Theorem 2.3.6, namely that for θ∆ ≤ 3/10

regularized logistic regression reconstructs G from a number samples that is logarith-

mic in p. It is not hard to check that the proof applies to the more general model

G(p,∆, θmin, θmax), essentially unchanged. The only part that need to be modified is

the estimate in Lemma A.3.1, that can be shown to hold with θ replaced by θmax.

Summarizing, we have the following.

Remark 2.3.3. Denoting by NRlr(p,∆, θmin, θmax) the sample complexity of regular-

ized logistic regression for the class G(p,∆, θmin, θmax), we have

θmax∆ ≤ 3

10
=⇒ NRlr(p,∆, θmin, θmax) ≤ C

∆

θ2min

log
(p
δ

)
. (2.3.21)
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Small graphs. The negative part of Theorem 2.3.6, cf. Eq. (2.3.17) is stated for

sufficiently large graph size p. A natural question is whether regularized logistic

regression also fails for moderate p. In Section ?? we will construct a class of graphs

with p = ∆+2 for which Rlr fails at n = ∞, for any λ > 0 and θ∆ ≥ 2. These graphs

are used as an intermediate step in the proof of Theorem 2.3.6 and indeed suggests

that (2.3.17) already holds at small p.

Strucured graphs. Finally, Theorem 2.3.6 states that, for θ∆ > 2, regularized

logistic regression fails on most ∆-regular graphs. However, graphs encountered in

applications are often highly structured (although this structure is a priori unknown).

One might wonder what happens if we consider a structured subclass of the graph

family G(p,∆). We consider two such examples:

i. If G is a tree, then Rlr(λ) recovers G with high probability for any θ (for a

suitable λ);

ii. if G is a large two dimensional grid, Rlr(λ) fails with high probability for θ large

enough and any λ that vanishes with n and satisfies nλ2 → ∞ with p.

Incoherence is necessary. An important technical step in proving the negative part

of Theorem 2.3.6, consists in proving that the incoherence condition is necessary for

Rlr to successfully reconstruct G. This is stated formally as Lemma 2.6.1. Although

a similar result was proven in [116] for model selection using the Lasso, the present

paper (and its conference version [68]) is the first to prove that a similar incoherence

condition is also necessary when the underlying model is the Ising model.

The intuition behind this condition is quite simple. When n → ∞, and under

the restriction that λ → 0, solutions given by Rlr converge to the ground truth θ0

as n → ∞ [94]. Hence, for large n, we can expand Ln in a quadratic function

centered around θ∗ plus a small stochastic error term. Consequently, when adding

the regularization term to Ln, we obtain a cost function analogous to the Lasso plus

an error term that needs to be controlled. The study of the dominating contribution

leads to the incoherence condition.



CHAPTER 2. LEARNING THE ISING MODEL 38

Correlation decay and computational phase transitions. The effectiveness of

regularized logistic regression changes dramatically as θ∆ increases from 3/10 to 2.

Similar computational phase transitions have been the object of significant attention

in the context of approximate counting. This is the problem of computing marginals

of (2.1.2), or the partition function Zθ, given the parameters θ. We refer to [100, 101]

and references therein for this line of work.

The proof of Theorem 2.3.6 indicates that the underlying mechanism is the same

in these two cases, namely the break down of ‘correlation decay’ as θ∆ increases.

More precisely for θ∆ small, the correlation between xi and xj under the measure

(2.1.1) decreases exponentially with the distance between i and j. On the other hand,

for θ∆ large it does not decrease anymore with the distance. The threshold separating

these two behaviors is located at (∆− 1) tanh θ = 1, i.e. for ∆θ = Θ(1).

Choice of the regularization parameter. The choice of λ is crucial for the

accuracy of regularized logistic regression. Our definition of sample complexity, cf.

Eq. (2.3.1) assumes that the same value of λ is used for all vertices, and that this

is chosen as to maximize the probability of correct reconstruction. In practice, the

optimal value of λ might be difficult to find and hence this assumption makes our

negative result (for θ∆ ≥ 2) stronger. As for our positive result (for θ∆ ≤ 3/10), an

explicit value of λ is given that works uniformly over all graphs with the prescribed

maximum degree.

An interesting open question is whether these are the only two possible behaviors

for the graph ensemble G(p,∆, θmin, θmax): either a universal value of λ exists that

performs uniformly well over the ensemble, or even tuning λ ‘graph by graph’ is

unsuccessful.

Finally, there is an even more ‘optimistic’ definition of sample complexity. In

principle, one might assume that a different value of λ is used for each vertex r ∈ V

and each of them is tuned optimally. This is however unrealistic as it would require

tuning p regularization parameters, and is unlikely to be ineffective. Indeed, the

graphs constructed for the negative part of Theorem 2.3.6 are regular and highly

homogeneous. Local graph properties do not appear to be sufficient to determine λ.
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2.4 Important remark

If θ∆ ≥ C, for C large enough, all the above described algorithms fail in the regime

where they have polynomial computational-complexity. It is natural to ask whether

this difficulty is related to the specific algorithms, or is rather an ‘intrinsic’ compu-

tational barrier. While our results do not provide a definite answer to this question,

they point at an interesting possibility. Two simple but important observations are

the following. First of all, if such a barrier exists, it is computational and not sta-

tistical. In fact, the conditional independence test of [21] analysed in Section 2.3.2

reconstructs G with high probability for all θ,∆, although with complexity pO(∆) (see

Theorem 2.3.5). Second, it is likely that this barrier does not exist for attractive in-

teractions, i.e. if θij > 0 for all (i, j) ∈ E. Indeed counting is polynomial in this case

[70], and hence the maximum likelihood estimator can be approximately evaluated.

With these caveats, we notice that, for general ∆, θmax ≥ θmin > 0, no algo-

rithm is known that provably reconstructs G ∈ G(p,∆, θmin, θmax) with computational

complexity bounded by pC , and sample complexity bounded by (∆ log p)C for C a

universal constant.

2.5 Numerical results

In order to explore the practical relevance of the above results, we carried out extensive

numerical simulations using the regularized logistic regression algorithm Rlr(λ). For

a given graph construction with maximum degree ∆, it is convenient to compare the

edge strength θ with two distinct thresholds. The first one, defined as θuniq(∆) =

atanh(1/(∆ − 1)), is the threshold for correlation decay (and uniqueness of Gibbs

measures) on graphs of maximum degree ∆. The second, denoted by θcrit, is the

phase transition threshold. The latter is defined only for specific graph sequences,

but provides a finer (not worst case) control of correlation decay in many cases.

Samples from the Ising model (2.1.1) were generated using Gibbs sampling (a.k.a.

Glauber dynamics). Mixing time can be very large for θ ≥ θuniq, and was estimated

using the time required for the overall bias to change sign (this is a quite conservative
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Figure 2.2: Learning random subgraphs of a 7 × 7 (p = 49) two-dimensional grid
from n = 4500 Ising models samples, using regularized logistic regression. Left:
success probability as a function of the model parameter θ and of the regularization
parameter λ0 (darker corresponds to highest probability). Right: the same data
plotted for several choices of λ versus θ. The vertical line corresponds to the model
critical temperature. The thick line is an envelope of the curves obtained for different
λ, and should correspond to optimal regularization.

estimate at low temperature). Generating the samples {x(ℓ)} was indeed the bulk of

our computational effort and took about 50 days CPU time on Pentium Dual Core

processors. Notice that Rlr(λ) had been tested in [94] only on tree graphs G, or in

the weakly coupled regime θ < θuniq. In these cases sampling from the Ising model is

easy, but structural learning is also intrinsically easier.

Figure 2.2 reports the success probability of Rlr(λ) when applied to random sub-

graphs of a 7× 7 two-dimensional grid. Each such graphs was obtained by removing

each edge independently with probability ρ = 0.3. Success probability was esti-

mated by applying Rlr(λ) to each vertex of 8 graphs (thus averaging over 392 runs

of Rlr(λ)), using n = 4500 samples. We scaled the regularization parameter as

λ = 2λ0θ(log p/n)
1/2 (this choice is motivated by the algorithm analysis [94] and

is empirically the most satisfactory), and searched over λ0.

The data clearly illustrate the phenomenon discussed in the previous pages. De-

spite the large number of samples n ≫ log p, when θ crosses a threshold, the algorithm
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Figure 2.3: Learning uniformly random graphs of degree ∆ = 4 from Ising models
samples, using regularized logistic regression. Left: success probability as a function
of the number of samples n for several values of θ. Dotted: θ = 0.10, 0.15, 0.20, 0.35,
0.40 (in all these cases θ < θthr(∆ = 4)). Dashed: θ = 0.45, 0.50, 0.55, 0.60, 0.65
(θ > θthr(4), some of these are indistinguishable from the axis). Right: the same data
plotted for several choices of λ versus θ as in Fig. 2.2, right panel.

starts performing poorly irrespective of λ. Intriguingly, this threshold is not far from

the critical point of the Ising model on a randomly diluted grid θcrit(ρ = 0.3) ≈ 0.7

[118, 40].

Figure 2.3 presents similar data when G is a uniformly random graph of degree

∆ = 4, over p = 50 vertices. The evolution of the success probability with n clearly

shows a dichotomy. When θ is below a threshold, a small number of samples is

sufficient to reconstruct G with high probability. Above the threshold even n = 104

samples are too few. In this case we can predict the threshold analytically, cf. Lemma

?? below, and get θthr(∆ = 4) ≈ 0.4203, which compares favorably with the data.

2.6 Proofs for regularized logistic regression

In this section we present the proof of our results for the success and failure of Rlr.

Regarding the chapter on the Ising model, these are the most interesting and novel

results. The proofs regarding the simple thresholding algorithm are put in the ap-

pendix (cf. A.1) and the proofs regarding the conditional independence can be found
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in [21]. The proofs for Rlr were first introduced in [68, 16].

The proof regarding the result on Rlr builds on four lemmas that will be proved in

the appendices. Conceptually, the proof relies on two types of technical results. First,

we estabilish that the incoherence condition introduced in [94] is roughly necessary

for regularized logistic regession to succeed, cf. Lemma 2.6.1. Second, we use this

fact, together with the main result of [94] to characterize the success probability on

three graph families, cf. Lemmas 2.6.2, 2.6.3, 2.6.4. Finally, in order to prove the

negative part in Theorem 2.3.6 we simply construct a graph by taking the disjoint

union of elements from each of these families.

2.6.1 Notation and preliminary remarks

Before proceeding it is convenient to recall some notation and make some preliminary

remarks.

We denote by [m] = {1, 2, . . . , m} the set of first m integers. If v ∈ R
m is a vector

and R ⊆ [m] is an index set then vR ≡ (vi)i∈R denotes the vector formed by the

entries with index in R. Similarly, if M ∈ R
m×n is a matrix and R ⊆ [m], P ⊆ [n] are

index sets, then MR,P ≡ (Mij)i∈R,j∈P denotes the submatrix indexed by rows in R

and columns in P . We denote the maximum and minimum eigenvalue of a symmetric

matrixM by σmax(M) and σmin(M) respectively. Recall that ‖M‖∞ = maxi
∑

j |Mij |.
We denote by 1 the all-ones vector

As before, we let r be the vertex whose neighborhood we are trying to reconstruct

and define S = ∂r and SC = V \(∂r∪{r}). Since the function Ln(θ; {x(ℓ)}nℓ=1)+λ‖θ‖1
only depends on θ through the components θr,· = {θrj : j ∈ V \{r}} (see equation

(2.3.15)), we hereafter neglect all the other parameters and write θ as a shorthand of

θr,·. As mentioned above, whenever necessary to avoid confusion, we will write θ0 or

θ0 (if viewed as a vector) for the true parameters values. Namely θ0 = {θrj : θij =

0, ∀j /∈ ∂r, θrj = θ0, ∀j ∈ ∂r}.
We denote by z0 a sub-gradient of ‖θ‖1 evaluated at the true parameters values

θ0. Note that, since we are working in the ferromagnetic domain, i.e. (θ0S)i > 0

for all i ∈ S, we have z0S = 1. We define W n(θ) to be minus the gradient of Ln,
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W (θ) to be the minus the gradient of L, Qn(θ) to be the Hessian of Ln(θ) and Q(θ)

to be the Hessian of L(θ). Notice that, by the law of large numbers, for every θ,

limn→∞Ln(θ) = L(θ), limn→∞W n(θ) = W (θ), and limn→∞Qn(θ) = Q(θ).

The gradient and Hessian of L admit indeed fairly explicit expressions. For all

i, j ∈ V \{r} we have,

Qn
ij(θ) =

1

n

n∑

ℓ=1

x
(ℓ)
i x

(ℓ)
j

cosh2
(∑

t∈V \{r} θrtx
(ℓ)
t

) , (2.6.1)

Qij(θ) = EG,θ

(
XiXj

cosh2(
∑

t∈V \{r} θrtXt)

)
, (2.6.2)

−W n
i (θ) = [∇Ln(θ)]i =

1

n

n∑

ℓ=1

x
(ℓ)
i

(
tanh

( ∑

t∈V \{r}
θrtx

(ℓ)
t

)
− x(ℓ)

r

)
, (2.6.3)

−Wi(θ) = [∇L(θ)]i = EG,θ

{
Xi tanh

( ∑

t∈V \{r}
θrtXt

)}
− EG,θ{XiXr}. (2.6.4)

Note that, from the last expression, it follows that ∇L(θ0) = 0. This in turn is related

to asymptotic consistency: if λ → 0 as n → ∞ then θ̂ → θ0.

We let θ̂ denote the parameter estimate computed by Rlr(λ) when applied to

samples {x(ℓ)}nℓ=1.

We will omit arguments whenever clear from the context. Any quantity evaluated

at the true parameter values will be represented with a 0, e.g. Q0 = Q(θ0). We use

instead a hat (as in θ̂) to denote estimates based on {x(ℓ)}nℓ=1. When clear from the

context we might write EG,θ as simply E. Similarly, PG,θ will be sometimes written

as simply P.

Throughout this paper, Psucc will denote the probability of success of Rlr, that is,

the probability that the algorithm is able to recover the underlying G exactly. Also,

G will be a graph of maximum degree ∆.

2.6.2 Necessary conditions for the success of Rlr

Our first technical result establishes that, if λ is small and ‖Q0
SCS(Q

0
SS)

−1z0S‖∞ > 1,

then Rlr(λ) fails to reconstruct the neighborhood S correctly. (Recall that z0S is the
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Figure 2.4: Diamond graphs Gdiam(p).

subgradient of ‖θ‖1 evaluated at θ0.) Notice that, under the incoherence condition

‖Q0
SCS(Q

0
SS)

−1z0S‖∞ ≤ (1 − α)‖z0S‖∞ ≤ (1 − α). Hence this lemma suggests that

incoherence is roughly necessary for regularized logistic regression to succeed. Its

proof can be found in Appendix A.2. (It is not quite necessary because it could in

principle be the case that ‖Q0
SCS(Q

0
SS)

−1‖∞ > 1 but ‖Q0
SCS(Q

0
SS)

−1z0S‖∞ < 1.)

Lemma 2.6.1. Assume [Q0
SCS(Q

0
SS)

−1z0S]i ≥ 1 + ǫ for some ǫ > 0 and some row

i ∈ V , σmin(Q
0
SS) ≥ Cmin > 0, and λ < C3

minǫ/(2
7(1 + ǫ2)∆3). Then the success

probability of Rlr(λ) is upper bounded as

P{Ĝ(λ) = Ĝ} ≤ 4∆2e−nδ2A + 4∆ e−nλ2δ2B (2.6.5)

where δA = (C2
min/32∆)ǫ and δB = (Cmin/64

√
∆)ǫ.

2.6.3 Specific graph ensembles

In this section we consider the performances of Rlr(λ) on three graph ensembles.

In the proof of Theorem 2.3.6, we will take the disjoint union of one graph from

each ensemble. This trick allows us to rule out a subset of values of λ for each

graph ensemble. Notice that, in each case, we single out a specific vertex r whose

neighborhood is to be reconstructed. Equivalently, we define here ensembles of rooted

graphs. The three graph ensembles are defined as follows:

One-edge graphs Gone(p). This is the set of graphs with vertex set V = [p] and

only one edge involving the distinguished vertex r, E = {(r, i)} (e.g. r = 1,

i = 2).

Diamond graph Gdiam(p). This is the set of graphs with p vertices and 2(p − 2)

edges (see Figure 2.4). Two of the vertices to be denoted as vertex 1 and vertex
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2 have degree (p− 2). They are connected to each of vertices {3, . . . , p} which

have in turn degree 2. The maximum degree is ∆ = p− 2. We will identify the

root vertex with r = 1.

These graphs capture a situation in which the two variables interact ‘indirectly’

through numerous weak intermediaries.

Random regular graph Grand(p,∆). Finally we denote by Grand(p,∆) the set of

regular graphs with p nodes and degree ∆. This is naturally endowed with

the uniform probability distribution. With a slight abuse of notation, we shall

use Grand(p,∆) to denote the resulting probability law over graphs, and write

G ∼ Grand(p,∆) for a uniformly random regular graph. The root r is also chosen

uniformly at random in V .

The proof of the first lemma can be found in [16] and the proofs of the two other are

included in Appendices A.4 and A.5.

The first lemma of this section considers one-edge graphs in Gone(p). It implies

that, unless nλ2 is increasing with p, Rlr(λ) fails with significant probability.

Lemma 2.6.2 (One-edge graphs Gone(p)). There exist M = M(K, θ) > 0 decreasing

with K for θ > 0 such that the following is true. If G ∈ Gone(p) and nλ2 ≤ K, then

P{Ĝ(λ) = Ĝ} ≤ e−M(K,θ)p + e−n(1−tanh θ)2/32 . (2.6.6)

The same upper bounds holds for the probability of reconstructing the neighborhood of

the root r.

The second lemma deals with diamond graphs Gdiam(p). It shows that Rlr(λ) fails

if λ is bounded away from 0 provided θ∆ ≥ 2.

Lemma 2.6.3 (Diamond graphs Gdiam(p)). There exists ∆0 ≥ 3 (with ∆0 ≤ 50) such

that the following happens for all ∆ ≥ ∆0 and 2 ≤ θ∆ ≤ 3. For any G ∈ Gdiam(p =

∆+ 2) and any fixed λmin > 0,

sup
λ≥λmin

P{Ĝ(λ) = G} ≤ ǫ for all n > n0(∆, ǫ, λmin) . (2.6.7)
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The same upper bounds holds for the probability of reconstructing the neighborhood of

the root r.

The proof of this lemma is based on the analysis of the expected likelihood function

L(θ), cf. Eq. (2.3.19). More precisely we consider the regularized cost function

L(θ) + λ‖θ‖1 and show that it is minimized at a parameter vector θ with wrong

support. Using the graph symmetries the proof is reduced to minimizing a function

in two dimensions.

Remark 2.6.1. Numerical solution of the mentioned two-dimensional minimization

problem indicates that Lemma 2.6.3 holds for θ∆ ≥ 2, ∆ ≥ 3. (see Appendix A.4.1)

Finally, we consider random regular graphs.

Lemma 2.6.4 (Random graphs Grand(p,∆). Let ∆ ≥ 3 and G ∼ Grand(p,∆). Then

there exists θthr(∆) and, for any θ > θthr(∆), there exists δ = δ(θ,∆) > 0, λthr =

λthr(θ,∆) such that the success probability of Rlr(λ) is upper bounded as

max
λ≤λthr

P{Ĝ(λ) = G} ≤ 4∆2 p−δ + 2∆ e−δnλ2

, (2.6.8)

with high probability with respect to choice of G. The same upper bounds holds for

the probability of reconstructing the neighborhood of the root r.

For large ∆, θthr(∆) = h2
∞∆−1(1 + o∆(1)). The constant h2

∞ (≈ 1.439) is the

unique positive solution of

h∞ tanh h∞ = 1 . (2.6.9)

In addition, for any ∆ ≥ 3, θthr(∆) ≤ 2∆−1.

