
Probabilistic Document Model for Automated Document
Composition

Niranjan
Damera-Venkata

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

damera@hpl.hp.com

José Bento
Stanford University

Dept. of Electrical Engineering
Stanford, CA 94305

jbento@stanford.edu

Eamonn O’Brien-Strain
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304

eob@hp.com

ABSTRACT

We present a new paradigm for automated document composition

based on a generative, unified probabilistic document model (PDM)

that models document composition. The model formally incorpo-

rates key design variables such as content pagination, relative ar-

rangement possibilities for page elements and possible page ed-

its. These design choices are modeled jointly as coupled random

variables (a Bayesian Network) with uncertainty modeled by their

probability distributions. The overall joint probability distribution

for the network assigns higher probability to good design choices.

Given this model, we show that the general document layout prob-

lem can be reduced to probabilistic inference over the Bayesian

network. We show that the inference task may be accomplished

efficiently, scaling linearly with the content in the best case. We

provide a useful specialization of the general model and use it to

illustrate the advantages of soft probabilistic encodings over hard

one-way constraints in specifying design aesthetics.

Categories and Subject Descriptors

I.7.4 [Computing Methodologies]: Document and Text Process-

ing:Electronic Publishing

General Terms

Algorithms, Design

Keywords

automated publishing, layout synthesis, variable templates

1. INTRODUCTION
In order to compose documents, one must make aesthetic deci-

sions on how to paginate content, how to arrange document ele-

ments (text, images, graphics, sidebars etc.) on each page, how

much to crop/scale images, how to manage whitespace etc. These

decision variables are not mutually exclusive, making the aesthetic

graphic design of documents a hard problem often requiring an ex-

pert design professional. While professional graphic design works

well for the traditional publishing industry where a single high

c©ACM, (2011). This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the Proceedings of the 11th ACM
symposium on Document engineering (DocEng ’11), ISBN: 978-1-4503-
0863-2, (Sep 19–22, 2011). http://doi.acm.org/10.1145/2034691.2034695.
All photographs used have Creative Commons licenses and are copyright
their owners: Mike Baird (boat), D Sharon Pruitt (punk girl and veiled girl),
and Steve Brace (owl).

quality document may be distributed to an audience of millions,

it is not economically viable (due to its high marginal cost) for the

creation of highly personalized documents formatted for a plethora

of device form factors.

Automated document composition attempts to transform raw con-

tent automatically into documents with high aesthetic value. This

has been a topic of much research [10] [6] and is the focus of this

paper. In this paper we propose a new way to think about auto-

mated document composition based on a generative probabilistic

document model (PDM) that incorporates the key design choices

described above as random variables with associated probability

distributions. The model is generative in the sense that documents

may be produced as samples from an underlying probability distri-

bution. We model the coupling between the design choices explic-

itly using a Bayesian network [12]. At the core of our model is the

idea of a probabilistic encoding of aesthetic design judgment with

uncertainty encoded as prior probability distributions. For exam-

ple a designer may specify that the whitespace between two page

elements have a mean (desired value), and a variance (flexibility).

If the variance is large then a larger range of values is tolerated for

the whitespace. A small variance implies a tighter range of val-

ues. As a consequence of the PDM model we show that automated

document composition may be efficiently realized as an inference

problem in the network where the inference task is to simultane-

ously find parameter estimates that maximize the joint probabil-

ity distribution of all network variables. Probabilistic specification

of design intent allows the inference procedure to make appropri-

ate design tradeoffs while laying out content. While the resulting

layout may require deviation from the designer’s most desired pa-

rameter settings, parameters with tighter variances deviate less than

parameters with larger variances. Such soft encodings are in con-

trast with state of the art template selection methods that use hard

one-way constraints to encode layout design preferences [7]:

1. We explicitly model the editing process using template pa-

rameters that are automatically and actively adjusted. This

allows our templates to continuously (and optimally) morph

to fit content. A continuous distribution of the whitespace

possibilities between even two items on a page would require

an infinite number of distinct one-way constraint templates

to encode. With one-way constraints, this results in a tem-

plate explosion due to the need for (1) templates (and/or al-

ternate versions of content) to cover for variability within a

relative arrangement of elements (2) templates to cover vari-

ability between relative arrangements. The PDM model in

this paper shows how (1) can be addressed effectively. New

template parameterizations (that are beyond the scope of this

paper, but within the scope of the general PDM framework)

may be needed to address the latter case.

2. We capture local aesthetic design judgments of designers ex-

plicitly using prior probability distributions of template pa-

rameters. This allows designers to capture flexibility in pa-

rameter settings allowing greater freedom in choosing the pa-

rameters to fit content. One-way constraints are a much more

rigid design specification.

Our work is greatly influenced by similar work on document con-

tent modeling and analysis. Probabilistic graphical models (espe-

cially Bayesian network models) are very popular in the text min-

ing, document retrieval and document content understanding com-

munities. For example the probabilistic models for text content in

documents proposed by Hoffman [5] and Blei et. al. [3] model

words in a document by first sampling a topic from a topic distri-

bution and then sampling words from specific topic distributions.

While these models are also referred to as probabilistic document

models, they model the actual text content and not document com-

position. Our aim was to bring the flexibility of such an approach

to bear on the document composition problem.

2. RELATED WORK
The survey papers by Lok et al. [10] and Hurst et al. [6] provide

a comprehensive background on automated document composition

technologies. We only discuss closely related work in this section.

At the page composition level, constraint solvers are often used

in variable data printing (VDP) to accommodate content block size

variations via active templates [9]. In VDP, templates are designed

for specific content by a professional graphic designer. The tem-

plate containers can be nudged to accommodate content size varia-

tions. The adjustment of the width/height of containers is based

on a set of constraints constraining relative positions of content

blocks [2]. The set of constraints are solved using a constraint

solver [1] to determine final block positions. Since all page layouts

fitting constraints are considered equally good, such constraints

are often called hard constraints. Layout synthesis is reduced to

the problem of generating a solution consistent with all the con-

straints/rules. The document description framework (DDF) [11]

is a format (XML) innovation that extends the notion of variable

templates to allow variations in number of content blocks (flows)

within fixed template regions. DDF is not an optimization frame-

work but rather a format that allows a designer to program rules

encoded within XML that may be used to determine how to flow

content into local template regions.

While most of the automated layout handled by variable data

printing (VDP) is often page based (i.e. content is specified a page

at a time) an important component of general document quality is

pagination which determines what content to place on each page.

This influences how close the referenced figures, sidebars etc. are

to the text blocks that referenced them. LaTeX uses a first fit se-

quential approach for floating objects. It places a floating object on

the first page on which it fits, after it has been cited. Bruggeman-

Klein et. al. [4] extended the pioneering work of Plass [13] to solve

for the optimal allocation of content to pages using dynamic pro-

gramming to minimize the overall number of page turns (in looking

for referenced items). However, these pagination methods do not

consider the impact content allocation has on document composi-

tion quality.

Jacobs et. al. [7] use dynamic programming to select a tem-

plate to compose each page of the document from a template li-

brary using dynamic programming. Content is flowed into these

templates using one-way constraints [15]. One-way constraints

are simply mathematical expressions in terms of other constraint

variables. Constraint dependencies may be expressed as a directed

acyclic graph. Greedy traversal of this graph computes a layout of

all elements. The highest level constraint variables are read only

(ex: page.width and page.height). As an example, to flow a title

and body text into a template, the constraint system may evaluate1:

title.top = page.height/10

title.bottom = title.top + < rendered T itle height >

body.top = title.bottom + 10

Since the absolute position on the page of different blocks change

when page dimensions or content changes the authors refer to their

layouts as adaptive layouts [7]. Templates are scored based on how

well content fills the containers, and how many widowed and or-

phaned text there are. Schrier et al. [14] develop a template de-

scription language that automatically generates several templates

from a small set of flexible template descriptions. Such template

generation methods are complementary to the models described in

this paper.

Our goal in this paper is to formally unify under one frame-

work the design choices explored in the prior work, including page

level adjustments [9], pagination [4] and choice of relative content

arrangements [7]. As discussed in the introduction, probabilistic

modeling is a natural choice for encoding soft aesthetic judgments

which provides added flexibility.