The proof of this result relies on a local weak convergence result for ferromagnetic

Ising models on random graphs proved in [35]. This allows us to prove that, under

the lemma’s assumptions ‖Q0
SCS(Q

0
SS)

−1z0S‖∞ ≥ 1 + ǫ(θ,∆) with high probability.

2.6.4 Proof of Theorem 2.3.6

We distinguish two parts: (i) Proving that Rlr succeds with high probability if θ∆ <

3/10; (ii) Construct a family of graphs that Rlr fails to reconstruct for θ∆ ≥ 2 (plus
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the mentioned conditions).

The second part is the most challenging technically, and builds on Lemmas 2.6.2,

2.6.3, 2.6.4.

2.6.5 Proof of Theorem 2.3.6: θ∆ ≤ 3/10

The proof consists in checking the sufficient conditions for the success of Rlr described

in [94, Theorem 1] hold true. Namely we prove the following Lemma.

Lemma 2.6.5. For θ∆ ≤ 3/10, there exists constants Cmin > 0, Dmax < ∞ and

α < 1 such that

σmin(Q
0
SS) > Cmin, (2.6.10)

σmax(EG,θ(XSX
∗
S)) < Dmax, (2.6.11)

‖Q0
SCS(Q

0
SS)

−1‖∞ ≤ 1− α. (2.6.12)

This is proved in Appendix A.3 by estabilishing estimates on the entries Q0 using

a technique of Fisher [40]. Once this lemma is established, the upper-bound on the

sample-complexity follows by carefully carrying all the proofs in [94, Theorem 1]

without dropping any constants.

2.6.6 Proof of Theorem 2.3.6: θ∆ ≥ 2

First consider the last part of the Theorem, cf. Eq. (2.3.18). By Lemma 2.6.4, we

have

max
λ∈[λ1(p)/

√
n,λ2(n)]

P{Ĝ(λ) = G} ≤ 4∆2 p−δ + 2∆ e−δλ1(p)2) ,

for all but a vanishing fraction of graphs G ∈ Grand(p,∆). Since δ > 0 and λ1(p) → ∞
as p → ∞, the right hand side will be smaller than ǫ for all p large enough. Therefore,

max
λ∈[λ1(p)/

√
n,λ2(n)]

P{Ĝ(λ) = G} ≤ ǫ , for all n ∈ N,

for all but a vanishing fraction of graphs G ∈ Grand(p,∆).
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Next consider the claim (2.3.17). Fix ∆ ≥ ∆0, whereby ∆0 is defined in such a

way that Lemma 2.6.3 holds, and θ so that 2 ≤ θ∆ ≤ 3. We construct a graph G

with ptot = 2p + (∆ + 2) vertices as a disjoint union of G = G1 ∪ G2 ∪ G3. Here

G1 = (V1, E1) ∈ Gone(p) is a one-edge graph with p vertices and root r1; G2 =

(V2, E2) ∈ Gdiam(∆ + 2) is a diamond graph with ∆ + 2 vertices and root r2; G3 =

(V3, E3) ∼ Grand(p,∆) is a uniformly random regular graph with degree ∆, rooted at

r3. It is sufficient to prove that, for all n large enough

sup
λ∈R+

PG,θ,n(Ĝ(λ) = G) ≤ 1

2
.

For ℓ ∈ {1, 2, 3}, let Eℓ(λ) be the event that Rlr(λ) reconstructs the neighborhood

of rℓ correctly. Further let E0(λ) be the event that Rlr(λ) does not return any edge

across vertex sets V1, V2, V3 (such edges are absent from the ground truth). We then

have

sup
λ∈R+

P(Ĝ(λ) = G) ≤ sup
λ∈R+

min
{
P(E1(λ) ∩ E0(λ)); P(E2(λ) ∩ E0(λ)); P(E3(λ) ∩ E0(λ))

}

It is therefore sufficient to show that there exists a function p 7→ λ1(p) and a constant

λ2 > 0 such that, with positive probability with respect to the choice of the random

graph G, we have

sup
λ∈[0,λ1(p)/

√
n]

P(E1(λ) ∩ E0(λ)) ≤ 1

2
,

sup
λ∈[λ1(p)/

√
n,λ2]

P(E3(λ) ∩ E0(λ)) ≤ 1

2
,

sup
λ∈[λ2,∞)

P(E2(λ) ∩ E0(λ)) ≤ 1

2
.

We fix the function p 7→ λ1(p) such that λ1(p) → ∞ as p → ∞ and M(λ1(p)
2, θ)p ≥

log p, where M(· · · ) is defined as per Lemma 2.6.2. This is possible since M(K, θ) is

decreasing and strictly positive at any K < ∞.

Notice that, under E0(λ), Rlr(λ) outputs θr1,j = 0 for any j ∈ V2 ∪ V3. We can

therefore bound P(E1(λ) ∩ E0(λ)) as if G2 and G3 were absent. Using Lemma 2.6.2
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we get

sup
λ∈[0,λ1(p)/

√
n]

P(E1(λ) ∩ E0(λ)) ≤ e−M(λ1(p)2,θ)p + e−n(1−tanh θ)2/32

≤ 1

p
+ e−n(1−tanh θ)2/32 ≤ 1

2
,

where the last inequality follows for p ≥ 4 and n ≥ 64/(1− tanh θ)2.

Analogously, we can use Lemma 2.6.4 to upper bound the probability of E3(λ).
We get, for δ = δ(θ,∆) > 0,

sup
λ∈[λ1(p)/

√
n,λ2]

P(E3(λ) ∩ E0(λ)) ≤ 4∆2 p−δ + 2∆ e−δnλ2

≤ 4∆2 p−δ + 2∆ e−δλ1(p)2 ≤ 1

2
,

where the last inequality follows for p ≥ p0(∆, θ).

Finally, using Lemma 2.6.3 we obtain the desired bound on P(E2(λ) ∩ E0(λ)), for
n > n0(∆, 1/2, λ2).

2.6.7 Discussion

The construction used in the proof of Theorem 2.3.6 for θ∆ > 2 might appear some-

what contrived. In reality it exposes quite clearly the basic mechanisms at work.

First of all, it is necessary to scale λ ≥
√
λ1(p)/n, with λ1(p) → ∞. Indeed, if

this is not the case, Rlr(λ) will fail reconstructing the neighborhood of any vertex that

is connected only to a few neighbors, and essentially independent from most other

vertices. This phenomenon is independent of the tradeoff between ∆ and θ, and of

the correlation decay properties. The graph G1 ∈ Gone(p) is only a particularly simple

example that demonstrates it.

On the other hand we expect that, to demonstrat failure of Rlr(λ) for λ ≥√
λ1(p)/n, either of the two graphs G2 ∈ Gdiam(∆ + 2) or G3 ∼ Grand(p,∆) should

be sufficient. The main reason to use the disjoint union of G2 and G3 is that each

of the two cases is easier to treat in a distinct regime. Further, each of the two
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types of graphs is interesting in its own. While G2 ∈ Gdiam(∆ + 2) is extremely sim-

ple, G3 ∼ Grand(p,∆) is ‘typical’ (as it reproduces the behavior of most graphs with

degree ∆).

The insight associated to failure on Gdiam(∆ + 2) or Grand(p,∆) is similar. Strong

correlations between vertices that are not directly connected fool the algorithm.

2.7 Regularized logistic regression and graph fam-

ilies with additional structure

Our main result concerning Rlr, Theorem 2.3.6, implies that regularized logistic re-

gression generally fails when ∆max(ij)∈E |θij| ≥ 2. It is natural to wonder whether

this conclusion changes under additional assumptions on the graph G.

The next result is a striking example of this type.

Proposition 2.7.1. If G is a tree with maximum degree ∆ then, for any θ > 0,

NRlr(G, θ) ≤ C
∆

θ2
log
(p
δ

)
. (2.7.1)

The proof of this proposition is obtained by showing that, for any θ,∆, the Ising

measure on a tree G with maximum degree ∆ satisfies the incoherence condition. The

proof of this proposition can be found in the appendix of [67].

The last statement might appear to contradict Lemma 2.6.4. The proof of the

latter is based on the local weak convergence of the distribution (2.1.1) for random

regular graph to an Ising measure on a regular tree. For the latter measure, we prove

that the incoherence condition is violated for ∆θ large enough.

Remark 2.7.1. There is no contradiction between Proposition 2.7.1 and Lemma

2.6.4. The Ising measure on a random regular graph converges to the measure on a

tree with plus boundary conditions. The relevant measure for a finite tree, used in

Proposition 2.7.1 has free boundary conditions.

Our last example concerns loopy graphs, namely two dimensional grids. It implies
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that Rlr(λ) fails above a certain threshold in θ: in this case, additional structure does

not change the qualitative conclusion of Theorem 2.3.6.

Proposition 2.7.2. There exists θ2d such that the following happens for all θ > θ2d.

Let G be a two-dimensional grid of size
√
p × √

p with periodic boudary condition,

and, p 7→ λ1(p) and n 7→ λ2(n) be such that λ1(p) → ∞ as p → ∞ and λ2(n) → 0 as

n → ∞. Then for any ǫ > 0 there esist p0, n0 such that, if p ≥ p0, n ≥ n0, then

sup
λ∈[λ1(p)/

√
n,λ2(d)]

PG,θ,n(Ĝ(λ) = G) ≤ ǫ .

The proof uses once more Lemma 2.6.1 and shows that the incoherence condition

is violated at large enough θ. The proof of this fact is very technical and can be found

in the appendix of [67].

Assuming λ ∈ [λ1(p)/
√
n, λ2(d)] is natural for the same reasons as explained after

the statement of Theorem 2.3.6.



Chapter 3

Learning stochastic differential

equations

In this chapter we study the sample-complexity and computational-complexity in

learning graphical models from data with correlations. The focus is on stochastic

differential equations (SDEs) and learning from continuous trajectories. A specific

type of SDE already appeared in the Introduction (Chapter 1 equation (1.2.5)): in

linear SDEs the rate of change of each variable is a linear combination of neighboring

variables in a graph G. However, our interest is broader, and in Section 3.1, a very

general family of non-linear SDEs parametrized by graphs is introduced and is then

analyzed throughout the chapter.

An ℓ1-regularized least-squares algorithm to learn these non-linear SDEs is dis-

cussed in Section 3.3.2. We denote it by Rls. Our main results (Section 3.3) charac-

terize the sample-complexity of Rls in learning linear SDEs with sparse representation

from continuous trajectories. A general result is presented in Section 3.3.3, and, to

facilitate its interpretation, in Section 3.3.4 we look at the simpler case of linear SDEs

parametrized by the Laplacian of a graph. In Section 3.5, we study two essential re-

sults that are the basis of our main results. Namely, in Section 3.5.1, we focus on

52
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learning stochastic linear difference equations 1 – of which learning SDEs from con-

tinuous trajectories is a limiting case – and in Section 3.5.2, we describe a general

lower bound on the sample-complexity of learning SDEs – from which we derive a

lower bound matching the upper bound on the sample-complexity of Rls. In Section

3.7.1, we look at a lower bound on the sample-complexity of learning dense linear

SDEs and in Section 3.7.2 at a lower bound when learning non-linear SDEs.

Our results show that the presence of correlations in the samples is balanced by the

infinite number of data points from the continuous trajectories and results in a change

of the sample-complexity (regarding the dependency in p) only by a multiplicative

factor in comparison with when samples are independent. Why is this so and what

is this multiplicative factor?

Let us look at the autocorrelation function of the sampled stationary trajectory

of the following 1-D linear SDE

dx(t) = −ρx(t)dt + db(t). (3.0.1)

For ρ > 0 the SDE admits a unique stationary solution [88] and we obtain

E{x(0)x(ℓη)} =
1

2ρ
e−ρℓη. (3.0.2)

If η ≫ 1/ρ, consecutive samples are approximately independent. From a different

perspective, in n samples spaced in time by η, the number of approximately inde-

pendent samples is O(nmin{1, ηρ}). Hence, for example, if learning sparse graphs

of bounded degree ∆ from n independent samples can be, in principle, done for

n < O(∆ log p) [21], then learning sparse graphs for SDEs should be possible for

n < O(∆max{1, (ηρ)−1} log p). Since nη is the length T of the observation window

of the trajectory, we can write T < O(∆max{η, ρ−1} log p). As η → 0, the bound

converges to T < O(∆ρ−1 log p) and it is tempting to regard this metric as a bound

on the sample complexity when learning from continuous time data. In particular,

1Throughout this thesis we often refer to stochastic difference equations as linear SDEs in discrete
time. A simple example of a linear SDE in discrete time is x(n + 1) = 0.5x(n) + w(n), n = 0, 1, ...
where x(0) = 0 and {w(n)}∞n=0 are i.i.d. N(0,1) random variables.
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this bound predicts that the smaller ρ is, the more information we need to learn G.

In this section we show the above relation between η, n and ρ is partially correct.

More precisely, we prove an upper bound that is similar to the bounds for independent

samples and behaves like ρ−1 for ρ small. In our result, ρ is the decay rate of the

slowest mode of the SDE. In other words, Rls performs worse as the SDE approaches

instability. However, the same upper-bound also predicts that, as ρ increases, the

sample-complexity degrades. This is at odds with the bound we obtained here but

is the correct behavior. In fact, this is the best possible behavior for ρ large since,

for this regime, we can prove a matching lower bound for any algorithm with success

probability greater than 1/2. To understand this, look at the SDE as a dynamical

system driven by white-noise. For ρ large, the system quickly filters any inputs and

the driving white-noise cannot excite the system enough for us to learn it from data.

The question of characterizing the sample-complexity of learning from a sampled

continuous trajectory remains open (but see Section 3.2 for an overview on related

work).

The work in this chapter is based on joint work with Ibrahimi and Montanari

[14, 15, 13].

3.1 Introduction

Consider a continuous-time stochastic process {x(t)}t≥0, x(t) = [x1(t), . . . , xp(t)] ∈
R

p, which is defined by a stochastic differential equation (SDE) of diffusion type

dx(t) = F (x(t); θ0) dt+ db(t) , (3.1.1)

where b(t) is a p-dimensional standard Brownian motion and the drift coefficient 2,

F (x(t); θ0) = [F1(x(t); θ
0), . . . , Fp(x(t); θ

0)] ∈ R
p, is a function of x(t) parametrized

by θ0. This is an unknown vector, with dimensions scaling polynomially with p.

In this chapter we consider the problem of learning the support of the vector θ0

2Throughout this chapter, vectors are ‘column vector’ even if they are represented in row form
for typographical reasons.
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from a sample trajectory XT
0 ≡ {x(t) : t ∈ [0, T ]}. More precisely, we focus on

the high-dimensional limit, where p can grow with T , and determine necessary and

sufficient conditions for recovering the signed support of θ0 with high probability 3.

As stated in the introductory Chapter 1, we refer to the smallest T that allows us

to achieve a prescribed success probability as the ‘sample-complexity’ of the problem

(although the number of samples is, strictly speaking, infinite). We are particularly

interested in achieving the optimal scaling of sample-complexity with the problem

dimensions through computationally efficient procedures.

Concretely, given a SDE parametrized by θ0 and an algorithm Alg = Alg(XT
0 ) that

outputs an estimate θ̂, we define the sample-complexity TAlg(θ
0) as

TAlg(θ
0) = inf{T0 ∈ R

+ : Pθ0,T{sign(θ̂) = sign(θ0)} ≥ 1− δ for all T ≥ T0}. (3.1.2)

In the expression above, Pθ0,T denotes probability with respect to the trajectory XT
0 .

Obviously, TAlg(θ
0) defined above is an upper bound for sample-complexity of learning

the support alone.

In addition to this definition, given a class of A of parameters we define,

TAlg(A) = max
Θ0∈A

TAlg(θ
0). (3.1.3)

Models based on SDEs play a crucial role in several domains of science and technol-

ogy, ranging from chemistry to finance. Correspondingly, parameter estimation has

been intensely studied in this context. We refer to Section 3.2 for a brief overview.

A complete understanding of parameter estimation in a high-dimensional setting is

nevertheless missing.

Our results address these challenges for special classes of SDEs of immediate rele-

vance. A first class is constituted by drift coefficients that are parametrized linearly.

3Recall that the signed support of θ0 is represented by sign(θ0) and corresponds to the partition
of the set of indices of θ0 into three sets: indices with positive value, indices with negative value and
indices with zero value.
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Explicitly, we are given a set of basis functions

F (x) = [f1(x), f2(x), . . . , fm(x)], (3.1.4)

with fi : R
p → R. The drift is then given as F (x; Θ0) = Θ0F (x), with Θ0 ≡

(θ0ij)i∈[p],j∈[m] ∈ R
p×m. In this chapter we often use the notation Θ0 instead of θ0 to

stress that the unknown parameter has a natural matrix presentation. We then have,

for each i ∈ R
p,

dxi(t) =
m∑

j=1

θ0ijfj(x(t)) dt+ dbi(t) . (3.1.5)

Suitable sets of basis functions can be provided by domain-specific knowledge. As

an example, within stochastic models of chemical reactions, the drift coefficient is

a low-degree polynomial. For instance, the reaction A + 2B → C is modeled as

dxC = kC,ABxAx
2
Bdt + dbC, where xA, xB and xC denote the concentration of the

species A, B and C respectively, and dbC is a chemical noise term. In order to learn

a model of this type, one can consider a basis of functions F (x) that comprises all

monomials up to a maximum degree.

An important subclass of models of the last type is provided by linear SDEs.

In this case, the drift is a linear function of x(t), namely F (x; Θ0) = Θ0x(t) with

Θ0 ≡ (θ0ij)i,j∈[p] ∈ R
p×p. Explicitly, for each i ∈ R

p,

dxi(t) =

p∑

j=1

θ0ijxj(t) dt+ dbi(t) . (3.1.6)

A model of this type is a good approximation for many systems near a stable equi-

librium. The model (3.1.6) can be used to trace fluctuations of the species’ concen-

trations in proximity to an equilibrium point. The matrix Θ0 would represent in this

case the linearized interactions between different chemical factors.

More generally, we can associate to the model (3.1.6) a directed graph G = (V,E)

with edge weight θ0ij ∈ R associated with the directed edge (j, i) from j ∈ V to i ∈ V .

Each component xi(t) of the vector x(t) describes the state of a node i ∈ V . The

graph G describes which nodes interact: the rate of change of xi(t) is given by a
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weighted sum of the current values of its neighbors, corrupted by white noise. In

other words linear SDE’s can be seen as graphical models – a probabilistic model

parametrized by a graph.

This thesis establishes lower bounds on the sample-complexity for estimating the

general model (3.1.1). These bounds are based on information theoretic techniques

and apply irrespective of computational considerations. For linear models of the form

(3.1.6), we put forward a low-complexity estimator and derive upper bounds on its

sample-complexity. Upper and lower bounds are shown to be within a constant factor

for special classes of sparse networks Θ0.

3.2 Related work

The problem of estimating the parameters of a diffusion plays a central role in several

applied domains, the most notable being econometrics, chemistry and system biology.

In the first context, diffusions are used to model the evolution of price indices

[92]. While the most elementary process is the (geometric) Brownian motion [10, 19],

a number of parametric families have been introduced to account for nonlinearities.

The number of parameters is usually small and parameter estimation is addressed via

maximum likelihood (ML). We refer to [12, 76] for proofs of consistency and asymp-

totic normality of the ML estimator. Much of the recent research has focused on

dealing with the challenges posed by the fact that the diffusion is sampled at discrete

intervals, and the transition probabilities cannot be computed in closed form. A short

list of contributions on this problem includes [31, 91, 5]. In particular, asymptoti-

cally consistent methods based on approximate transition probabilities exist, see for

instance [90, 26]. Nonparametric estimation of the drift coefficient has been studied

as well [39, 104, 32].