3. PROBABILISTIC DOCUMENT MODEL
This section introduces the basic concept of PDM and its rep-

resentation as a Bayesian network. We pose automated document

composition as an inference problem over the Bayesian network

and derive an algorithm for optimal document composition.

3.1 Notation
We use the following general mathematical notation: random

variables (uppercase, ex: T), sample realizations of a random vari-

able (lowercase of corresponding random variable, ex: t), matrices

(bold uppercase, ex: X), vectors (bold lowercase, ex: h), random

sets (uppercase script, ex: A), sample realizations of a random set

(lowercase script of corresponding random set, ex: a). X∗ denotes

the optimal sample value of random variable X . |A| is a count

of the number of elements in the set A. We use ∼ to indicate the

distribution of a random variable. Thus, X ∼ N(X̄, σ2) indicates

that random variable X is normally distributed with mean X̄ and

variance σ2). A normal probability distribution of X may also be

written compactly as P(X) = N(X|X̄, σ2). We use ≈ to indi-

cate normal variation around a desired equality. Thus X ≈ x is

equivalent to X − x ∼ N(0, σ2).

We represent the given set of all the units of content to be com-

posed (ex: images, units of text, sidebars etc.) by a finite set c that

is a particular sample of content from a random set C with sample

space comprising sets of all possible content input sets. Text units

could be words, sentences, lines of text or whole paragraphs.

We denote by c
′ a set comprising all sets of discrete content allo-

cation possibilities over one or more pages starting with and includ-

ing the first page. Content subsets that do not form valid allocations

(e.g. allocations of non-contiguous lines of text) do not exist in c
′.

If there are 3 lines of text and 1 floating figure to be composed,

c = {l1, l2, l3, f1} while c
′ = {{l1},{l1, l2},{l1, l2, l3},{f1},

{l1, f1},{l1, l2, f1},{l1, l2, l3, f1}} ∪{∅}. Note that the specific

1heights are measured from the top of the page

TXT

th

tw

FIG

mt

mb

ml mr

Θ3

Θ4

Θ1

Θ2
Θ5 Θ5

TXT

FIG

(a) (b)

Figure 1: (a) Example Probabilistic page template containing

two elements (a figure and a text stream) with random param-

eters Θ = [Θ1, Θ2, Θ3, Θ4, Θ5]
T

, and (b) A static template de-

rived by sampling random variable Θ. In this example, values

mt, mb, ml, mr are constants describing the margins, and tw

and th are constants describing the width and height of a block

of text.

order of elements within an allocation set is not important since

{l1, l2, f1} and {l1, f1, l2} refer to an allocation of the same con-

tent. However allocation {l1, l3, f1} /∈ c
′ since lines 1 and 3 can-

not be in the same allocation without including line 2. c
′ includes

the empty set to allow the possibility of a null allocation. In gen-

eral, if there are |cl| lines of text and |cf | figures in c, we have

|c′| = (|cl| + 1) (|cf | + 1), if figures are allowed to float freely.

Thus, |c′| � |c| even when c has a moderate number of figures.

We represent the index of a page by i ≥ 0. Ci is a random set

representing the content allocated to page i. C≤i ∈ c
′ is a random

set of content allocated to pages with index 0 through i. Hence we

have C≤i = ∪i
j=0Cj . If C≤i = C≤i−1 then Ci = ∅ (page i has no

content allocated to it). We define C≤−1 = ∅ for convenience, so

that all pages i ≥ 0 have valid content allocations to the previous

i− 1 pages.

3.2 Representation
Traditionally, a page template is an abstract representation of

page composition, consisting of copy holes for different page el-

ements (such as figures, text streams, sidebars etc.). A template

encodes the absolute positions of all elements to be placed on the

page. A page composition using a particular template is produced

by simply pasting images (either by cropping or scaling) into the

image holes and flowing text into the text holes. A template thus

determines the absolute positions of all page elements. We refer to

such templates as static templates.