Let us emphasize that all of these works focus on the low-dimensional setting: the

vector of parameters to be estimated is p-dimensional, and the diffusion is observed

for a time T → ∞. Hence there is little overlap with the present work. In particular,

simple ML estimators are not viable in the high-dimensional setting. At the same

time, it would be interesting to address the problems posed by discrete sampling and
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non-parametric estimation in the high-dimensional setting as well.

Applications to chemistry and system biology have been mentioned in Section

3.1. A large variety of chemical reaction is modeled by diffusions with suitably

parametrized drift terms [54, 60]. Of particular interest here are special classes of

drift coefficients, for instance those exhibiting time-scale separation [89] or gradients

of a potential [93]. As for econometrics applications, these works have focused on

low-dimensional diffusions.

Technically, our work fits on recent developments in learning high-dimensional

graphical models. The typical setting assumes that the data are i.i.d. samples from a

high-dimensional Gaussian distribution with sparse inverse covariance. The underly-

ing graph structure (the support of the inverse covariance) is estimated using convex

regularizations that promote sparsity. Well known examples include the graphical

LASSO [44] and the pseudo-likelihood method of [81]. In the context of binary pair-

wise graphical models, similar methods were developed in Ref. [110]. To the best of

our knowledge the work described by this thesis is the first one moving beyond the

assumption of i.i.d. samples. While we extend ideas and methods from this literature,

dealing with dependent samples raises new mathematical challenges.

Our methods build on the work on ℓ1-regularized least squares, and its variants

[107, 36, 37, 115, 109]. The most closely related results are the one concerning high-

dimensional consistency for support recovery [81, 110, 116]. Our proof for our upper

bound follows indeed the approach developed in these papers, with two important

challenges. First, the design matrix is in our case produced by a stochastic diffu-

sion, and it does not necessarily satisfies the irrepresentability conditions used by

these works. Second, the observations are not independent and therefore elementary

concentration inequalities are not sufficient.

Most of these proofs build on the technique of [116]. A naive adaptation to the

present case allows to prove some performance guarantee for the discrete-time setting.

However the resulting bounds are not uniform as the sampling interval η tends to

0 for nη = T fixed. In particular, they do not allow to prove an analogous of our

continuous time result, Theorem 3.3.1. A large part of our effort is devoted to proving

more accurate probability estimates that capture the correct scaling for small η.
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Finally, the related topic of learning graphical models for autoregressive processes

was studied recently in [102, 103]. These papers propose a convex relaxation that

is different from the one studied in this paper, without however estabilishing high-

dimensional consistency for model selection.

Preliminary report of our work were presented at NIPS 2010 [14] and ISIT 2011

[15]. Subsequent work by Bolstad, Van Veen and Nowak [20] establishes high-dimensional

consistency for estimating autoregressive models through a related approach. These

guarantees are non-uniform in the sampling rate η.

3.3 Main results

Our main contributions are the following:

Information-theoretic lower bound. We establish a general lower bound on the

sample complexity for estimating the signed support of the drift coefficient of a

diffusion of the form (3.1.1). By specializing this result, we obtain bounds for

the linearly parametrized model (3.1.5), and the linear model (3.1.6).

Upper bound via penalized least squares. For the linear model (3.1.6), and suit-

able classes of sparse matrices Θ0, we prove high-dimensional consistency of the

penalized least-squares method introduced in Section 3.3.2. The resulting upper

bound on sample complexity matches the information theoretic lower bound up

to constant factors.

In this section we focus on the case of sparse linear SDE’s, stating upper and lower

bounds in this case, cf. Section 3.3.3. We then illustrate the general theory by

analyzing a specific but rich problem: learning the Laplacian of a sparse graph, cf.

Section 3.3.4.

Related results extending the ones presented here (in particular, general lower

bounds on the sample complexity) are discussed in Section 3.5 and in Section 3.7.
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3.3.1 Notation

Let us recall some important notation is used in this chapter.

For N ∈ N, we let [N ] = {1, 2, . . . , q}. Given a matrix Q, its transpose is denoted

by Q∗ and its support supp(Q) is the 0 − 1 matrix such that supp(Q)ij = 1 if and

only if Qij 6= 0. The support supp(v) is defined analogously for a vector v ∈ R
N .

With a slight abuse of notation, we occasionally write supp(v) for the subset of indices

i ∈ [N ] such that vi 6= 0. The signed support of a matrix (or vector) Q, denoted by

sign(Q), is the matrix defined by sign(Q)ij = sign(Qij) if Qij 6= 0 and sign(Q)ij = 0

otherwise. The r-th row of a matrix Q is denoted by Qr.

Given a matrix Q ∈ R
M×N , and sets L ⊆ [M ], R ⊆ [N ], we denote by QL,R the

sub-matrix QL,R ≡ (Qij)i∈L,j∈R.

For q ≥ 1, the ℓq norm of a vector v ∈ R
N is given by ‖v‖q ≡ (

∑
i∈[N ] |vi|q)1/q.

This is extended in the usual way to q = ∞. As usual, the misnomer ‘0-norm’ is used

for the size of the support ov v, namely ‖v‖0 is the number of non-zero entries of v.

The ℓq operator norm of a matrix Q ∈ R
M×N is denoted by |||Q|||q. In fact, we only

use the ℓ∞ operator norm, which is given by |||Q|||∞ ≡ maxr∈[M ] ‖Qr‖1.
If Q ∈ R

N×N is symmetric, then its eigenvalues are denoted by λ1(Q) ≤ λ2(Q) ≤
· · · ≤ λN(Q). The minimum and maximum eigenvalues are also denoted as λmin(Q) ≡
λ1(Q) and λmax(Q) ≡ λN(Q). For a general (non-symmetric) matrix Q ∈ R

M×N we

let 0 ≤ σ1(Q) ≤ · · · ≤ σM∧N (Q) denote its singular values. Further σmin(Q) = σ1(Q)

and σmax(Q) = σM∧N (Q) are the minimum and maximum singular values.

Throughout this chapter, we denote by C, C1, C2, etc, constants that can be

adjusted from point to point.

3.3.2 Regularized least squares

Before introducing the upper bounds for the sample-complexity of learning SDEs we

must introduce the algorithm with which we achieve them.

Regularized least squares is an efficient and well-studied method for support recov-

ery. In order to describe its application to estimating the signed support of the drift co-

efficient of a high-dimensional diffusion, we consider the general linearly parametrized



CHAPTER 3. LEARNING STOCHASTIC DIFFERENTIAL EQUATIONS 61

model (3.1.5).

We estimate independently each row of the matrix Θ0 ∈ R
p×m. The rth row,

denoted by Θ0
r, is estimated by solving the following convex optimization problem

min
Θr∈Rp

L(Θr; {x(t)}t∈[0,T ]) + λ‖Θr‖1 , (3.3.1)

where the log-likelihood function L is defined by

L(Θr; {x(t)}t∈[0,T ]) =
1

2T

∫ T

0

〈Θr, F (x(t))〉2 dt− 1

T

∫ T

0

〈Θr, F (x(t))〉 dxr(t) . (3.3.2)

(Here and below 〈u, v〉 denotes the standard scalar product of vectors u, v ∈ R
N .).

We denote this algorithm by Rls(λ).

Notice that in Chapter 2 we used two different notations (Ln and L) to distinguish

the likelihood function when n < ∞ from when n = ∞. In this chapter, L always

represents the case T < ∞.

The ℓ1 regularization term in Eq. (3.3.1) has the role of shrinking to 0 all the

entries θrj , except the most significant ones, thus effectively selecting the support of

Θ.

The normalized log-likelihood function (3.3.2) is the appropriate generalization of

the sum of square residuals for a continuous-time process. To see this heuristically,

one can formally write ẋr(t) = dxr(t)/dt. A naive sum of square residuals would take

the form
∫
(〈Θr, F (x(t))〉 − ẋr(t))

2dt. Unfortunately, this expression is not defined

because xr(t) is not differentiable. On the other hand, expanding the square, we get

2TL(Θr; {x(t)}[0,T ]) +
∫
(ẋr(t))

2dt. The first term is well defined, as is clear from

Eq. (3.3.2), and the second is independent of Θ and hence can be dropped.

Notice that constructing a well-defined cost function as in Eq. (3.3.2) is not a

purely academic problem. Indeed, a cost function that included the time derivative

ẋ(t) would in practice require to estimate ẋ(t) itself. This is all but hopeless because

ẋ(t) does not exist in the model.
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3.3.3 Sample complexity for sparse linear SDE’s

In order to state our results, it is convenient to define the class of sparse matrices

A(S), depending on parameters ∆, p ∈ N, ∆ ≥ 3, θmin, ρmin > 0

A(S) = A(S)(∆, p, θmin, ρmin) ⊆ R
p×p (3.3.3)

by letting Θ ∈ A(S) if and only if

(i) ‖Θr‖0 ≤ ∆ for all r ∈ [p].

(ii) |θij| ≥ θmin for all i, j ∈ [p] such that θij 6= 0.

(iii) λmin(−(Θ + Θ∗)/2) ≥ ρmin > 0.

Notice in particular that condition (iii) implies that the system of linear ordinary

differential equations ẋ(t) = Θx(t) is stable. Equivalently, the spectrum of Θ is

contained in the half plane {z ∈ C : Re(z) < 0}. As a consequence, if Θ0 ∈ A(S),

then the diffusion process (3.1.6) has a unique stationary measure which is Gaussian

with covariance Q0 ∈ R
p×p and is given by the unique solution of Lyapunov’s equation

[117]

Θ0Q0 +Q0(Θ0)∗ + I = 0. (3.3.4)

Hence XT
0 = {x(t) : t ∈ [0, T ]} is stationary trajectory distributed according to the

linear model (3.1.6) if x(t = 0) ∼ N(0, Q0) is a Gaussian random variable independent

of b(t).

We consider the linear model (3.1.6) with Θ0 ∈ A(S). Considering a row index

r ∈ [p], let S0 = S0(r) be the support of Θ0
r.

Assumption 1 (Restricted convexity). For Cmin > 0, we have

λmin(Q
0
S0,S0) ≥ Cmin . (3.3.5)

Assumption 2 (Irrepresentability). For some α > 0, we have

|||Q0
(S0)C ,S0

(
Q0

S0,S0

)−1 |||∞ ≤ 1− α . (3.3.6)
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We refer to [116, 81] for the original development of these conditions in the context

of sparse regression.

Our first theorem establishes high-dimensional consistency of ℓ1-penalized least

squares for estimating sign(Θ0) from a stationary trajectory XT
0 according to the

linear model (3.1.6) when Θ0 ∈ A(S). The details of its proof can be found in Section

3.5 and Appendix B.5. In particular in Appendix B.5.

Theorem 3.3.1. If Θ0 ∈ A(S)(∆, p, θmin, ρmin) satisfies assumptions 1 and 2 above

for all r ∈ [p] and some Cmin, α > 0, then there exists λ = λ(T ) such that

TRls(λ)(Θ
0) ≤ 2 · 104∆2(∆ ρ−2

min + θ−2
min)

α2ρminC2
min

log
(4p∆

δ

)
. (3.3.7)

In particular, one can choose

λ =

√
36

Tα2ρmin
log
(4p
δ

)
. (3.3.8)

Remark 3.3.1. Note that our notion of sample-complexity is well-defined for re-

construction algorithms that depend on T , the length of the stationary trajectory XT
0 .

This is the case with the regularized least squares algorithm Rlr(λ), since λ can depend

on T .

Corollary 3.3.2. If there exists Cmin, α > 0 such that assumptions 1 and 2 hold for

all r ∈ [p] and for all Θ0 ∈ A(S)(∆, p, θmin, ρmin), then we can replace TRls(λ)(Θ
0) by

TRls(λ)(A(S)) in (3.3.7).

The next theorem establishes a lower bound on the sample complexity of learning

the signed support of Θ0 ∈ A(S) from a stationary trajectory, XT
0 , distributed accord-

ing to the linear model (3.1.6). The details of the proof of this theorem can be found

in appendix B.6. In particular, in appendix B.6.2.

Theorem 3.3.3. Let Alg = Alg(XT
0 ) be an estimator of sign(Θ0). There is a constant

C(∆, δ), such that, for all p large enough,

TAlg(A(S)) ≥ C(∆, δ) max
{ρmin

θ2min

,
1

θmin

}
log p . (3.3.9)
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The last two theorems establish that, under assumptions 1 and 2 above, the time

complexity of learning the support of the diffusion coefficient for sparse linear SDEs

in the class A(S) is of order log p.

Notice that both upper and lower bounds depend in a non-trivial way on the

parameter ρmin. In order to gain intuition on this quantity, consider Eq. (3.1.6) in

absence of the driving term dbi(t). By using the Lyapunov function ‖x(t)‖22, it is easy
to verify that ‖x(t)‖2 ≤ ‖x(0)‖2 e−ρmint/2. Hence ρ−1

min provides a general upper bound

on the mixing time of the diffusion (3.1.6). The upper bound is essentially tight if

the matrix Θ0 is symmetric.

Theorems 3.3.1 and 3.3.3 can therefore be used to characterize the dependence

of the sample complexity on the mixing time. One subtle aspect is that Cmin and

ρmin cannot be varied independently because of the Lyapunov equation, Eq. (3.3.4).

In order to clarify this dependency, we apply our general results to the problem of

learning the Laplacian of an undirected graph.

3.3.4 Learning the laplacian of graphs with bounded degree

Given a simple graph G = (V,E) on vertex set V = [p], its Laplacian ∆G is the

symmetric p × p matrix which is equal to the adjacency matrix of G outside the

diagonal, and with entries ∆G
ii = −deg(i) on the diagonal [27]. (Here deg(i) denotes

the degree of vertex i.)

It is well known that ∆G is negative semidefinite, with one eigenvalue equal to 0,

whose multiplicity is equal to the number of connected components of G. The matrix

Θ0 = −mI +∆G fits into the setting of Theorem 3.3.1 for m > 0. The corresponding

model (3.1.6) describes the over-damped dynamics of a network of masses connected

by springs of unit strength, and connected by a spring of strength m to the origin.

Let Gbounded = Gbounded(∆, p) be the class of graphs on p nodes with maximum

vertex degree bounded by ∆. Define,

A(L)(m, p,∆) = {Θ0 : Θ0 = −mI +∆G, st. m > 0, G ∈ Gbounded} (3.3.10)

The following result holds. Its proof can be found in the appendix of [14, 13].
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Theorem 3.3.4. Consider the model (3.1.6) with Θ0 ∈ A(L)(m, p,∆). Then there

exists λ such that

TRls(λ)(A(L)) ≤ 4 · 105∆2
(∆+m

m

)5
(∆ +m2) log

(4p∆
δ

)
, (3.3.11)

In particular one can take, λ =
√

36(∆ +m)2 log(4p/δ)/(Tm3).

In other words, for m bounded away from 0 and ∞, regularized least squares

regression correctly reconstructs the graph G from a trajectory of time length which

is polynomial in the degree and logarithmic in the graph size.

Using this theorem we can write the following corollary that helps compare the

bounds obtained in Theorems 3.3.1 and 3.3.3 above.

Corollary 3.3.5. Assume the same setting as in Theorem 3.3.4. There exist con-

stants λ = λ(T ), C1 = C1(∆, δ) and C2 = C2(∆, δ) such that, for all p large enough,

m < ∆ ⇒ C1 log p ≤ TRls(λ)(A(L)) ≤ C2m
−5 log p, (3.3.12)

m ≥ ∆ ⇒ C1m log p ≤ TRls(λ)(A(L)) ≤ C2m
2 log p . (3.3.13)

In addition, the lower-bounds hold regardless of the choice of λ.

Proof. The proof of this corollary follows immediately from Theorem 3.3.4 and The-

orem 3.3.3.

Notice that the upper bound on TRlr presents a non-trivial behavior in m. It

diverges both at largem, and at small m. The reasons of these behaviors are different.

For smallm, the mixing time of the diffusion (which is proportional to 1/m) gets large,

and hence a large time is necessary to accumulate information about Θ0. Vice-versa

for largem, Θ0 gets close to −mI and hence it depends weakly on the graph structure.

Notice that the lower bound also diverges as m → ∞, hence confirming the above

picture. On the other hand, the behavior of TRls as m → 0 remains an open question

since our lower bound stays bounded in that limit.
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3.4 Important remark

Given that Rls(λ) can be tuned using λ, it is natural to asks whether we can write

the above results in a from resembling Theorem 2.3.6 of Chapter 2 for Rlr(λ). In

particular, if we define

TRls(Θ
0) = inf{T0 ∈ R

+ : sup
λ>0

PΘ0,T{Rls(λ) = sign(Θ0)} ≥ 1− δ for all T ≥ T0},

can we say something about TRls(A) = maxΘ0∈A TRls(Θ
0)?

Since TRls(Θ
0) ≤ TRls(λ)(Θ

0) for all λ and for all Θ0, the upper bounds in this

chapter still hold if TRls(λ) is replaced by TRls. However, the same is not true for the

lower bounds.

Here is the difference. The lower bound of Theorem 2.3.6 tell us that, for n smaller

than a certain value (∞ in this case), there exists a graph G such that, for all λ > 0,

Rlr(λ) fails with high probability. The lower bound of Theorem 3.3.3 says that, for T

smaller than a certain value, for every λ > 0 there exists a graph G 4 such that Rls(λ)

fails with high probability.

In other words, in the first case we prove there is a graph so ‘pathological’ that

Rlr(λ) fail on this graph no matter what λ is, while in the second case, we did not

find such a graph. Rather, for each λ we might have to find a different graph to make

Rls(λ) fail.

There reason for this difference can be traced back to the kind of argument used

to prove the two bounds. The lower bound of Chapter 2 is proved by showing that a

certain necessary condition for success is violated uniformly over λ for certain graphs.

The lower bound of this chapter however, is proved by a ‘counting’ argument. Con-

cretely, unless T is large enough, the amount of information available is not enough

for any algorithm to distinguish among the graphs in a certain class of graphs. Just

like with one bit we cannot distinguish among more than 2 objects/graphs. Hence, for

a particular algorithm (i.e. a particular λ), there are graphs in this class that cannot

be distinguished from each other. The particular graphs that cannot be distinguished

4G is the support of Θ0.
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might dependent on the algorithm (i.e. on λ).

Does this mean that, for every graph G we can find a λ for which Rls(λ) succeeds?

In principle yes. However, we do not know G a priori, λ cannot be a function of G.

What is true is that, λ = λ(XT
0 ) and hence the right way to interpret our lower bound

is: for any function λ = λ(XT
0 ), if T is smaller than what the lower bound prescribes,

then there exists a graph that with high probability cannot be correctly recovered by

Rls.

A more conceptual way to distinguish the results from Chapter 2 and the results

from this chapter is as follows. Regarding the Ising model, the lower bounds were

derived to prove that the algorithms fail on certain graphs. Here the lower bounds

are derived to inform us about how tight the upper bounds are.

Finally, it is important to point out that, although the results in this chapter

cannot be encapsulated in a form similar to the one of Chapter 2, the form in which

we presented them in Sections 3.3.3 and 3.3.4 is certainty not the only one.

For example, the following alternative theorem also follows from the proofs of our

main results. Given a class A of parameters Θ0 and a probability distribution over

this class, define

TRls(A) = inf{T0 ∈ R
+ : sup

λ>0
E{PΘ0,T{Rls(λ) = sign(Θ0)}} ≥ 1− δ for all T ≥ T0}.

Above, E represents expectation over the random variable Θ0 ∈ A.

Theorem 3.4.1. Consider the model (3.1.6). There exists a constant C(∆, δ) such

that, for all p large enough,

TRls(A(L)) ≤ 4 · 105∆2
(∆+m

m

)5
(∆ +m2) log

(4p∆
δ

)

and

TRls(A(L)) ≥ C(∆, δ) max{m, 1} log p .