In this paper we expand the classical notion of a static template

to what we call a probabilistic template. A probabilistic template

is parameterized by parameters (ex: whitespace between elements,

image dimensions) that are themselves random variables. A ran-

dom sampling of the random variables representing the template

gives rise to a particular static template. Thus a probabilistic tem-

plate represents only relative positions of page elements. A page

layout obtained from a probabilistic template is allowed to continu-

ously morph (as template parameters are sampled). Fig 1 illustrates

the concept of a probabilistic page template.

According to PDM the ith page of a probabilistic document may

be composed by first sampling random variable Ti representing

choice from a library of page templates representing different rel-

ative arrangements of content, sampling a random vector Θi of

template parameters representing possible edits to the chosen tem-

plate, and sampling a random set Ci of content representing content

allocation to that page (a.k.a. pagination).

A template ti for page i is sampled from a probability distribu-

tion Pi(Ti) over a set Ωi of template indices with |Ωi| possible

template choices. This formulation allows for example, first, last,

even and odd page templates to be sampled from different sub-

libraries of the overall template library. Once a template is sam-

pled we may sample its parameter vector θi from the conditional

multi-variate probability distribution P(Θi|ti). This distribution

may be regarded as a prior probability distribution that determines

the prior uncertainty (before seeing content) of template parame-

ters. Graphic design knowledge regarding parameter preferences

may be directly encoded into this distribution. Thus sampling from

this distribution makes aesthetic parameter settings more likely. Fi-

nally, the allocation for the current and previous pages c≤i is sam-

pled from a probability distribution P(C≤i|c≤i−1, θi, ti). This dis-

tribution reflects how well the content allocated to the current page

fits when Ti = ti and template parameters Θi = θi. The allo-

cation to the previous pages affects the probability of an allocation

for the current page via the logical relationship content in previ-

ous pages has to content on the current page. For example, pre-

vious page allocation allows us to determine if a figure or sidebar

appearing on the current page is referenced in a prior page (a dan-

gling reference). The current page allocation can be obtained as

ci = c≤i − c≤i−1. In summary a random document can be gener-

ated from the probabilistic document model by using the following

sampling process for page i ≥ 0 with c≤−1 = ∅:

sample template ti from Pi(Ti) (1)

sample parameters θi from P(Θi|ti) (2)

sample content c≤i from P(C≤i|c≤i−1, θi, ti) (3)

ci = c≤i − c≤i−1 (4)

The sampling process naturally terminates when the content runs

out. Since this may occur at different random page counts each time

the process is initiated, the document page count I is itself a ran-

dom variable defined by the minimal page number at which C≤i =
c. Formally, I = 1 + argmin

{i:C≤i=c}

i < ∞. A document D in PDM is

thus defined by a triplet D = {{C≤i}
I−1
i=0 , {Θi}

I−1
i=0 , {Ti}

I−1
i=0 } of

random variables representing the various design choices made in

equations (1)-(4).

For a specific content c, the probability of producing document

D of I pages via the sampling process described in this section is

simply the product of the probabilities of all design (conditional)

choices made during the sampling process. Thus,

P(D; I) =

I−1∏

i=0

P(C≤i|C≤i−1,Θi, Ti)P(Θi|Ti)Pi(Ti) (5)

The probability distribution of equation (5) may be represented

as a directed graph representing the relationship between the de-

sign choices as shown in Fig. 2. The distribution can be generated

from the graph by simply multiplying the conditional probability

distributions of each node conditioned only on its parents. Such

a model is called a Bayesian network model for the underlying

probability distribution [12]. The model is generative, in the sense

that a sequential process (as described above) can be used to gen-

erate documents from the model. The documents generated by this

process are simply samples drawn from the probability distribu-

tion described above. Further, in a Bayesian network every node is

conditionally independent of its non-descendants given its parents

[12]. Thus our PDM model implicitly assumes that the allocation to

page i is independent of the templates and parameter selections of

all previous pages, given the content allocations to previous pages

and the template and template parameters for the current page.

Although the sampling procedure described in this section gen-

erates documents with various probabilities (higher probabilities

translate to higher quality) we are interested only in finding the

document that has the highest probability. Our goal is to compute

the optimizing sequences of templates, template parameters, and

content allocations that maximize overall document probability. It

is clear that a naive approach that generates and scores all possible

documents and picks the one with the maximum probability is in-

feasible since there are an infinite number of possible documents.