Note that in the above theorem there is no longer an explicit reference to λ.
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3.5 Important steps towards the proof of main re-

sults

In this section we begin by presenting an analogous of Theorem 3.3.1 for the case of

a discrete time system. This is an important result in itself and also constitutes the

basis for the proof of Theorem 3.3.1. In fact, Theorem 3.3.1 is proved by letting η → 0

in the result bellow. We then present a general lower bound on the time complexity

of learning continuous stochastic differential equations. Theorem 3.3.3 follows as a

consequence of this general bound. Later, in Section 3.5.2, using this result, lower

bounds for the time complexity of linear SDE’s with dense matrices Θ0 and non-linear

SDE’s are derived.

3.5.1 Discrete-time model

The problem of learning stochastic differential equations in discrete time is important

in itself and also because it relates to the problem of learning a continuous-time

stochastic differential equation from discretely sampling its continuous trajectory.

Focusing on continuous-time dynamics allowed us to obtain the elegant statements of

Section 3.3.3. However, much of the theoretical analysis concerning the regularized

least squares algorithm is in fact devoted to the analysis of the following discrete-time

dynamics, with parameter η > 0:

x(t) = x(t− 1) + ηΘ0x(t− 1) + w(t), t ∈ N0 . (3.5.1)

Here x(t) ∈ R
p is the vector collecting the dynamical variables, Θ0 ∈ R

p×p specifies

the dynamics as above, and {w(t)}t≥0 is a sequence of i.i.d. normal vectors with

covariance η Ip×p (i.e. with independent components of variance η). We assume

that consecutive samples Xn
0 ≡ {x(t) : 0 ≤ t ≤ n} are given and ask under which

conditions regularized least squares reconstructs the signed support of Θ0.

The parameter η has the meaning of a time-step size. The continuous-time model

(3.1.6) is recovered, in a sense made precise below, by letting η → 0. Indeed we prove

reconstruction guarantees that are uniform in this limit as long as the product nη
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(which corresponds to the time interval T in the Section 3.3.3 ) is kept constant. For

a formal statement we refer to Theorem 3.5.1. Theorem 3.3.1 is indeed proved by

carefully controlling this limit. The mathematical challenge in this problem is related

to the fundamental fact that the samples {x(t)}0≤t≤n are dependent (and strongly

dependent as η → 0).

Discrete time models of the form (3.5.1) can arise either because the system un-

der study evolves by discrete steps, or because we are sub-sampling a continuous

time system modeled as in Eq. (3.1.1). Notice that in the latter case the matrices

Θ0 appearing in Eq. (3.5.1) and (3.1.1) coincide only to the zeroth order in η. Ne-

glecting this technical complication, the uniformity of our reconstruction guarantees

as η → 0 has an appealing interpretation already mentioned above. Whenever the

samples spacing is not too large, the time complexity (i.e. the product nη) is roughly

independent of the spacing itself.

Consider a system evolving in discrete time according to the model (3.5.1), and

let Xn
0 be the observed portion of the trajectory. The rth row Θ0

r is estimated by

solving the following convex optimization problem

minimize
Θr∈Rp

L(Θr;X
n
0 ) + λ‖Θr‖1 , (3.5.2)

where

L(Θr;X
n
0 ) ≡

1

2η2n

n−1∑

t=0

{xr(t+ 1)− xr(t)− η 〈Θr, x(t)〉}2 . (3.5.3)

Apart from an additive constant, the η → 0 limit of this cost function can be shown

to coincide with the cost function in the continuous time case, cf. Eq. (3.3.2). Indeed

the proof of Theorem 3.3.1 amounts to a more precise version of this statement.

Furthermore, L(Θr;X
n
0 ) is easily seen to be the log-likelihood of Θr within model

(3.5.1).

Let us introduce the class of sparse matrices A′(S) as being exactly equal to the

class A(S) introduced in Section 3.3.3 but with condition (iii) replaced by

1− σmax(I + ηΘ0)

η
≥ D > 0 (3.5.4)
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If Θ0 ∈ A′(S) then, under the model (3.5.1), x(t) has a unique stationary measure

which is Gaussian with covariance Q0 determined by the following modified Lyapunov

equation

Θ0Q0 +Q0(Θ0)∗ + ηΘ0Q0(Θ0)∗ + I = 0 . (3.5.5)

It will be clear from the context whether Θ0 (or Q0) refers to the dynamics matrix

(or covariance of the stationary distribution) from the continuous or discrete time

system.

The following theorem establishes the conditions under which ℓ1-penalized least

squares recovers sign(Θ0) with high probability. Its proof can be found in Appendix

B.4. The adaptation of the proof of this theorem to the proof of the main Theorem

3.3.1 can be found in Appendix B.5.

Theorem 3.5.1. Assume that Θ0 ∈ A′(S)(∆, p, θmin, D) and that Θ0
r satisfies assump-

tions 1 and 2 of Section 3.3.3 for constants Cmin, α > 0. Let Xn
0 be a stationary tra-

jectory distributed according to the linear model (3.5.1). There exists λ = λ(nη) > 0

such that if

n η ≤ 104∆2(∆D−2 + θ−2
min)

α2DC2
min

log
(4p∆

δ

)
., (3.5.6)

the ℓ1 regularized least-squares recovers the signed support of Θ0 with probability larger

than 1− δ. In particular one can take λ =
√

(36 log(4p/δ))/(Dα2nη).

In other words the discrete-time sample complexity, n, is logarithmic in the model

dimension, polynomial in the maximum network degree and inversely proportional to

the time spacing between samples. The last point is particularly important. It enables

us to derive the bound on the continuous-time sample complexity as the limit η → 0

of the discrete-time sample complexity. It also confirms our intuition mentioned in

the Introduction: although one can produce an arbitrary large number of samples

by sampling the continuous process with finer resolutions, there is limited amount of

information that can be harnessed from a given time interval [0, T ].

Remark 3.5.1. The form of Theorem 3.5.1 is different than that of Theorem 3.3.1.

In Theorem 3.5.1 we do not compute a bound on NRls(λ)(Θ
0), the sample-complexity
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of reconstructing sign(Θ0), but rather a bound on the sample-complexity, n, of recon-

structing the signed support of a particular row r, sign(Θ0
r). Obviously, if assumptions

1 and 2 hold for the same constants Cmin, α > 0 across r ∈ [p], then replacing δ by

δ/p in 3.5.6 allows us to use union bound an conclude that there exists λ for which

NRls(λ)(Θ
0) η ≤ 2 · 104∆2(∆D−2 + θ−2

min)

α2DC2
min

log
(4p∆

δ

)
. (3.5.7)

(Notice the factor of 2). The reason why we present Theorem 3.5.1 in a different

form is to emphasize the fact that the proofs for the upper bounds focus only on the

success of Rls for reconstructing a particular row r. This was the case in Chapter 2

is Rlr and is also the case with Rls here.

3.5.2 General lower bound on time complexity

In this section we derive a general lower bound on the minimum time T required to

learn a property M(Θ0) associated to Θ0 from a trajectory XT
0 distributed according

to the general model (3.1.1). This result is used in Section 3.7 to derive lower bounds

for the time complexity of linear SDE’s with dense matrices Θ0 (Section 3.7.1) and

non-linear SDE’s (Section 3.7.2).

The general form of the results in this section, and in the remainder of Section

3.7, is as follow: If M̂T (X
T
0 ), an estimator of M(Θ0) based on XT

0 , achieves successful

recover with probability greater than 1/2 for every Θ0 in a class A, then T must

be greater then a certain value that is dependent on properties of A (cf. Theorems

3.7.1 and 3.7.2). These results however are a corollary of a more relaxed version

(Theorem 3.5.2 and Corollary 3.5.3) where we only require that the expected rate of

miss-estimation is small when Θ0 is drawn at random from the ensemble A. Clearly,

if an estimator performs well over all Θ0 ∈ A then it must also perform well in

expectation regardless of the distribution assumed over A.
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Special notation

Without loss of generality, in the remainder of this section, the parameter Θ0 is a

random variable chosen with some unknown prior distribution PΘ0 (subscript is be

often omitted).

Regarding this section we have to point out a small change in our notation. Out-

side Section 3.5.2, where Θ0 is a matrix of real numbers, PΘ0 represents a probability

distribution over XT
0 parametrized by Θ0. In this section however, subscripts indi-

cate that probabilities and expectations are to be taken with respect to the random

variable in the subscript. Hence, PΘ0 is a probability distribution for the random

variable PΘ0

Unless specified otherwise, P and E denote probability and expectation with re-

spect to the joint law of {x(t)}t≥0 and Θ0. As mentioned before XT
0 ≡ {x(t) : t ∈

[0, T ]} denotes the trajectory up to time T . Also, we define the variance of a vector-

valued random variable as the sum of the variances over all components, i.e.,

VarΘ0|Xt
0
(F (x(t); Θ0)) =

p∑

i=1

VarΘ0|Xt
0
(Fi(x(t); Θ

0)). (3.5.8)

Results

The following general lower bound is a consequence of an identity between mutual

information and the integral of conditional variance proved by Kadota, Zakai and Ziv

[72] and a similar result by Duncan [38].

Theorem 3.5.2. Let XT
0 be a trajectory of system (3.1.1) with initial state x(0) for a

specific realization of the random variables x(0) and Θ0. Let M̂T (X
T
0 ) be an estimator

of M(Θ0) based on XT
0 . If Px(0),Θ0,XT

0
(M̂T (X

T
0 ) 6= M(Θ0)) < 1

2
then

T ≥ H(M(Θ0))− 2I(Θ0; x(0))
1
T

∫ T

0
EXt

0
{VarΘ0|Xt

0
(F (x(t); Θ0))}dt

. (3.5.9)

Proof. Equation (3.1.1) can be regarded as describing a white Gaussian channel with

feedback where Θ0 denotes the message to be transmitted. For this scenario, Kadota
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et al. [72] give the following identity for the mutual information between XT
0 and Θ0

when the initial condition is x(0) = 0,

I(XT
0 ; Θ

0) =
1

2

∫ T

0

EXt
0
{VarΘ0|Xt

0
(F (x(t); Θ0))}dt. (3.5.10)

For the general case where x(0) might depend on Θ0 (if, for example, x(0) is the

stationary state of the system) we can write I(XT
0 ; Θ

0) = I(x(0); Θ0)+I(XT
0 ; Θ

0|x(0))
and apply the previous identity to I(XT

0 ; Θ
0|x(0)). Taking into account that

I(M̂T (X
T
0 ));M(Θ0)) ≤ I(XT

0 ; Θ
0) (3.5.11)

and making use of Fano’s inequality

I(M̂T (X
T
0 ));M(Θ0)) ≥ P(M̂T (X

T
0 ) = M(Θ0))H(M̂T (X

T
0 ))) (3.5.12)

the results follows.

The bound in Theorem 3.5.2 is often too complex to be evaluated. Instead, the

following corollary provides a more easily computable bound for the case when XT
0 is

a stationary process.

Corollary 3.5.3. Assume that (3.1.1) has a stationary distribution for every real-

ization of Θ0 and let XT
0 be a trajectory following any such stationary distribution

for a specific realization of the random variable Θ0. Let M̂T (X
T
0 ) be an estimator of

M(Θ0) based on XT
0 . If PΘ0,XT

0
(M̂T (X

T
0 ) 6= M(Θ0)) < 1

2
then

T ≥ H(M(Θ0))− 2I(Θ0; x(0))

Ex(0){VarΘ0|x(0)(F (x(0); Θ0))} . (3.5.13)

Proof. Since conditioning reduces variance, we have

EXt
0
{VarΘ0|Xt

0
(F (x(t); Θ0))} ≤ Ex(t){VarΘ0|x(t)(F (x(t); Θ0))}. (3.5.14)
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Figure 3.1: (left) Probability of success vs. length of the observation interval nη.
(right) Sample complexity for 90% probability of success vs. p.

Using stationarity, we have

Ex(t){VarΘ0|x(t)(F (x(t); Θ0))} = Ex(0){VarΘ0|x(0)(F (x(0); Θ0))}, (3.5.15)

which simplifies (3.5.9) to (3.5.13).

In Section 3.7, we apply this lower bound to special classes of SDE’s, namely linear

SDE’s with dense matrices Θ0 and non-linear SDE’s.

3.6 Numerical illustrations of the main theoretical

results

In this section we present numerical validation of our main results on synthetic data.

They confirm our observations in Theorems 3.3.1, 3.3.3 and 3.3.4 that the time com-

plexity for learning linear sparse SDEs scales logarithmically with the number of

nodes in the network p, given a constant maximum degree. They also confirm the

implication of Theorem 3.5.1 that the time complexity is roughly independent of the

sampling rate, assuming that we are in the regime of small η. Or, in other words, that

our reconstruction guarantees are uniform in the sampling rate for small η. In Fig-

ures 3.1 and 3.2 we consider the discrete-time setting, generating data as follows. We



CHAPTER 3. LEARNING STOCHASTIC DIFFERENTIAL EQUATIONS 75

draw Θ̃0 as a random sparse matrix in {0, 1}p×p with elements chosen independently

at random with P(θ0ij = 1) = ∆/p, ∆ = 5 and form Θ0 = −7I + Θ̃0. The process

Xn
0 ≡ {x(t) : 0 ≤ t ≤ n} is then generated according to Eq. (3.5.1). Then we choose

an r ∈ [p] uniformly at random and solve the regularized least squares problem 5 for

a different number of observations n and different values of λ. We record a 1 or a

0 if the correct signed support of Θ0
r is recovered or not. For every value of n and

λ, the probability of successful recovery is then estimated by taking the average of

these errors over all realizations of Θ0, Xn
0 and r. Finally, for each fixed n, we take

the maximum over λ of these probability of success. In other words, the numerical

definition of sample-complexity we are using is

TRls(A) = inf{T0 ∈ R
+ : sup

λ>0
Ê{P̂Θ0,T{Rls(λ) = sign(Θ0)}} ≥ 1− δ for all T ≥ T0}.

Above, P̂ and Ê represent empirical expectation and empirical probability and A is

the class of all matrices that can be generated by the random procedure described

before. Hence, the definition is a numerical approximation of the sample-complexity

introduced in Section 3.4.

The plots we present would look similar similar if instead we used the notion of

sample complexity adopted for our main results.

The left plot in Fig. 3.1 depicts the probability of success versus nη for η =

0.1 and different values of p. Each curve is obtained using 211 instances, and each

instance is generated using a new random matrix Θ0. The right plot in Fig.3.1 is the

corresponding curve of the sample complexity versus p. The sample-complexity is

computed for as the minimum value of nη with probability of success of 1− δ =90%.

As predicted by Theorem 3.3.4, the curve shows a logarithmic scaling of the sample

complexity with p.

In Fig. 3.2 we turn to the continuous-time model (3.1.6). Trajectories are gen-

erated by ‘discretizing’ this stochastic differential equation with a time step much

smaller than the sampling rate η. We draw random matrices Θ0 as before and plot

the probability of success for p = 16, ∆ = 4 and different values of η, as a function of

5For discrete-time SDEs, the cost function is given explicitly in Eq. (3.5.2).
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Figure 3.2: (right)Probability of success vs. length of the observation interval nη
for different values of η. (left) Probability of success vs. η for a fixed length of the
observation interval, (nη = 150) . The process is generated for a small value of η and
sampled at different rates.

T . We used 211 instances for each curve. As predicted by Theorem 3.5.1, for a fixed

observation interval T , the probability of success converges to some limiting value as

η → 0.

3.7 Extensions

In this section we present some extensions to our previous result.

3.7.1 Learning Dense Linear SDE’s

A different regime of interest in learning the network of interactions for a linear SDE

is the case of dense matrices. This regime exhibits fundamentally different behavior

in terms of sample complexity compared to the regime of sparse matrices.

Let A(D) ⊂ R
p×p be the set of dense matrices defined as Θ ∈ A(D) if and only if,

(i) θmin ≤ |θij|p1/2 ≤ θmax∀i, j : θij 6= 0,

(ii) λmin(−(Θ + Θ∗)/2) ≥ ρmin > 0.
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The following theorem provides a lower bound for learning the signed support of

models from the class A(D) from stationary trajectories XT
0 of (3.1.6).

Theorem 3.7.1. Let Alg = Alg(XT
0 ) be an estimator of sign(Θ0). There is a constant

C(∆, δ) such that, for all p large enough,

TAlg(A(D)) ≥ C(∆, δ)max
{ρmin

θ2min

,
1

θmin

}
p. (3.7.1)

The sample complexity bound is similar to the one in Theorem 3.3.3 but the

scaling with p has now increased from O(log p) to O(p). The lack of structure in Θ0

requires exponentially more samples for successful reconstruction. The proof of this

theorem can be bound in appendix of [13].

Remark 3.7.1. Although the above theorem only gives a lower bound on TRls(λ)(A(D)),

it is not hard to upper bound TRls(λ)(A(D)) for linear dense systems of SDEs and certain

values of λ. In particular, it is not hard to upper bound TRls(λ=0)(A(D)) by O(p). This

can be done in two steps. First, taking λ = 0, one can compute a closed form solution

for Rlr. This solution is an unbiased estimator involving sums of dependent Gaussian

random variables. Second, one can prove concentrations bounds similar to the ones

proved for Theorem 3.3.1, and compute the trajectory length T required to guarantee

that

‖Θ̂−Θ0‖∞ ≤ θmin/2 (3.7.2)

with probability greater than 1− δ. This value of T is an upper bound on TRlr(0)(A(D))

since (3.7.2) is enough to guarantee that, using a simple thresholding 6

sign(Θ̂) = sign(Θ0). (3.7.3)

3.7.2 Learning Non-Linear SDE’s

In this section we assume that the observed samples XT
0 come from a stochastic

process driven by a general SDE of the form (3.1.1).

6If |θ̂ij | < θmin/2 declare 0, if θ̂ij < −θmin/2 declare −1 and if θ̂ij > θmin/2 declare +1.
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We recall that, vi denotes the ith component of vector v. For example, x3(2) is

the 3th component of the vector x(t) at time t = 2. In this section, JF ( · ; Θ0) ∈ R
p×p

denotes the Jacobian of the function F ( · ; Θ0).

For fixed L, B and D ≥ 0, define the class of functions A(N) = A(N)(L,B,D) by

letting F (x; Θ) ∈ A(N) if and only if

(i) the support of JF (x; Θ) has at most ∆ non-zero entries for every x,

(ii) the SDE (3.1.1) admits a stationary solution with covariance matrix, Q0, satis-

fying λmin(Q
0) ≥ L,

(iii) Varx(0)|Θ(xi(0) ≤ B ∀i,

(iv) |∂Fi(x; Θ)/∂xj | ≤ D for all x ∈ R
p i, j ∈ [p].

For simplicity we write F (x; Θ0) ∈ A(N) as Θ0 ∈ A(N).

Our objective is different than before. Given Θ0 ∈ A(N), we are interested in

recovering the smallest support M(Θ0) for which supp(JF (x; Θ0)) ⊆ M(Θ0) ∀x.
Hence, we consider the following modified definition of sample-complexity that can

be applied to learning SDEs of the form (3.1.1),

TAlg(A(N)) = sup
Θ0∈A(N)

inf{T0 ∈ R
+ : PΘ0,T{Alg(XT

0 ) = M(Θ0)} ≥ 1−δ for all T ≥ T0}.

The following theorem holds for this class of functions and stationary trajectories

of (3.1.1). Its proof can be found the appendix of [13, 15].

Theorem 3.7.2. Let Alg = Alg(XT
0 ) be an estimator of M(Θ0). Then

TAlg(A(D)) ≥ ∆ log p/∆− logB/L

C + 2∆2D2B
, (3.7.4)

where C = maxi∈[p]E{Fi(Ex(0)|Θ0(x(0)); Θ0)}.

Remark 3.7.2. The assumption that F is Lipschitz is not very restrictive as it is a

sufficient condition commonly used to guarantee existence and uniqueness of a solution

of the SDE (3.1.1) with finite expected energy, [88].
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3.8 Numerical illustration of some extensions

In Theorem 3.3.1 we described a set of conditions under which it is possible to success-

fully reconstruct the dynamics of a sparse system of linear SDEs. A natural question

that arises is: Are these conditions natural enough to hold when Θ0 describes a system

of SDEs related to some real world problem? Or even more generally, given that all

models described in this thesis constitute most often nothing but approximations to a

real phenomenon we are trying to understand, how good are the models and learning

algorithms developed when applied to these? Answering this question is non-trivial.

In part because it is also non-trivial to get a clear intuition of what assumptions

like Assumption 1 and Assumption 2 of Section 3.3.3 translate to in practice. The

same difficulty arises with analogous results on the high-dimensional consistency of

the LASSO [110, 116].

In this section we study the performance of Rls when applied to more realistic

scenarios. We compare its performance to the performance bounds predicted by our

theorems and observe that, despite the potentially assumptions made in them, the

bounds capture the right behavior of Rls.

3.8.1 Mass-spring system

Consider a system of p masses in R
d connected by damped springs that is vibrating

under the influence of white-noise. These can be thought of, for example, as points

on a vibrating object whose physical structure we are trying to reconstruct from the

measured amplitude of vibrations over time on a grid of points at its surface.

Let C0 be the corresponding adjacency matrix, i.e. C0
ij = 1 if and only if masses

i and j are connected, and D0
ij be the rest length of the spring (i, j). Assuming unit

masses, unit rest lengths and unit elastic coefficients, the dynamics of this system in

the presence of external noisy forces can be modeled by the following damped Newton
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Figure 3.3: Evolution of the horizontal component of the position of three masses in a
system with p = 36 masses interacting via elastic springs (cf. Fig. 3.4 for the network
structure). The time interval is T = 1000. All the springs have rest length Dij = 1,
the damping coefficient is γ = 2, cf. Eq. (3.8.1), and the noise variance is σ2 = 0.25.

equations

dv(t) = −γv(t)dt−∇U(q(t)) dt + σ db(t), (3.8.1)

dq(t) = v(t)dt , (3.8.2)

U(q) ≡ 1

2

∑

(i,j)

C0
ij(‖qi − qj‖ −D0

ij)
2 ,

where q(t) = (q1(t), . . . , qp(t)), v(t) = (v1(t), . . . , vp(t)), and qi(t), vi(t) ∈ R
d denote

the position and velocity of mass i at time t. This system of SDE’s can be written

in the form (3.1.1) by letting x(t) = [q(t), v(t)] and Θ0 = [C0, D0]. A straightfor-

ward calculation shows that the drift F (x(t); Θ0) can be further written as a linear

combination of the following basis of non-linear functions

F (x(t)) =
[
{vi(t)}i∈[p], {∆ij(t)}i,j∈[p],

{ ∆ij(t)

‖∆ij(t)‖
}
i,j∈[p]

]
, (3.8.3)
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Figure 3.4: From left to right and top to bottom: structures reconstructed using Rlr

with observation time T = 500, 1500, 2500, 3500 and 4500. For T = 4500 exact
reconstruction is achieved.

where ∆ij(t) = qi(t)− qj(t) and [p] = {1, . . . , p}. Hence, the system can be modeled

according to (3.1.5). In many situations, only specific properties of the parameters

are of interest, for instance one might be interested only in the network structure of

the springs.

Figure 3.3 shows the trajectories of three masses in a two-dimensional network of

36 masses and 90 springs evolving according to Eq. (3.8.1) and Eq. (3.8.2). How long

does one need to observe these (and the other masses) trajectories in order to learn

the structure of the underlying network? Notice that the system being considered

is non-linear and hence, a priori, we cannot apply any of our theorems to guarantee

that correct reconstruction will be achieved for any T . Figure 3.4 shows the network

structure reconstructed using the least-squares algorithm described in Sec. 3.3.2 for

increasing observation intervals T . Despite the non-linearities, the inferred structure

converges to the true one when T is large enough 7.

To understand the efficiency of the regularized least-squares in learning non-

linear SDEs we generated multiple spring-mass networks of sizes p = 8, 16, 32, 64

7The data was generated by a simulation of Newton’s equations of motion using an Euler ap-
proximation with discrete time step of size 0.1s
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and 128 and studied the minimum number of samples required for successful recon-

struction.The spring-mass networks were generated from random regular graphs of

vertex degree 4. The data was generated by simulating the dynamics using an Euler

approximation with a time step of 0.1s. The noise level, σ, was set to 0.5 and the

damping parameter, γ, was set to 0.1.

Figure 3.5–Left shows the probability of success versus the length of the observa-

tion time window for systems of different sizes (p = 8, 16, 32, 64 and 128) and Figure

3.5–Right shows the minimum number of samples for successful reconstruction of the

networks versus their size for different probabilities of success (Psucc = 0.1, 0.5 and

0.9). In both pictures, error bars represent ± one standard deviation. We define a

successful reconstruction by an exact recovery of the whole network. Since networks

were generated by sampling regular graphs uniformly at random, the probability of

full exact reconstruction of the network equals the probability of full exact recon-

struction of any node’s neighborhood in the network. This fact was used to minimize

the number of simulations required to achieve a small fluctuation in our numerical

results.

It is interesting to observe that the sample complexity in learning these non-linear

system of SDEs also scales logarithmically with p (compare Figure 3.5 with Figure

3.1). A careful look into the proof of our main theorem suggests that as long as the

correlation between consecutive samples decays exponentially with time, the same

proof would follow. The difficulty in proving a generalization of Theorem 3.3.1 to

general non-linear SDEs of the from (3.1.5) stems from the fact that it is hard to

know what kind of correlations a general SDE will induce on its trajectory. However,

given a sufficiently ‘nice’ trajectory, the success of the least-square method should

not be affected by the fact that we are considering a non-linear basis of functions. In

fact, even in this case, the method still consists of minimizing a quadratic function

under a norm-1 constrain.
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Figure 3.5: (left) Probability of success versus length of observation time window, T ,
for different network sizes (p = 8, 16, 32, 64 and 128). (right) Minimum number of
samples required to achieve a probability of reconstruction of Psucc = 0.1, 0.5 and 0.9
versus the size of the network p. All networks where generated from random regular
graphs of degree 4 sampled uniformly at random. The dynamics’ parameters were set
to σ = 0.5 and γ = 0.1

3.8.2 Biochemical pathway

As another example, we look at a biochemical pathway describing a general response

of a cell to a change in its environment. This change can be, for instance, a lesion on

the skin. The lesion causes some cells to generate diffusible ligands (L). These ligands

come upon receptors (R) on the cell membrane, which act like antennas. Receptors

that have caught a ligand can then be modified (phosphorylated ∗) by enzymes called

kinases (K). These modifications enable interactions with other substrates (S) which

eventually turn on the genetic program of platelets to move towards the source of

the injury. This sequence of events is what is called the chemical pathway and can

be thought of as a sequence of chemical reactions describing the interaction between

difference species inside and outside the cell. The general pathway in consideration is

described in [6] and reproduced bellow for completeness. Below, kf and kr describe

forward and backward rates of reaction. Expressions inside parenthesis, e.g. (LR∗),
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represent specific intermediary stages or compounds along the pathway.

R + L
kf1−−⇀↽−−
kr1

(LR∗), (3.8.4)

(LR∗) +K
kf2−−⇀↽−−
kr2

(LR∗K), (3.8.5)

(LR∗K)
kf3−−→ (LR∗) +K∗, (3.8.6)

K∗ + S
kf4−−⇀↽−−
kr4

(K∗S), (3.8.7)

(K∗S)
kf5−−→ K∗ + S∗. (3.8.8)

The network of interactions comprises nine biochemical species and can be described

by a set of SDE’s copied below from [6].

dx1(t) = (−kf1x1(t)x2(t) + kr1x3(t))dt+ db1(t)

dx2(t) = (−kf1x1(t)x2(t) + kr1x3(t))dt+ db2(t)

dx3(t) = (+kf1x1(t)x2(t)− kf2x3(t)− kf2x3(t)x5(t) + (kr2 + kf3)x4(t))dt+ db3(t)

dx4(t) = (+kf2x3(t)x5(t)− (kr2 + kf3)x4(t))dt + db4(t)

dx5(t) = (−kf2x3(t)x5(t) + kr2x4(t))dt+ db5(t)

dx6(t) = (−ksx6(t) + kf3x4(t)− kf4x6(t)x7(t) + (kr4 + kf5)x8(t))dt + db6(t)

dx7(t) = (−kf4x6(t)x7(t) + kr4x8(t))dt+ db7(t)

dx8(t) = (+kf4x6(t)x7(t)− (kr4 + kf5)x8(t))dt + db8(t)

dx9(t) = (−ksx9(t) + kf5x8(t))dt + db9(t)

(3.8.9)

In (3.8.9) we assume the following correspondence between the concentration of each

compound and the variables xi(t), i ∈ [9]: x1 ↔ R, x2 ↔ L, x3 ↔ (LR∗), x4 ↔ K,

x5 ↔ (LR∗K), x6 ↔ K∗, x7 ↔ S, x8 ↔ (K8 ∗ S), x9 ↔ (S∗).

Our objective is to attempt to learn this network as a nonlinear SDE of the form

(3.1.5) with a basis of functions consisting of polynomials of up to order two, i.e.,

all the functions of the form xα1
i xα2

j with α1, α2 ∈ {0, 1}. The adjacency matrix to
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be learned is Θ0 ∈ R9×46 which translates into approximately 400 parameters to be

estimated. We simulate the system in (3.8.9) using the Euler-Maruyama method to

obtain sample trajectories. We repeat the experiment 10 times, sampling independent

traces of the SDE’s trajectory. We obtain the following curves. Error bars represent

plus-minus one (empirical) standard deviation.

Figure 3.6 shows the true and false positive rates in reconstructing the support of

matrix Θ0.
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Figure 3.6: (left) True positive rate (right) false positive rate vs. λ for the duration
of observation T = 1200.

Figure 3.7 shows the corresponding true positive rate versus false positive rate

curve (ROC curve) for different values of observation length T . The area under the

ROC curve is shown on the right plot in this figure. This value is an approximation

of the probability of choosing a random existing edge over a random non-existing

negative.

Finally, Fig. 3.8 shows the normalized root mean squared error (RMSE) defined

as

NRMSE ≡ ‖Θ0 − Θ̂‖2
‖Θ0‖2

. (3.8.10)

The left plot shows the NRMSE versus λ. There exist an optimal value for the

parameter λ that minimized NRMSE. The right plot depicts NRMSE at the optimum

value of the parameter λ versus the length of the observation interval. NRMSE
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drops below one as the observation length increases suggesting that the algorithm is

succeeding in reconstructing the signed support of the adjacency matrix Θ0.
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Appendix A

Learning the Ising model

A.1 Simple Thresholding

In the following we let Cij ≡ EG,θ{XiXj} where expectation is taken with respect to

the Ising model (2.1.1).

Proof. (Theorem 2.3.1 ) If G is a tree then Cij = tanh θ for all (ij) ∈ E and Cij ≤
tanh2 θ for all (ij) /∈ E. To see this notice that only paths that connect i to j

contribute to Cij and given that G is a tree there is only one such path and its length

is exactly 1 if (i, j) ∈ E and at least 2 when (i, j) /∈ E. The probability that Thr(τ)

fails is

1− Psucc = Pn,G,θ{Ĉij < τ for some (i, j) ∈ E or Ĉij ≥ τ for some (i, j) /∈ E} .(A.1.1)

Let τ = (tanh θ+tanh2 θ)/2. Applying Azuma-Hoeffding inequality to Ĉij =
1
n

∑n
ℓ=1 x

(ℓ)
i x

(ℓ)
j

we have that if (i, j) ∈ E then,

Pn,G,θ(Ĉij < τ) = Pn,G,θ

(
n∑

ℓ=1

(x
(ℓ)
i x

(ℓ)
j − Cij) < n(τ − tanh θ)

)
≤ e−

1
32

n(tanh θ−tanh2 θ)2

(A.1.2)

87
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and if (i, j) /∈ E then similarly,

Pn,G,θ(Ĉij ≥ τ) = Pn,G,θ

(
n∑

ℓ=1

(x
(ℓ)
i x

(ℓ)
j − Cij) ≥ n(τ − tanh2 θ)

)
≤ e−

1
32

n(tanh θ−tanh2 θ)2 .

(A.1.3)

Applying union bound over the two possibilities, (i, j) ∈ E or (i, j) /∈ E, and over the

edges (|E| < p2/2), we can bound Psucc by

Psucc ≥ 1− p2 e−
1
32

n(tanh θ−tanh2 θ)2 . (A.1.4)

Imposing the right hand side to be larger than δ proves our result.

Proof. (Theorem 2.3.2) We will prove that, for θ < arctanh(1/(2∆)), Cij ≥ tanh θ

for all (i, j) ∈ E and Cij ≤ 1/(2∆) for all (ij) /∈ E. In particular Cij < Ckl for all

(i, j) /∈ E and all (k, l) ∈ E . The theorem follows from this fact via union bound

and Azuma-Hoeffding inequality as in the proof of Theorem 2.3.1.

The bound Cij ≥ tanh θ for (ij) ∈ E is a direct consequence of Griffiths inequality

[55] : compare the expectation of xixj in G with the same expectation in the graph

that only includes edge (i, j).

The second bound is derived using the technique of [40], i.e., bound Cij by the

generating function for self-avoiding walks on the graphs from i to j. More precisely,

assume l = dist(i, j) and denote by Nij(k) the number of self avoiding walks of length

k between i and j on G. Then [40] proves that

Cij ≤
∞∑

k=l

(tanh θ)kNij(k) ≤
∞∑

n=l

∆k−1(tanh θ)k ≤ ∆l−1(tanh θ)l

1−∆tanh θ
≤ ∆(tanh θ)2

1−∆tanh θ
.(A.1.5)

If θ < arctanh(1/(2∆)) the above implies Cij ≤ 1/(2∆) which is our claim.

Proof. (Theorem 2.3.3) The theorem is proved by constructing G as follows: sample a

uniformly random regular graph of degree ∆ over the p−2 vertices {1, 2, . . . , p−2} ≡
[p − 2]. Add an extra edge between nodes p − 1 and p. The resulting graph is

not connected. We claim that for θ > K/∆ and with probability converging to 1
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as p → ∞, there exist i, j ∈ [p − 2] such that (i, j) /∈ E and Cij > Cp−1,p. As a

consequence, thresholding fails.

Obviously Cp−1,p = tanh θ. Choose i ∈ [p − 2] uniformly at random, and j a

node at a fixed distance t from i. We can compute Cij as p → ∞ using the same

local weak convergence result as in the proof of Lemma ??. Namely, Cij converges to

the correlation between the root and a leaf node in the tree Ising model (A.5.1). In

particular one can show, [83], that

lim
p→∞

Cij ≥ m(θ)2 , (A.1.6)

wherem(θ) = tanh(∆h0/(∆−1)) and h0 is the unique positive solution of Eq. (A.5.2).

The proof is completed by showing that tanh θ < m(θ)2 for all θ > K/∆.

A.2 Incoherence is a necessary condition: Proof of

Lemma 2.6.1

This proof follows closely the proof of Proposition 1 in [94]. For a matter of clarity

of exposition we include all the steps, even if these do not differ from the exposition

done in [94].

Here we show that, under the assumptions of the Lemma on the incoherence

condition, on σmin(Q
0
SS) and on λ, the probability that Rlr(λ) returns a θ̂ satisfying θ̂ =

(θ̂S, θ̂SC ) = (θ̂S, 0) with θ̂S > 0 is upper bounded as in Eq. (2.6.5). More specifically,

we will show that this θ̂ will not satisfy the stationarity condition ∇Ln(θ̂) + λẑ = 0

with high probability for any sub-gradient ẑ of the function ‖θ‖1 at θ̂.

To simplify notation we omit {x(ℓ)} in all the expressions involving and derived

from Ln.

Assume the event ∇Ln(θ̂) + λẑ = 0 holds for some θ̂ as specified above. An

application of the mean value theorem yields

∇2Ln(θ0)[θ̂ − θ0] = W n − λẑ − Rn , (A.2.1)



APPENDIX A. LEARNING THE ISING MODEL 90

where we recall W n = −∇Ln(θ0) and [Rn]j = [∇2Ln(θ̄
(j)
)−∇2Ln(θ0)]∗j(θ̂ − θ0) with

θ̄
(j)

a point in the line from θ̂ to θ0. Notice that by definition ∇2Ln(θ0) = Qn0 =

Qn(θ0). To simplify notation we omit the 0 in all Qn0. All Qn in this proof are thus

evaluated at θ0.

Breaking this expression into its S and SC components and since θ̂SC = θ0SC = 0

we can write

Qn
SCS(θ̂S − θ0S) = W n

SC − λẑSC +Rn
SC , (A.2.2)

Qn
SS(θ̂S − θ0S) = W n

S − λẑS +Rn
S. (A.2.3)

Eliminating θ̂S − θ0S from the two expressions we obtain

[W n
SC −Rn

SC ]−Qn
SCS(Q

n
SS)

−1[W n
S −Rn

S] + λQn
SCS(Q

n
SS)

−1ẑS = λẑSC . (A.2.4)

Now notice that Qn
SCS(Q

n
SS)

−1 = T1 + T2 + T3 + T4 where

T1 = Q0
SCS[(Q

n
SS)

−1 − (Q0
SS)

−1] , T2 = [Qn
SCS −Q0

SCS]Q
0
SS

−1
,

T3 = [Qn
SCS −Q0

SCS][(Q
n
SS)

−1 − (Q0
SS)

−1] , T4 = Q0
SCSQ

0
SS

−1
.

Recalling that ẑS = 1 and using the above decomposition we can lower bound the

absolute value of the indexed-i component of ẑSC by

|ẑi| ≥ ‖[Q0
SCSQ

0
SS

−1
ẑS]i‖∞ − ‖T1,i‖1 − ‖T2,i‖1 − ‖T3,i‖1 (A.2.5)

−
∣∣∣W

n
i

λ

∣∣∣−
∣∣∣R

n
i

λ

∣∣∣− ‖[Qn
SCS(Q

n
SS)

−1]i‖
(∥∥∥W

n
S

λ

∥∥∥
∞
+
∥∥∥R

n
S

λ

∥∥∥
∞

)
.

We now assume that the samples {x(ℓ)} are such that the following event holds (notice

that i ∈ SC),

Ei ≡
{
‖Qn

S∪{i} S −Q0
S∪{i} S‖∞ < ξA,

∥∥∥
W n

S∪{i}
λ

∥∥∥
∞

< ξB

}
, (A.2.6)

where ξA ≡ C2
minǫ/(8∆) and ξB ≡ Cminǫ/(16

√
∆).
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From relations (2.6.1) to (2.6.4) in Section 2.6.1 we know that EG,θ(Q
n) = Q0,

EG,θ(W
n) = 0 and that both Qn − Q0 and W n are sums i.i.d. random variables

bounded by 2. From this, a simple application of Azuma-Hoeffding inequality yields
1.

PG,θ,n(|Qn
ij −Q0

ij | > δ) ≤ 2e−
δ2n
8 , (A.2.7)

PG,θ,n(|W n
ij| > δ) ≤ 2e−

δ2n
8 , (A.2.8)

for all i and j. Applying union bound we conclude that the event Ei holds with

probability at least

1− 2∆(∆ + 1)e−
nξ2A
8 − 2(∆ + 1)e−

nλ2ξ2B
8 ≥ 1− 4∆2e−nδ2A − 4∆e−nλ2δB , (A.2.9)

where δA = C2
minǫ/(32∆) and δB = Cminǫ/(64

√
∆).

If the event Ei holds then σmin(Q
n
SS) > σmin(Q

0
SS) − Cmin/2 > Cmin/2. Since

‖[Qn
SCS(Q

n
SS)

−1]i‖∞ ≤ ‖Qn
SS

−1‖2‖Qn
Si‖2 and |Qn

ji| ≤ 1∀i, j we can write ‖[Qn
SCS(Q

n
SS)

−1]i‖∞ ≤
2
√
∆/Cmin and simplify our lower bound to

|ẑi| ≥ ‖[Q0
SCSQ

0
SS

−1
ẑS]i‖∞ − ‖T1,i‖1 − ‖T2,i‖1 − ‖T3,i‖1 (A.2.10)

−
∣∣∣W

n
i

λ

∣∣∣−
∣∣∣R

n
i

λ

∣∣∣− 2
√
∆

Cmin

(∥∥∥W
n
S

λ

∥∥∥
∞
+
∥∥∥R

n
S

λ

∥∥∥
∞

)
.