In fact the structure of the graph (representing conditional indepen-

dence in the joint probability distribution) may be used to derive

an efficient Bayesian inference procedure (essentially equivalent to

dynamic programming) that computes the optimal solution. We

turn to model inference next.

3.3 Model Inference
We refer to the task of computing the optimal page count and

the optimizing sequences of templates, template parameters, con-

tent allocations that maximize overall document probability as the

model inference task.

(D∗, I∗) = argmax
D,I≥1

P(D; I) (6)

The key to efficient inference in Bayesian networks is the fact that

although all the variables influence each other in general, a variable

is only directly influenced by a few neighbors at most. This allows

us to break up the desired maximization sequentially into several

sub-problems. We start by gathering terms in (5) involving Θi and

maximizing over Θi.

Ψ(C≤i, C≤i−1, Ti) = max
Θi

P(C≤i|C≤i−1,Θi, Ti)P(Θi|Ti) (7)

The maximization over Θi effectively eliminates Θi from further

consideration, resulting in a function Ψ of the remaining variables

in the RHS of (7). Now grouping the remaining terms in (5) involv-

ing Ti with Ψ(C≤i, C≤i−1, Ti) and maximizing over Ti we have

Φi(C≤i, C≤i−1) = max
Ti∈Ωi

Ψ(C≤i, C≤i−1, Ti)Pi(Ti) (8)

Note that the function Φi depends on i since the maximization over

allowed templates for each page occurs over distinct sub-libraries

Ωi that depend on i. We can now rewrite the maximization of (5)

C≤0 C≤1 C≤i

Θ0 Θ1 Θi

T0 T1 Ti

Figure 2: PDM as a graphical model.

purely in terms of functions Φi of content allocations as

max
D,I≥1

P(D; I)= max
I≥1

max
{C≤i}

I−1

i=0

I−1∏

i=0

Φi(C≤i, C≤i−1) (9)

We may now sequentially maximize over content allocations C≤i

for i = 0, 1, · · · , I − 1. First, grouping terms involving C≤0 in (9)

and maximizing over C≤0 we have

τ1(C≤1) = max
C≤0

Φ1(C≤1, C≤0)Φ0(C≤0, C≤−1) (10)

= max
C≤0

Φ1(C≤1, C≤0)Φ0(C≤0, ∅) (11)

Then maximizing over content allocations C≤1 we have

τ2(C≤2) = max
C≤1

Φ2(C≤2, C≤1)τ1(C≤1) (12)

We can easily see that this process is governed by the following

general recursion for i ≥ 1

τi(C≤i) = max
C≤i−1

Φi(C≤i, C≤i−1)τi−1(C≤i−1) (13)

with the added definition τ0(C≤0) = Φ0(C≤0, ∅). Note that at

the end of the recursive computation of the functions τi, since

C≤I−1 = c, the entire content to be composed, τI−1(c) is only

dependent on I . Therefore we can finally write down the maxi-

mum of (5) as

max
I≥1

max
D

P(D; I) = max
I−1≥0

τI−1(c), (14)

The optimal page count can now be determined as the correspond-

ing maximizer over all last page possibilities (where all content C
has been allocated). Thus,

I∗ = 1 + argmax
i≥0

τi(c) (15)

We now discuss how the optimal allocations C∗≤i can be inferred.

First note that for the final page (page number I∗ − 1) we must

have C∗≤I∗−1 = c. From C∗≤I∗−1 we can compute the optimal al-

locations to the previous pages, C∗≤I∗−2 by substituting the known

C∗≤I∗−1 in the recursion (13) for τI∗−1 and finding the value of

C≤I∗−2 that maximizes τI∗−1. Specifically,

C∗≤I∗−2 = argmax
C≤I∗−2

ΦI∗−1(C
∗
≤I∗−1, C≤I∗−2)τI∗−2(C≤I∗−2)

(16)

In general we can set up a recursion that allows us to solve for opti-

mal allocations for all I∗ pages. Once the allocations for each page

are determined, we may look up the optimal template for each page

by finding the template T ∗
i that corresponds to Φ(C∗≤i, C

∗
≤i−1).