The proof is completed by showing that the event Ei and the assumptions of the

theorem imply that each of last 7 terms in this expression is smaller than ǫ/8. Since

|[Q0
SCS(Q

0
SS)

−1]∗i ẑS| ≥ 1 + ǫ by assumption, this implies |ẑi| ≥ 1 + ǫ/8 > 1 which

cannot be true since any sub-gradient of the 1-norm has components of magnitude at

most 1.

Taking into account that σmin(Q
0
SS) ≤ maxij Q

0
ij ≤ 1 and that ∆ > 1, the last con-

dition on Ei immediately bounds all terms involving W n by ǫ/8. Some straightforward

1For full details see the proof of Lemma 2 and the discussion following Lemma 6 in [94]
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manipulations imply (see Lemma 7 from [94] for a similar computation)

‖T1,i‖1 ≤
∆

C2
min

‖Qn
SS −Q0

SS‖∞ , ‖T2,i‖1 ≤
√
∆

Cmin
‖[Qn

SCS −Q0
SCS]i‖∞ ,

‖T3,i‖1 ≤
2∆

C2
min

‖Qn
SS −Q0

SS‖∞‖[Qn
SCS −Q0

SCS]i‖∞ ,

and thus, again making use of the fact that σmin(Q
0
SS) ≤ 1, all will be bounded by

ǫ/8 when Ei holds. The final step of the proof consists in showing that if Ei holds and
λ satisfies the condition given in the Lemma enunciation then the terms involving Rn

will also be bounded above by ǫ/8. The details of this calculation can be found in

[16].

A.3 Proof of Theorem 2.3.6: θ∆ ≤ 3/10

Before we prove the first part of Theorem 2.3.6 we need an auxiliary step to bound the

covariance Cij ≡ EG,θ(XiXj) between any two variables i, j ∈ V in our model (2.1.1).

This bound is derived using the technique of [40], i.e., bound Cij by the generating

function for self-avoiding walks on the graphs from i to j.

Lemma A.3.1. Assume l = dist(i, j) is the distance between node i and j in G and

denote by Nij(k) the number of self avoiding walks of length k between i and j on G.

Then [40] proves that

Cij ≤
∞∑

k=l

(tanh θ)kNij(k) ≤
∞∑

n=l

∆k−1(tanh θ)k (A.3.1)

≤ ∆l−1(tanh θ)l

1−∆tanh θ
≤ ∆(tanh θ)2

1−∆tanh θ
. (A.3.2)

The proof of the first part of our main theorem consists in showing that, in the

regime when θ∆ ≤ 3/10, all conditions of Theorem 1 in [94] (denoted there by A1

and A2) hold. In the process of verifying these conditions, we get explicit bounds for

several constants that remain unspecified in [94]. With this, we are able obtain our

bound on the sample complexity.
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In this proof all the functions are assumed to be evaluated at the true value of

the parameters θ0. Hence, throughout this proof, and to simplify notation, we denote

Qn0 = Qn(θ0) simply by Qn and W n0 = W n(θ0) by W n. In what follows, Cmin is a

lower bound for σmin(Q
0
SS) and Dmax

2 is an upper bound for σmax(Eθ(XSX
∗
S)). We

define 1−α ≡ ‖Q0
SCS(Q

0
SS)

−1‖∞ and let θmin denote the minimum absolute value of the

components of θ0. In our case we have θmin = θ. Throughout this proof we also have

Ĉmin ≡ σmin(Q
n
SS), D̂max ≡ σmax

(
1
n

∑n
l=1 x

(l)
S x(l)∗

S

)
and 1− α̂ ≡ ‖Qn

SCS(Q
n
SS)

−1‖∞.

We begin by noting that Theorem 1 in [94] can be rewritten in the following form,

Theorem A.3.1. If 0 < α < 1 and the events E and A hold true, then Rlr will not

fail.

The event E consists of the following conditions 3,

In Lemma 5,[94]: ‖Qn
SS −Q0

SS‖2 <
Cmin

2
, (A.3.3)

In Lemma 6,[94]: for T1 σmin(Q
n
SS) ≥

Cmin

2
, (A.3.4)

for T1 ‖Qn
SS −Q0

SS‖∞ ≤ 1

12

α

1− α

Cmin√
∆

, (A.3.5)

for T2 ‖Qn
SCS −Q0

SCS‖∞ ≤ α

6

Cmin√
∆

, (A.3.6)

for T3 ‖Qn
SCS −Q0

SCS‖∞ ≤
√

α

6
, (A.3.7)

In Lemma 7,[94]: σmin(Q
n
SS) ≥

Cmin

2
and (A.3.8)

‖Qn
SS −Q0

SS‖2 ≤
√

α

6

C2
min

2
√
∆

, (A.3.9)

In Proposition 1,[94]:
‖W n‖∞

λ
<

α̂

4(2− α̂)
. (A.3.10)

2It is easy to prove that Cmin ≤ Dmax

3These conditions are the conditions required for Theorem 1 in [94] to be applicable and are
labeled by the names of the intermediary results in [94] required to prove Theorem 1 in [94]
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The event A consists of the following bounds on the value of λ in Rlr(λ),

In Lemma 3,[94]: λ∆ ≤ Ĉ2
min

10D̂max

, (A.3.11)

In Proposition 3,[94]:
5

Ĉmin

λ
√
∆ ≤ θmin

2
. (A.3.12)

Ravikumar et al. [94] show that the condition from Lemma 5 together with the

definition of Cmin and Dmax implies that Ĉmin ≥ Cmin/2 and D̂max ≤ 2Dmax. In

addition, the proof of Lemma 6 in [94] shows that, if (A.3.4) to (A.3.7) hold, then,

without loss of generality, we can assume α̂ = α/2. This allows us to rewrite the right

hand side of all the above inequalities with constants only and no random variables

(remember that α̂, D̂max and Ĉmin are random variables). We call the new events

involving only constants on the right hand side by E ′ ⊆ E and A′ ⊆ A respectively.

Having the definition of E ′ and A′ in mind, Theorem 1 in [94] can be rewritten in

the following form,

Theorem A.3.2. If 1− α < 1 and the events A′ and E ′ hold true, then Rlr will not

fail.

The event E ′ consists of deviations of random vectors and matrices, under dif-

ferent norms, to their corresponding expected values. A straightforward application

of Azuma’s inequality yields the following upper bound on the probability of these

assumptions not occurring together 4,

Pn,G,θ(E ′c) ≤ 2e−n 1
32∆2 (d

(2)
SS)

2+2 log∆ + 2e−n 1
32∆2 (d

(∞)
SS )2+2 log∆ (A.3.13)

+ 2e−n 1
32∆2 (d

(∞)

SCS
)2+log∆+log p−∆ + 2e−nλ2

27
( α
4−α

)2+log p ,

4The first three terms are for the conditions involving matrix Qn and the fourth with the event
dealing with matrix Wn
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where

d
(2)
SS = min

{Cmin

2
,

√
α

6

C2
min

2
√
∆

}
, (A.3.14)

d
(∞)
SS =

1

12

α

1− α

Cmin√
∆

, (A.3.15)

d
(∞)

SCS
= min

{α
6

Cmin√
∆

,

√
α

6

}
. (A.3.16)

We want this probability to be upper bounded by δ/p. If this is the case, an appli-

cation of union bound allows to conclude that Rlr correctly recovers the neighborhood

of every node, and hence the whole graph G, with probability greater then 1− δ.

In the regime where θ∆ ≤ 3/10, we now compute explicit bounds for Cmin, Dmax

and α. Replacing them in (A.3.13) we simplify expression (A.3.13). Finally, from

this expression, we prove that the λ chosen in our main theorem suffices to obtain

the sample complexity stated.

In what follows we let K1 = 3/10. Also, recall that tanh x ≤ x for all x ≥ 0.

First notice that by (2.6.2) we have Cmin = σmin{EG,θ((1− tanh2 θM)XSX
∗
S)} where

M =
∑

t∈∂r Xt. Since θM ≤ θ∆ ≤ K1 we have, Cmin ≥ (1−K2
1 )σmin(EG,θ{XSX

∗
S}).

Now write EG,θ{XSX
∗
S} ≡ I + T and notice that by (A.3.2) in Lemma A.3.1, T

is a symmetric matrix whose entries are non-negative and smaller than tanh θ/(1 −
∆tanh θ). Since σmin(EG,θ{XSX

∗
S}) = 1 − v∗(−T )v for some unit norm vector v

and since, by Cauchy–Schwarz inequality, we have v∗(−T )v ≤ ‖v‖21maxij |Qij| ≤
∆tanh θ/(1 − ∆tanh θ) ≤ K1/(1 − K1), it follows that σmin(EG,θ{XSX

∗
S}) ≥ (1 −

2K1)/(1 −K1). Consequently, Cmin ≥ (1 +K1)(1 − 2K1) = 13/25. Again using the

bound (A.3.2), we can write Dmax ≤ 1+∆ tanh θ/(1−∆tanh θ) ≤ (1−K1)
−1 = 10/7.

Finally, we bound ‖Q0
SCS(Q

0
SS)

−1‖∞.

Before proceeding however, we need the follow technical Lemma.

Lemma A.3.2. If θ > 0, i ∈ S and j ∈ SC then,

Q0
ij = EG,θ{(1− tanh2(θM))XiXj} ≤ EG,θ{1− tanh2(θM)}EG,θ{XiXj}. (A.3.17)
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Proof. Start by writing,

E{tanh2(θM)XiXj} = E{tanh2(θM)|XiXj = 1}P{XiXj = 1} (A.3.18)

− E{tanh2(θM)|XiXj = −1}P{XiXj = −1}. (A.3.19)

Given that θ > 0, two applications of FKG inequality allow us to conclude that,

E{tanh2(θM)|XiXj = 1} = E{tanh2(θM)|Xi = 1, Xj = 1} ≥ E{tanh2(θM)}
(A.3.20)

E{tanh2(θM)|XiXj = −1} = E{tanh2(θM)|Xi = 1, Xj = −1} ≤ E{tanh2(θM)}.
(A.3.21)

Making use of these two inequalities we obtain,

EG,θ{tanh2(θM)XiXj} ≥ EG,θ{tanh2(θM)}EG,θ{XiXj}, (A.3.22)

and the Lemma follows.

From Lemma A.3.2 and using the bound (A.3.2) we have that, for i ∈ S and

j ∈ SC , Q0
ij ≤ tanh θ/(1−∆tanh θ). We can now write,

‖Q0
SCS(Q

0
SS)

−1‖∞ = max
j∈SC

‖(Q0
SS)

−1Q0
S,j‖1 ≤ ‖(Q0

SS)
−1‖1‖Q0

S,j‖1 (A.3.23)

≤ ∆‖(Q0
SS)

−1‖2‖Q0
S,j‖∞ ≤ ∆C−1

min‖Q0
S,j‖∞ ≤ K1

(1−K2
1 )(1− 2K1)

=
75

91
< 1.

(A.3.24)

Having a lower bound for Cmin, Dmax and 1 − α we now proceed to simplify

(A.3.13). First notice that, since the lower bound on Cmin is smaller than 1 and since

0 < α < 1, we can write,

Pn,G,θ(E ′c) ≤ 6e
−n

α2C2
min

32×242∆3+2 log p
+ 2e−nα2λ2

211
+2 log p, (A.3.25)

where we also made use of log∆ ≤ log p.
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Bounding the first term by (3δ)/(4p) and the second term by δ/(4p) is enough to

guarantee that the probability of full reconstruction of G is greater then 1−δ. Taking

into account the values of the bounds for α and Cmin, we conclude that

n > 32× 242∆3α−2C−2
min log(8p

3/δ), (A.3.26)

suffices for the bound on the first term to hold. For the bound on the second term to

hold, it suffices that

nλ2 > 211α−2 log(8p3/δ). (A.3.27)

Now notice that event A′ imposes the following two conditions on λ,

λ ≤ C2
min

80∆Dmax

, (A.3.28)

λ ≤ θCmin

20
√
∆
. (A.3.29)

It is not hard to see that, for ∆ ≥ 3 and if θ∆ ≤ K1, the second condition on λ

implies the first one. Having this in mind one easily sees that, when λ ≤ 13θ
500

√
∆
, the

second restriction on n (A.3.27) implies the first one (A.3.26). This proves the first

part of Theorem 2.3.6.

A.4 Graphs in Gdiam(p,∆): Proof of Lemma 2.6.3

Let us focus on reconstructing the neighborhood of node r = 1 in G ∈ Gdiam(p,∆). If

we cannot reconstruct this neighborhood then we also cannot reconstruct the graph

G correctly.

First notice that, by strong duality, the convex problem minθ∈Rp−1 Ln(θ) + λ‖θ‖1
can be equivalently written as minθ∈Rp−1:‖θ‖1≤C Ln(θ) for some C = C(λ) > 0.

We denote any solution of these problem by θ̂(λ) and θ̂(C) respectively. Notice

also that λ ≥ λmin is equivalent to C ∈ [0, Cmax] for some Cmax = Cmax(∆, λmin).

Therefore, without loss of generality, we can assume that θ belongs to the compact

set ‖θ‖1 ≤ Cmax. Furthermore, notice that Ln(θ) = (1/n)
∑n

ℓ=1 f(θ,X
(ℓ)) where
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f(x, y) ≤ 2Cmax + log 2 and is Lipschitz in x for every y. Consequently, since {X(ℓ)}
are i.i.d. random variables, this representation of Ln(.) guarantees that with proba-

bility one, Ln(θ) converges to L(θ) uniformly over ‖θ‖1 ≤ Cmax as n → ∞, [96].

Secondly, it is not hard to see that L(θ) is strictly convex. Hence the problem

minθ∈Rp−1:‖θ‖1≤C L(θ) has a unique solution. Call it θ∞(C) ∈ R
p−1. Because with

probability one, Ln(θ) converges to L(θ) uniformly over ‖θ‖ ≤ Cmax, and because

both L and Ln are continuous, we have that any θ̂(C) converges to θ∞(C) uniformly

over C ∈ [0, Cmax] as n → ∞.

Finally, as a consequence the equivalence between the two optimization problems

mentioned in the first paragraph, we have

sup
λ≥λmin

P{Ĝ(λ) = G} ≤ sup
C∈[0,Cmax]

P{supp(θ∞(C)) = ∂r}. (A.4.1)

Consequently, if we prove that supp(θ∞(C)) 6= ∂r for all C ∈ [0, Cmax] then

sup
λ≥λmin

P{Ĝ(λ) = G} ≤ sup
C∈[0,Cmax]

P{supp(θ∞(C)) = ∂r} → 0, as n → ∞ (A.4.2)

and therefore,

sup
λ≥λmin

P{Ĝ(λ) = G} ≤ ǫ, for all n ≥ n0(∆, ǫ, λmin), (A.4.3)

which would finish the proof.

In order to prove that supp(θ∞(C)) 6= ∂r first observe that by symmetry, the

unique solution θ∞ = {θ∞12, θ∞13, ..., θ∞1p} ∈ R
p−1 satisfies, θ∞13 = θ∞14, ..., θ

∞
1p. Hence,

all we need to prove is that we cannot have θ∞12 = 0 and θ∞13 6= 0. To study these

two components of θ∞, we define L̃(θ13, θ12) = L(θ12, θ13, θ13, ..., θ13) and solve the

optimization problem

min
θ13,θ12∈R

L̃(θ13, θ12) + λ∆|θ13|+ λ|θ13|. (A.4.4)

The following lemma now completes the proof.
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Lemma A.4.1. For ∆ ≥ 50, if 2 ≤ ∆θ ≤ 3 and λ > 0 then no solution of

min
θ13,θ12

L̃(θ13, θ12) + λ∆|θ13|+ λ|θ13| (A.4.5)

simultaneously satisfies θ12 = 0 and θ13 6= 0.

Proof. Let L(θ13, θ12) = L̃(θ13, θ12) + λ∆|θ13|+ λ|θ13|. A solution of the convex opti-

mization problem (A.4.5) satisfies θ12 = 0 and θ13 6= 0 for some λ > 0 if and only if,

for some λ > 0, θ12 = 0 and θ13 6= 0 , we have

∂L
∂θ12

∋ 0, (A.4.6)

∂L
∂θ13

∋ 0. (A.4.7)

Above we use ‘∋ 0’ to signify that the sub-gradient of L must contain 0.

Let Z = X3 + ... +Xp and notice that

L̃(θ13, θ12) = log 2 + E{log cosh(Zθ13 +X2θ12)} −∆θ13E{X1X3} − θ12E{X1X2}.
(A.4.8)

Since (log cosh x)′ = tanh x the above optimality conditions can be written as,

∂L
∂θ12

∣∣∣∣
θ12=0,θ13>0

= E{X2 tanh(Zθ13)} − E{X1X2}+ λ
∂|θ12|
∂θ12

∋ 0, (A.4.9)

∂L
∂θ13

= E{Z tanh(Zθ13)} −∆E{X1X3}+ λ∆
∂|θ13|
∂θ13

(A.4.10)

= ∆E{X3 tanh(Zθ13)} −∆E{X1X3}+ λ∆
∂|θ13|
∂θ13

(A.4.11)

= ∆E{X3 tanh(Zθ13)} −∆E{X1X3} ± λ∆ = 0, (A.4.12)

where in the last line we used the fact that, for θ13 6= 0 we have ∂|θ13|
∂θ13

∈ {−1, 1}.
From the last condition we conclude that λmust satisfy λ = E{X1X3}−E{X3 tanh(Zθ13)}

if θ13 > 0 or λ = −E{X1X3} + E{X3 tanh(Zθ13)} if θ13 < 0. But by symme-

try E{X3 tanh(Zθ13)} = ∆−1E{Z tanh(Zθ13)} which is strictly negative if θ13 < 0.

Hence, not to contradict the fact that λ > 0, it must be that θ13 > 0 and λ =
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E{X1X3} − E{X3 tanh(Zθ13)}.
From now on we assume that E{X1X3}−E{X3 tanh(Zθ13)} > 0, otherwise λ ≤ 0

and the proof again follows by contradiction. Replacing this value in the first condition

we obtain,
∂|θ12|
∂θ12

∋ E{X1X2} − E{X2 tanh(Zθ13)}
E{X1X3} − E{X3 tanh(Zθ13)}

. (A.4.13)

The sub-gradient of the modulus function can only take values in [−1, 1]. To

finish the proof we now show that, under the conditions of Lemma A.4.1 and for any

θ13 > 0,

E{X1X2} − E{X2 tanh(Zθ13)} − E{X1X3}+ E{X3 tanh(Zθ13)} > 0. (A.4.14)

This implies that the optimality conditions cannot be satisfied for any λ > 0 when

θ13 > 0 and θ12 = 0.

Let us define, β ≡ θ13 and

F (β) ≡ E{X1X2} − E{X2 tanh(Zβ)} − E{X1X3}+ E{X3 tanh(Zβ)}. (A.4.15)

Since PGp,θ(X1 = 1|X2, ..., Xp) = eθZ/(eθZ+e−θZ) we have that E{X1|Z} = E{X2|Z} =

tanh(Zθ). This allows us to make the following substitutions in (A.4.15),

E{X1X2} = E{X2 tanh(θZ)}, (A.4.16)

E{X1X3} = E{X3 tanh(θZ)}, (A.4.17)

E{X2 tanh(Zβ)} = E{tanh(θZ) tanh(Zβ)}, (A.4.18)

and by symmetry, E{X3 tanh(θZ)} = ∆−1E{Z tanh(θZ)}. With these substitutions,

and introducing Z̃ = ∆−1Z, we obtain

F (β) = E{(tanh(θ∆Z̃)− Z̃)(tanh(θ∆Z̃)− tanh(β∆Z̃))}. (A.4.19)

Let us denote the expression inside the expectation byH(Z̃), that is, F (β) = E{H(Z̃)}.
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Since H(Z̃) is an even function of Z̃ we can write,

F (β) = 2E{H(Z̃)IZ̃>0} = 2E{H(Z̃)IZ̃>0,θ∆Z̃>γ}+ 2E{H(Z̃)IZ̃>0,θ∆Z̃≤γ}. (A.4.20)

We now make use of the following inequalities

(1− tanh2 a)(a− b) ≤ tanh(a)− tanh(b) ≤ a− b, 0 ≤ a ≤ b, (A.4.21)

tanh(a) ≥ aγ−1 tanh γ, 0 ≤ a ≤ γ, (A.4.22)

to obtain a lower bound on F (β). First notice that,

2E{H(Z̃)IZ̃>0,θ∆Z̃≤γ} ≥ 2E
{(θ∆Z̃ tanh γ

γ
− Z̃

)
(1− tanh2 γ)(θ − β)∆Z̃ IZ̃>0,θ∆Z̃≤γ

}

(A.4.23)

= 2

(
θ∆tanh γ

γ
− 1

)
(1− tanh2 γ)(θ − β)∆E

{
Z̃2 IZ̃>0,θ∆Z̃≤γ

}

(A.4.24)

=

(
θ∆tanh γ

γ
− 1

)
(1− tanh2 γ)(θ − β)∆E

{
Z̃2 I|Z̃|≤ γ

∆θ

}
,

(A.4.25)

and also that,

2E{H(Z̃)IZ̃>0,θ∆Z̃>γ} ≥ −2E{(1 − tanh(θ∆))(θ − β)∆Z̃ IZ̃>0,θ∆Z̃>γ} (A.4.26)

≥ −2(1 − tanh(θ∆))(θ − β)∆E{IZ̃>0,θ∆Z̃>γ} (A.4.27)

= −2(1− tanh(θ∆))(θ − β)∆P{Z̃ > 0, θ∆Z̃ > γ} (A.4.28)

= −(1− tanh(θ∆))(θ − β)∆P
{
|Z̃| > γ

θ∆

}
. (A.4.29)

Since |Z̃| ≤ 1,

E
{
Z̃2 I|Z̃|≤ γ

∆θ

}
≥ E{Z̃2} − P

{
|Z̃| ≤ γ

∆θ

}
, (A.4.30)
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summing both expressions above and rearranging terms we obtain

F (β)

∆(θ − β)
≥
(
θ∆tanh γ

γ
− 1

)
(1− tanh2 γ)E{Z̃2} (A.4.31)

−
((

θ∆tanh γ

γ
− 1

)
(1− tanh2 γ) + (1− tanh(θ∆))

)
P
{
|Z̃| > γ

θ∆

}
.

(A.4.32)

We now set γ = 1.64. Since ∆θ ≥ 2, a quick numerical calculation shows that(
θ∆tanh γ

γ
− 1
)
(1− tanh2 γ) > 3.3224(1− tanh(θ∆)) > 0 and hence,

F (β)

∆(θ − β)
≥
(
θ∆tanh γ

γ
− 1

)
(1− tanh2 γ)

(
E{Z̃2} − 1.3010P

{
|Z̃| > γ

θ∆

})
.

(A.4.33)

We compute a value for E{Z̃2} and then an upper bound for P
{
|Z̃| > γ

θ∆

}
.

Using the fact that E{XiXj} = E{X3X4} for all i 6= j, i, j /∈ {1, 2} we have

E{Z̃2} = ∆−2E{Z2} = ∆−2(∆ +∆(∆− 1)E{X3X4}) = ∆−1 + (∆− 1)∆−1E{X3X4}.
(A.4.34)

For the probability bound, start by noticing that P{X1 = X2 = 1} ≥ P{X1 =

1, X2 = −1}. Then we can write,

P
{
|Z̃| > γ

θ∆

}
≤ 2

(
P
{
|Z̃| > γ

θ∆

∣∣∣X1 = X2 = 1
}
+ P

{
|Z̃| > γ

θ∆

∣∣∣X1 = 1, X2 = −1
})

(A.4.35)

× P{X1 = X2 = 1}. (A.4.36)

Conditioned on X1 = X2 = 1, the random variable Z̃ is the average of i.i.d. random

variables that take values in {−1, 1} and whose mean is tanh 2θ. Now we apply the

Chernoff-Hoeffding bound. Since ∆ ≥ 50 and θ∆ ≤ 3 we have γ
θ∆

− tanh(2θ) ≥
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1.64/3− tanh(2× 3/50) ≥ 0.4272 and we can write,

P
{
|Z̃| > γ

θ∆

∣∣∣X1 = X2 = 1
}
≤ 2P

{
Z̃ >

γ

θ∆
− tanh 2θ

∣∣∣X1 = X2 = 1
}

(A.4.37)

≤ 2e−
1
2
∆( γ

θ∆
−tanh 2θ)

2

≤ 2e−0.09126∆. (A.4.38)

Conditioned on X1 = 1, X2 = −1, the random variable Z̃ is the average of i.i.d.

random variables that take values in {−1, 1} and whose mean is zero. Again using

the Chernoff-Hoeffding bound, and since γ
θ∆

≥ 1.64/3 we obtain,

P
{
|Z̃| > γ

θ∆

∣∣∣X1 = 1, X2 = −1
}
≤ 2e−

1
2
∆( γ

θ∆)
2

≤ 2e−0.1494∆. (A.4.39)

Putting these two last bounds together, we obtain

P
{
|Z̃| > γ

θ∆

}
≤ 4e−0.09126∆P{X1 = X2 = 1} = 4e−0.09126∆

(
1 + E{X1X2}

4

)
.

(A.4.40)

In order to guarantee that F (β) > 0 it suffices that,

∆−1 > 1.3010e−
1
2
∆(tanh 2θ)2 , (A.4.41)

∆− 1

∆
E{X3X4} > 1.3010e−

1
2
∆(tanh 2θ)2E{X1X2}. (A.4.42)

Since

E{X1X2} = tanh(∆atanh((tanh θ)2)), (A.4.43)

E{X3X4} = 2(tanh(2θ))2P{X1 = X2 = 1} = 1/2(tanh(2θ))2(1 + E{X1X2}),
(A.4.44)

we have E{X3X4}/E{X1X2} ≥ 2/∆. In addition, since ∆ ≥ 50 we have (∆−1)/∆ ≥
49/50 and hence it suffices that

∆−1 − 1.3010e−0.09126∆ > 0. (A.4.45)
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Figure A.1: For this family of graphs of increasing maximum degree ∆ Rlr(λ) will fail
for any λ > 0 if θ ≥ 2/∆.

Since 1/50− 1.3010e−0.09126×50 = 0.006429 > 0 the proof now follows.

A.4.1 Graphs Gdiam(p) from the Section 2.6.3: Remark 2.3.1

and Remark 2.6.1

In Section A.4 we proved Lemma 2.6.3: Rlr(λ), λ > 0, fails to reconstruct graphs

from Gdiam(p) assymptotically (as n → ∞ with λ fixed) when 2 ≤ θ∆ ≤ 3. In this

section we numerically investigate the behavior of Rlr in more detail and numerically

demonstrate that in fact we do not need to impose that ∆θ ≤ 3 and that we can take

∆0 = 3.

As we saw in Section A.4, for large n, the success of Rlr is dictated by

min
θ13,θ12∈R

L̃(θ13, θ12) + λ∆|θ13|+ λ|θ12| (A.4.46)

having an optimal solution with θ13 6= 0 and θ12 = 0.

Since it only involves two variables, we can easily analyze this optimization prob-

lem by solving it numerically. Figure A.2 shows the solution path of this problem as

a function of λ for p = 5 and for different values of θ.

From the plots we see that for high values of θ, Rlr will never yield a correct

reconstruction (unless we assume λ = 0) since for these θs the curves are strictly

above the horizontal (θ̂12 > 0) for all λ > 0. However, if θ is bellow a certain value,

call it θT (θT ≈ 0.61 for p = 5), then there are λ > 0 for which the solution yields a

correct reconstruction. In fact, for θ < θT all curves exhibit a portion (above a certain

λ) that have θ̂12 = 0 and θ̂13 > 0. In addition, we observe that there is a value θL

such that if θ < θL the curves identify themselves with the horizontal axis for all λ.
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θ = 0.51

θ = 0.55

θ = 0.65

θ = 0.61

λ = 0
θ̂13 = θ

λ = ∞ θ̂13

θ̂12

Figure A.2: Solution curves of Rlr(λ) as a function of λ for different values of θ and
p = 5. Along each curve, λ increases from right to left. Plot points separated by
δλ = 0.05 are included to show the speed of the parameterization with λ. For λ → ∞
all curves tend to the point (0, 0). For λ = 0, θ̂13 = θ. Remark: Curves like the one
for θ = 0.55 are identically zero above a certain value of λ.
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All the above observations hold in the limit when n → ∞. For high finite n,

with probability close to one (and uniformly over θ13, θ13 and λ – cf. Section A.4)

the solution curves will not be the ones plotted but rather be random fluctuations

around these. For λ = 0, finite n and θ > θL, the solution curves will no longer start

from θ̂ = (θ13, θ13) = θ0 = (θ, 0) but will have a positive non vanishing probability of

having θ̂12 > 0. This reflects the fact that for finite n the success of Rlr(λ) requires

λ to be positive. However, for θ < θL and λ > 0 such that we are in the region

where the curves for n = ∞ are identically zero, the curves for finite n will have an

increasing probability of being identically zero too. Thus, for these values of λ and

θ, the probability of successful reconstruction will tend to 1 as n → ∞. From the

plots we also conclude that, unless the whole curve (for n = ∞) is identified with

zero, Rlr(λ) restricted to the assumption λ → 0 will fail with positive non vanishing

probability for finite n. For θ < θL, when the curves (for n = ∞) become identically

zero, there will be a scaling of λ with n to zero that will allow for a probability of

success converging to 1 as n → ∞.

When λ → 0 with n, θL is the critical value above which reconstruction with

Rlr fails. This is the related to the requirement that λ is small in Lemma 2.6.3. In

fact, θL coincides with the value above which ‖Q0
SCS(Q

0
SS)

−1z0S‖∞ > 1. However, we

do not have to choose λ → 0. We thus conclude that, for graphs in Gdiam(p), the

true condition required for successful reconstruction is not ‖Q0
SCS(Q

0
SS)

−1‖∞ < 1 but

rather that θ < θT . Surprisingly, for graphs in Gdiam(p), this condition coincides with

EG,θ(X1X3) > EG,θ(X1X2), i.e. the correlation between neighboring nodes must be

bigger than that between non-neighboring nodes.

This can be see in the following way. In the proof of Lemma 2.6.3 we proved that

the failure of Rlr(λ) for λ > 0 is equivalent to F (β) being positive for all 0 ≤ β < θ.

From equation (A.4.19) in the proof, we also know that F (θ) = 0. We now argue that

F also has the following property: θ is the smallest positive solution of F (β) = 0. A
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0.2 0.4 0.6 0.8 1.0

- 0.05

0.05

θ = 0.1

θ = 0.2θ = 0.6

θ = 0.5

θ = 0.3

θ = 0.4

β

F (β)

Figure A.3: F (β) for p = 6. Red θ = 0.1, 0.2, 0.3. Blue θ = 0.4, 0.5, 0.6.

brute force computation shows that F (β) can be written as,

F (β) =

(
1

2

(
tanh

(
(p− 2) tanh−1

(
tanh2(θ)

))
+ 1
)
− 1

)

×
(

p−3∑

r=0

23−p

(
p− 3

r

)
tanh(β(−p+ 2r + 2)) + 1

)

−
(
1− e2θ

e−2θ + e2θ

)(
tanh

(
(p− 2) tanh−1

(
tanh2(θ)

))
+ 1
)

×
(

p−3∑

r=0

(
e2θ

e−2θ + e2θ

)r (
p− 3

r

)(
1− e2θ

e−2θ + e2θ

)p−r−3

tanh(β(−p+ 2r + 2))− 1

)
.

With this function we produced Figure A.3, where we plot F (β) for several values of

θ for p = 6 (similar plots are observed for other values of p ≥ 5). From the plots, one

observes that in fact, the smallest value of β > 0 for which F (β) = 0 corresponds to

β = θ. Because of this, F (0) > 0 if and only if F (β) > 0, ∀β ∈ [0, θ). Hence, the

asymptotic failure of Rlr(λ) for λ > 0 is equivalent to F (0) = E{X1X2}−E{X1X3} >

0. Or in other words, the success is equivalent to E{X1X3} > E{X1X2}.
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Remark A.4.1. Notice that this condition is also the condition required for the sim-

ple thresholding algorithm Thr(τ) to reconstruct a graph: the correlation between con-

nected nodes needs to be greater than the correlation between non-connected nodes.

We will now prove that if ∆ ≥ 3 and ∆θ ≥ 2 then E{X1X2} > E{X1X3}.
Let 1 and 2 be the two nodes with degree greater than 2 and let 3 be any other

node (of degree 2), see Figure A.1. Define x∆ = EG,θ(X1X2) and y∆ = EG,θ(X1X3).

It is not hard to see that,

x∆+1 =
x∆ + tanh2 θ

1 + tanh2 θ x∆

y∆+1 =
tanh θ x∆ + tanh θ

1 + tanh2 θ x∆

. (A.4.47)

From these expression we see that the condition x∆(θ) > y∆(θ) is equivalent to

x∆−1(θ) > tanh θ.

Since tanh(a + b) = tanh a+tanh b
1+tanh a tanh b

, from the recursion for x∆ we can obtain

x∆−1 = tanh
(
(∆− 1)arctanh(tanh2(θ))

)
. (A.4.48)

Therefore, x∆(θ) > y∆(θ) is equivalent to (∆− 1)arctanh(tanh2(θ)) > θ. But for θ >

0, θ > θ−1arctanh(tanh2(θ)). Hence, if (∆− 1)θ ≥ 1 we have E{X1X2} > E{X1X3}.
But (∆−1)θ ≥ 1 is equivalent to ∆θ ≥ ∆/(∆−1) and for ∆ ≥ 3, ∆/(∆−1) ≤ 3/2 ≤ 2

so our claim follows.

A.5 Graphs in Grand(p,∆): Proof of Lemma 2.6.4

To prove this theorem we will show that there exists θThr(∆) such that, when θ >

θThr(∆), we can compute constants ǫ = ǫ(∆, θ) and Cmin = Cmin(∆, θ) such that all

the conditions of Lemma 2.6.1 hold when we define λThr(∆, θ) = C3
minǫ/(2

7(1+ǫ2)∆3).

First, let us state explicitly the local weak convergence result mentioned in Sec. ??

right after our statement of Lemma 2.6.4. For t ∈ N, let T(t) = (VT, ET) be the regular

rooted tree of degree ∆ of t generations and define the associated Ising measure as

µ+
T,θ(x) =

1

ZT,θ

∏

(i,j)∈ET

eθxixj

∏

i∈∂T(t)
eh

0xi . (A.5.1)
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Here ∂T(t) is the set of leaves of T(t) and h0 is the unique positive solution of

h = (∆− 1) atanh {tanh θ tanhh} . (A.5.2)

It was proved in [83] that non-trivial local expectations with respect to PG,θ(x) con-

verge to local expectations with respect to µ+
T,θ(x), as p → ∞.

More precisely, let Br(t) denote a ball of radius t around node r ∈ G (the node

whose neighborhood we are trying to reconstruct). For any fixed t, the probability

that Br(t) is not isomorphic to T(t) goes to 0 as p → ∞.

Let g(xBr(t)) be any function of the variables in Br(t) such that g(xBr(t)) =

g(−xBr(t)). Then almost surely over graph sequences Gp of uniformly random regular

graphs with p nodes (expectations here are taken with respect to the measures (2.1.1)

and (A.5.1))

lim
p→∞

EG,θ{g(XBr(t))} = ET(t),θ,+{g(XT(t))} . (A.5.3)

Notice that this characterizes expectations completely since if g(xBr(t)) = −g(−xBr(t))

then,

EG,θ{g(XBr(t))} = 0. (A.5.4)

The main part of the proof consists in considering [Q0
SCSQ

0
SS

−1
z0S]i for t = dist(r, i)

bounded. We then write (Q0
SS)lk = EG,θ{gl,k(X

Br(t)
)} and (Q0

SCS)il = EG,θ{gi,l(X
Br(t)

)}
for some functions g·,·(X

Br(t)
) and apply the weak convergence result (A.5.3) to these

expectations. We thus reduced the calculation of [Q0
SCS(Q

0
SS)

−1z0S]i to the calculation

of expectations with respect to the tree measure (A.5.1). The latter can be imple-

mented explicitly through a recursive procedure, with simplifications arising thanks

to the tree symmetry and by taking t ≫ 1. A similar computation is done with

regards to obtaining Cmin, the lower bound on σmin(Q
0
SS). The actual calculations

consist in a (very) long exercise in calculus and can be found in the appendix of [16].



Appendix B

Learning stochastic differential

equations

In this appendix we include all details of the proofs of Chapter 3. We start by

proving the upper bounds on the sample complexity and then proceed to prove the

lower bounds. Each of these proofs are included in a separate section. Auxiliary

lemmas are be introduced as needed and are proven in a separate subsection inside

sections.

B.1 Upper bounds on sample complexity of the

regularized least squares algorithm

Our result for the continuous time model follows from an analysis of the problem for

discrete time, introduced in Section 3.5.1, and taking the limit when η → 0. Hence,

we first prove Theorem 3.5.1, then we prove Theorem 3.3.1 and finally we prove the

specialization this bound to the case of the Laplacian of a graph, Theorem 3.3.4.

110
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B.2 Necessary condition for successful reconstruc-

tion of SDEs

In this Section we prove our main result for discrete-time dynamics, i.e., Theorem

3.5.1. We start by stating a set of sufficient conditions for regularized least squares

to work. Then we present a series of concentration lemmas to be used to prove the

validity of these conditions, and then finalize the proof.

As mentioned, the proof strategy, and in particular the following proposition,

Proposition B.2.1, which provides a compact set of sufficient conditions for the support

to be recovered correctly, is analogous to the one in [116]. A proof of this proposition

can be found in the end of this subsection.

In the following we denote by X ∈ R
p×n the matrix whose (t + 1)th column

corresponds to the configuration x(t), i.e. X = [x(0), x(1), . . . , x(n − 1)]. Further

∆X ∈ R
p×n is the matrix containing consecutive state changes, namely ∆X = [x(1)−

x(0), . . . , x(n) − x(n − 1)]. It is important not to confuse Xn
0 ≡ {x(t) : 0 ≤ t ≤ n}

with X defined here. These are not the same. In addition, although both are related,

Xn
0 should not be confused with the nth power of X (which is never mentioned in this

thesis). Finally we write W = [w(1), . . . , w(n− 1)] ∈ R
p×n for the matrix containing

the Gaussian noise realization. Equivalently,

W = ∆X − ηΘX .

The rth row of W is denoted by Wr.

In order to lighten the notation, we omit the reference to Xn
0 in the likelihood

function (3.5.3) and simply write L(Θr). We define its normalized gradient and

Hessian by

Ĝ = −∇L(Θ0
r) =

1

nη
XW ∗

r , Q̂ = ∇2L(Θ0
r) =

1

n
XX∗ . (B.2.1)

Proposition B.2.1. Let α,Cmin > 0 be be defined by

λmin(Q
0
S0,S0) ≡ Cmin , |||Q0

(S0)C ,S0

(
Q0

S0,S0

)−1 |||∞ ≡ 1− α . (B.2.2)
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If the following conditions hold,

‖Ĝ‖∞ ≤ λα

3
, ‖ĜS0‖∞ ≤ ΘminCmin

4∆
− λ, (B.2.3)

|||Q̂(S0)C ,S0 −Q0
(S0)C ,S0|||∞ ≤ α

12

Cmin√
∆

, |||Q̂S0,S0 −Q0
S0,S0|||∞ ≤ α

12

Cmin√
∆

, (B.2.4)

then the regularized least squares solution (3.5.2) correctly recovers sign(Θ0
r). Further

the same statement holds for the continuous model 3.3.2, provided Ĝ and Q̂ are the

gradient and the hessian of the likelihood (3.3.2).

The proof of Theorem 3.5.1 consists in checking that, under the hypothesis (3.5.6)

on the number of consecutive configurations, conditions (B.2.3) to (B.2.4) hold with

high probability. Checking these conditions can be regarded in turn as concentration-

of-measure statements. Indeed, if expectation is taken with respect to a stationary

trajectory, we have E{Ĝ} = 0, E{Q̂} = Q0.

The proof of B.2.1 can be bound in the appendix of [13].

In Section B.3 we state the concentration bounds that are used with Proposition

B.2.1 to prove Theorem 3.5.1.

B.3 Concentration bounds

In this section we state the necessary concentration lemmas for proving Theorem 3.5.1.

These are non-trivial because Ĝ, Q̂ are quadratic functions of dependent random

variables
(
the samples {x(t)}0≤t≤n

)
. The proofs of Proposition B.3.1, of Proposition

B.3.2, and Corollary B.3.3 can be found in the appendix of [13].

Our first proposition implies concentration of Ĝ around 0.

Proposition B.3.1. Let S ⊆ [p] be any set of vertices and ǫ < 1/2. If σmax ≡
σmax(I + ηΘ0) < 1, then

P
{
‖ĜS‖∞ > ǫ

}
≤ 2|S| e−n(1−σmax) ǫ2/4. (B.3.1)

We furthermore need to bound the matrix norms as per (B.2.4) in proposition



APPENDIX B. LEARNING STOCHASTIC DIFFERENTIAL EQUATIONS 113

B.2.1. First we relate bounds on |||Q̂JS − Q0
JS|||∞ with bounds on |Q̂ij − Q0

ij |, (i ∈
J, j ∈ S) where J and S are any subsets of {1, ..., p}. We have,

P(|||Q̂JS −Q0
JS)|||∞ > ǫ) ≤ |J ||S| max

i∈J,j∈S
P(|Q̂ij −Q0

ij | > ǫ/|S|). (B.3.2)

Then, we bound |Q̂ij −Q0
ij | using the following proposition

Proposition B.3.2. Let i, j ∈ {1, ..., p}, σmax ≡ σmax(I + ηΘ0) < 1, T = ηn > 3/D

and 0 < ǫ < 2/D where D = (1− σmax)/η then,

P(|Q̂ij −Q0
ij)| > ǫ) ≤ 2e

− n
32η2

(1−σmax)3ǫ2. (B.3.3)

Finally, the next corollary follows from Proposition B.3.2 and Eq. (B.3.2).

Corollary B.3.3. Let J, S (|S| ≤ ∆) be any two subsets of {1, ..., p} and σmax ≡
σmax(I + ηΘ0) < 1, ǫ < 2∆/D and nη > 3/D (where D = (1− σmax)/η) then,

P(|||Q̂JS −Q0
JS|||∞ > ǫ) ≤ 2|J |∆e

− n
32∆2η2

(1−σmax)3ǫ2. (B.3.4)

B.4 Proof of Theorem 3.5.1

With the above concentration bounds, we now prove Theorem 3.5.1. All we need to

do is to compute the probability that the conditions given by Proposition B.2.1 hold.

From the statement of the theorem we have that the first two conditions (α,Cmin > 0)

of Proposition B.2.1 hold. In order to make the first condition on Ĝ imply the second

condition on Ĝ we assume that λα/3 ≤ (θminCmin)/(4∆)− λ which is guaranteed to

hold if

λ ≤ θminCmin/8∆. (B.4.1)
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We also combine the two last conditions on Q̂, thus obtaining the following

|||Q̂[p],S0 −Q0
[p],S0|||∞ ≤ α

12

Cmin√
∆

, (B.4.2)

since [p] = S0 ∪ (S0)C . We then impose that both the probability of the condition

on Q̂ failing and the probability of the condition on Ĝ failing are upper bounded by

δ/2 using Proposition B.3.1 and Corollary B.3.3. As explained next, this leads to the

bound on the sample-complexity (3.5.6) stated in the theorem.

B.4.1 Details of proof of Theorem 3.5.1

Using Proposition B.3.1 we see that the condition on Ĝ fails with probability smaller

than δ/2 given that the following is satisfied

λ2 = 36α−2(nηD)−1 log(4p/δ). (B.4.3)

But we also want (B.4.1) to be satisfied and so substituting λ from the previous

expression in (B.4.1) we conclude that n must satisfy

n ≥ 2304∆2Cmin
−2θmin

−2α−2(Dη)−1 log(4p/δ). (B.4.4)

In addition, the application of the probability bound in Proposition B.3.1 requires

that
λ2α2

9
< 1/4 (B.4.5)

so we need to impose further that,

n ≥ 16(Dη)−1 log(4p/δ). (B.4.6)

To use Corollary B.3.3 for computing the probability that the condition on Q̂ holds

we need,

nη > 3/D, (B.4.7)
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and
αCmin

12
√
∆

< 2∆D−1. (B.4.8)

The last expression imposes the following conditions on ∆,

∆3/2 > 24−1αCminD. (B.4.9)

The probability of the condition on Q̂ is upper bounded by δ/2 if

n > 4608η−1∆3α−2Cmin
−2D−3 log 4p∆/δ. (B.4.10)

The restriction (B.4.9) on ∆ looks unfortunate but since ∆ ≥ 1 we can actually show

it always holds. Just notice α < 1 and that

σmax(Q
0
S0,S0) ≤ σmax(Q

0) ≤ η

1− σmax
⇔ D ≤ σ−1

max(Q
0
S0,S0) (B.4.11)

therefore CminD ≤ σmin(Q
0
S0,S0)/σmax(Q

0
S0,S0) ≤ 1. This last expression also allows

us to simplify the four restrictions on n into a single one that dominates them. In

fact, since CminD ≤ 1 we also have C−2
minD

−2 ≥ C−1
minD

−1 ≥ 1 and this allows us to

conclude that the only two conditions on n that we actually need to impose are the

one at Equations (B.4.4), and (B.4.10). A little more of algebra shows that these two

inequalities are satisfied if

nη >
104∆2(∆D−2 + θ−2

min)

α2DC2
min

log(4p∆/δ). (B.4.12)

This concludes the proof of Theorem 3.5.1.
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B.5 Proof of Theorem 3.3.1

To prove Theorem 3.3.1 we recall that Proposition B.2.1 holds provided the appro-

priate continuous time expressions are used for Ĝ and Q̂, namely

Ĝ = −∇L(Θ0
r) =

1

T

∫ T

0

x(t) dbr(t) , Q̂ = ∇2L(Θ0
r) =

1

T

∫ T

0

x(t)x(t)∗ dt .(B.5.1)

These are of course random variables. In order to distinguish these from the discrete

time version, we adopt the notation Ĝn, Q̂n for the latter. We claim that these random

variables can be coupled (i.e. defined on the same probability space) in such a way

that Ĝn → Ĝ and Q̂n → Q̂ almost surely as n → ∞ for fixed T . Under assumption

(3.3.7), and making use of Lemma B.5.1 it is easy to show that (3.5.6) holds for all

n > n0 with n0 a sufficiently large constant.

Therefore, by the proof of Theorem 3.5.1, the conditions in Proposition B.2.1 hold

for gradient Ĝn and Hessian Q̂n for any n ≥ n0, with probability larger than 1 − δ.

But by the claimed convergence Ĝn → Ĝ and Q̂n → Q̂, they hold also for Ĝ and Q̂

with probability at least 1− δ which proves the theorem.

We are left with the task of showing that the discrete and continuous time pro-

cesses can be coupled in such a way that Ĝn → Ĝ and Q̂n → Q̂. With slight abuse of

notation, the state of the discrete time system (3.5.1) is denoted by x(i) where i ∈ N

and the state of continuous time system (3.1.1) by x(t) where t ∈ R. We denote by

Q0 the solution of the Lyapunov equation (3.3.4) and by Q0(η) the solution of the

modified Lyapunov equation (3.5.5). It is easy to check that Q0(η) → Q0 as η → 0

by the uniqueness of stationary state distribution (recall that the uniqueness follows

because we have stability).

The initial state of the continuous time system x(t = 0) is a N(0, Q0) random

variable independent of b(t) and the initial state of the discrete time system is defined

to be x(i = 0) = (Q0(η))1/2(Q0)−1/2x(t = 0). At subsequent times, x(i) and x(t)

are generated by the respective dynamical systems using the same matrix Θ0 using

common randomness provided by the standard Brownian motion {b(t)}0≤t≤T in R
p.

In order to couple x(t) and x(i), we construct w(i), the noise driving the discrete time
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system, by letting w(i) ≡ (b(T i/n)− b(T (i− 1)/n)).

The almost sure convergence Ĝn → Ĝ and Q̂n → Q̂ follows then from standard

convergence of random walk to Brownian motion.

B.5.1 Auxiliary lemma for proof of Theorem 3.3.1

Lemma B.5.1. Let σmax ≡ σmax(I + ηΘ0) and ρmin = −λmax((Θ
0 + (Θ0)∗)/2) > 0

then,

−λmin

(
Θ0 + (Θ0)∗

2

)
≥ lim sup

η→0

1− σmax

η
, (B.5.2)

lim inf
η→0

1− σmax

η
≥ −λmax

(
Θ0 + (Θ0)∗

2

)
. (B.5.3)

Proof.

1− σmax

η
=

1− λ
1/2
max((I + ηΘ0)∗(I + ηΘ0))

η
(B.5.4)

=
1− λ

1/2
max(I + η(Θ0 + (Θ0)∗) + η2(Θ0)∗Θ0)

η
(B.5.5)

=
1− (1 + ηu∗(Θ0 + (Θ0)∗ + η(Θ0)∗Θ0)u)1/2

η
, (B.5.6)

where u is some unit vector that depends on η. Thus, since
√
1 + x = 1+x/2+O(x2),

lim inf
η→0

1− σmax

η
= − lim sup

η→0
u∗
(
Θ0 + (Θ0)∗

2

)
u ≥ −λmax

(
Θ0 + (Θ0)∗

2

)
. (B.5.7)

The other inequality is proved in a similar way.

B.6 Proofs for the lower bounds

In this section we prove Theorem 3.3.3 and Theorem 3.5.2 to Theorem 3.7.2.
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Throughout, {x(t)}t≥0 is assumed to be a stationary process. It is immediate to

check that under the assumptions of the Theorems 3.3.3 and 3.7.1, the SDE admit a

unique stationary measure, with bounded covariance. This covariance is denoted by

Q0 = E{x(0)x(0)∗} − E{x(0)}(E{x(0)})∗ = E{x(t)x(t)∗} − E{x(t)}(E{x(t)})∗.

Special notation

Recall that regarding the proofs of the lower bounds the notation is a bit different.

This is also true in Appendix B.6. In particular, PΘ0 is not a probability distribution

parametrized by Θ0 but rather a probability distribution for the random variable Θ0.

Similarly, for example, Ex(0) denotes an expectation only with regards to the random

variable x(0), keeping everything else fixed. When we write simply P or E we mean

that the expectation is taken with regards to all random variables.

B.6.1 A general bound for linear SDE’s

Before passing to the actual proofs, it is useful to establish a general bound for linear

SDE’s (3.1.6) with symmetric interaction matrix Θ0. In what follows Θ0 is a random

variable whose outcome always leads to a stable system of SDEs and M(Θ0) is a

certain property/function of the matrix Θ0, e.g. its signed support.

Lemma B.6.1. Let XT
0 be the unique stationary process generated by the linear SDE

(3.1.6) for a certain realization of the symmetric random matrix Θ0. Let M̂T (X
T
0 ) be

an estimator of M(Θ0) based on XT
0 . If P(M̂T (X

T
0 ) 6= M(Θ0)) < 1

2
then

T ≥ H(M(Θ0))− 2I(Θ0; x(0))
1
2
Tr{E{−Θ0} − (E {−(Θ0)−1})−1}}

. (B.6.1)

Proof. The bound follows from Corollary 3.5.3 after showing that

Ex(0){VarΘ0|x(0)(Θ
0x(0))) ≤ (1/2)Tr{E{−Θ0} − (E {−(Θ0)

−1})−1} (B.6.2)
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First note that

Ex(0){VarΘ0|x(0)(Θ
0x(0))} = Ex(0)||Θ0x(0)− EΘ0|x(0)(Θ

0x(0)|x(0))||22. (B.6.3)

The quantity in (B.6.3) can be thought of as the ℓ2-norm error of estimating Θ0x(0)

based on x(0) using EΘ0|x(0)(Θ
0x(0)|x(0)). Since conditional expectation is the min-

imal mean square error estimator, replacing EΘ0|x(0)(Θ
0x(0)|x(0)) by any estimator

of Θ0x(0) based on x(0) gives an upper bound for the expression in (B.6.3). We

choose as an estimator a linear estimator, i.e., an estimator of the form Bx(0) where

B = (EΘ0Θ0Q0)(EΘ0Q0)−1. We get,

Ex(0)||Θ0x(0)− EΘ0|x(0)(Θ
0x(0)|x(0))||22 ≤ Ex(0)||Θ0x(0)− Bx(0)||22

= Tr{E{Θ0x(0)(x(0))∗Θ0∗}} − 2Tr{BE{x(0)(x(0))∗Θ0∗}}
+ Tr{BE{x(0)(x(0))∗}B∗}. (B.6.4)

Furthermore, for a linear system, Q0 satisfies the Lyapunov equation

Θ0Q0 +Q0(Θ0)
∗
+ I = 0. (B.6.5)

For Θ0 symmetric, this implies Q0 = −(1/2)(Θ0)
−1
. Substituting this expression in

(B.6.3) and (B.6.4) finishes the proof.

B.6.2 Proof of Theorem 3.3.3

We prove Theorem 3.3.3 by showing that the same complexity bound holds in the case

when we are trying to estimate the signed support of Θ0 for an Θ0 that is uniformly

randomly chosen with a distribution supported on A(S) and we simultaneously require

that the average probability of error is smaller than 1/2. This guarantees that unless

the bound holds, there exists A ∈ A(S) for which the probability of error is bigger

than 1/2. The complexity bound for random matrices Θ0 is proved using Lemma

B.6.1.

In order to generate Θ0 at random we proceed as follows. Let G be the a random
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matrix constructed from the adjacency matrix of a uniformly random∆-regular graph.

Generate Θ̃0 by flipping the sign of each non-zero entry in G with probability 1/2

independently. We define Θ0 to be the random matrix

Θ0 = −(γ + 2θmin

√
∆− 1)I + θminΘ̃

0 (B.6.6)

where γ = γ(Θ̃0) > 0 is the smallest value such that the maximum eigenvalue of Θ0

is smaller than −ρ. This guarantees that Θ0 satisfies the four properties of the class

A(S).

The following lemma encapsulates the necessary random matrix calculations.

Lemma B.6.2. Let Θ be a random matrix defined as above and

Q(θmin,∆, ρ) ≡ lim
p→∞

1

p
{Tr{E(−Θ)} − Tr{(E(−Θ−1))−1}}.

Then, there exists a constant C ′ only dependent on ∆ such that

Q(θmin,∆, ρ) ≤ min
{C ′∆θ2min

ρ
,
∆θmin√
∆− 1

}
. (B.6.7)

Proof. First notice that

lim
p→∞

1

p
ETr{−Θ} = lim

p→∞
E(γ) + 2θmin

√
∆− 1 (B.6.8)

= ρ+ 2θmin

√
∆− 1. (B.6.9)

This holds since by Kesten-McKay law [45], for large p, the spectrum of Θ̃ has support

in (−ǫ− 2θmin

√
∆− 1, 2θmin

√
∆− 1+ ǫ) with high probability. Notice that unless we

randomize each entry of Θ̃ with {−1,+1} values, every Θ̃ will have ∆ as its largest

eigenvalue and the above limit will not hold.

For the second term we will compute a lower bound. For that purpose let λi > 0
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be the ith eigenvalue of the matrix E(−Θ−1). We can write,

1

p
Tr{(E(−Θ−1))−1} =

1

p

p∑

i=1

1

λi
(B.6.10)

≥ 1
1
p

∑p
i=1 λi

=
1

E{1
p
Tr{(−Θ)−1}} (B.6.11)

where we applied Jensen’s inequality in the last step. By Kesten-McKay law we now

have that,

lim
p→∞

E{1
p
Tr{(−Θ)−1}} = E{ lim

p→∞

1

p
Tr{(−Θ)−1}} (B.6.12)

=
1

θmin
G(∆, ρ/θmin + 2

√
∆− 1) (B.6.13)

where

G(∆, z) =

∫ −1

ν − z
dµ(ν). (B.6.14)

µ(ν) is the Kesten-McKay distribution and inside its support, ν ∈ [−2
√
∆− 1,−2

√
∆− 1],

it is defined by

dµ(ν) =
∆

2π

√
4(∆− 1)− ν2

∆2 − ν2
dν.

Computing the above integral we obtain

G(∆, z) = −(∆− 2)z −∆
√
−4∆ + z2 + 4

2 (z2 −∆2)
(B.6.15)

whence

lim
ρ→0

Q(θmin,∆, ρ) =
θmin∆√
∆− 1

, (B.6.16)

lim
ρ→∞

ρQ(θmin,∆, ρ) = ∆(θmin)
2. (B.6.17)

Since Q(θmin,∆, ρ)/θmin is a function of ∆ and ρ/θmin that is strictly decreasing with
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ρ/θmin, the claimed bound follows.

Proof of Theorem 3.3.3

Starting from the bound of Lemma B.6.1, we divide both terms in the numerator and

the denominator by p. The term H(M(Θ0))/p can be lower bounded by

p−1 log

((
p

∆

)
2∆
)p

≥ ∆ log(2p/∆) (B.6.18)

and Lemma B.6.2 gives an upper bound on the denominator when p → ∞.

We now prove that limp→∞ I(x(0); Θ0)/p ≤ 1. This finishes the proof of Theorem

3.3.3 since after multiplying by a small enough constant (only dependent on ∆) the

bound obtained by replacing the numerator and denominator with these limits is valid

for all p large enough.

First notice that h(x(0)) ≤ (1/2) log(2πe)p|E{Q0}| and hence,

I(x(0); Θ0) = h(x(0))− h(x(0)|Θ0) (B.6.19)

≤ 1

2
log(2πe)p|E{Q0}| − E

{1
2
log(2πe)p|Q0|

}
, (B.6.20)

where Q0 = −(1/2)(Θ0)
−1

is the covariance matrix of the stationary process x(t) and

|.| denotes the determinant of a matrix. Then we write,

I(x(0); Θ0) ≤ (1/2) log |E{−(βΘ0)−1}|+ (1/2)E{log(| − βΘ0|)} (B.6.21)

≤ 1

2
Tr{E{(−I − (βΘ0)−1}}+ 1

2
E{Tr{−I − βΘ0}} (B.6.22)

where β > 0 is an arbitrary rescaling factor and the last inequality follows from

log(I +M) ≤ Tr(M). From this and equations (B.6.8) and (B.6.12) it follows that,

lim
p→∞

1

p
I(x(0); Θ0) ≤ −1 + (1/2)(β ′z + β ′−1G(∆, z)) (B.6.23)

where z = ρ/θmin + 2
√
∆− 1 and β ′ = βθmin. To finish, note that optimizing over β ′
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and then over z gives,

β ′z + β ′−1G(∆, z) ≤ 2
√
zG(∆, z) ≤

√
8(∆− 1)

∆− 2
≤ 4. (B.6.24)
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