Once the template and the allocation are known, optimal template

parameters Θ∗
i may be computed. This procedure is given below

for i = I∗ − 1, · · · , 0:

C∗≤i−1 = argmax
C≤i−1

Φi(C
∗
≤i, C≤i−1)τi−1(C≤i−1) (17)

T ∗
i = argmax

Ti

Ψ(C∗≤i, C
∗
≤i−1, Ti)Pi(Ti) (18)

Θ
∗
i = argmax

Θi

P(C≤i∗ |C≤i∗−1,Θi, T
∗
i)P(Θi|T

∗
i)(19)

C∗i = C∗≤i − C
∗
≤i−1 (20)

Once the optimal page count, content allocations to pages, tem-

plates and template parameters are determined the inference task

is complete. The solution found by this Bayesian network infer-

ence approach is a globally optimal maximizer of (5). The order of

variable elimination affects efficiency but not optimality [12].

It is important to note that while a document composed using the

PDM inference algorithm described here has its page count opti-

mally selected, the user may want to constrain the page count to a

specified number of pages. To force a page count of If we only

need to compute (17)-(20) with I∗ ← If . This simply corresponds

to a maximization of the conditional distribution P(D|I).

The optimal document composition algorithm derived above may

be succinctly summarized as a two pass process. In the forward

pass we recursively compute, for all valid content allocation sets

A,B ∈ c
′ with A ⊇ B the following coefficient tables:

Ψ(A,B, T) = max
Θ

P(A|B,Θ, T)P(Θ|T) (21)

Φi(A,B) = max
T∈Ωi

Ψ(A,B, T)Pi(T), i ≥ 0, (22)

τi(A) = max
B

Φi(A,B)τi−1(B), i ≥ 1 (23)

with τ0(A) = Φ0(A, ∅). Computation of (23) depends on (22)

which in turn depends on (21). In the backward pass we use these

coefficients used to infer the optimal document using (17)-(20).

The innermost function Ψ(A,B, T) is essentially a score of how

well content in the setA−B is suited for template T . It is the maxi-

mum of a product of two terms. The first term P(A|B,Θ, T) repre-

sents how well content fills the page and respects figure references

while the second term P(Θ|T) assesses how close, the parame-

ters of a template are to the designer’s aesthetic preference. Thus

the overall probability (score) is a tradeoff between page fill and a

designer’s aesthetic intent. When there are multiple parameters set-

tings that fill the page equally well, the parameters that maximize

the prior (and hence are closest to the template designer’s desired

values) will be favored.

Note also, that Ψ(A,B, T) ∝ maxΘ P(Θ|A,B, T) where the

proportionality follows from Bayes rule. Thus Ψ(A,B, T) is pro-

portional to the maximum a posteriori (MAP) probability of the

template parameters given content and a template. The maximizer

Θ∗ is the corresponding MAP estimate. P(A|B,Θ, T) represents

the likelihood function of a particular allocation that refines our

prior belief regarding the template parameters, P(Θ|T) upon see-

ing A and B. Efficiency in computing Ψ(A,B, T) may be ob-

tained by a) screening allocations A and B to avoid computation

altogether for invalid allocations (ex: figure or sidebar occurring

before its reference, widowed or orphaned text chunks etc.) b)

screening templates for compatibility (ex: content with two figures

cannot be allocated to a template with only one figure) c) screening

for too much and too little content. These screening approaches

significantly reduce the number of cases for which the expensive

optimization of (21) needs to be performed.

The function Φi(A,B) scores how well content A − B can be

composed onto the ith page, considering all possible relative ar-

rangements of content (templates) allowed for that page. Pi(T)
allows us to boost the score of certain templates, increasing the

chance that they will be used in the final document composition.

Finally functions τi(A) is a pure pagination score of the alloca-

tion A to the first i pages. The recursion (23) basically says that

the pagination score for an allocation A to the first i pages, τi(A)
is equal to the product of the best pagination score over all possible

previous allocations B to the previous (i− 1) pages with the score

of the current allocation A − B to the ith page, Φi(A,B). Note

that the pure pagination score τi(A) encapsulates dependency on

relative arrangements of content (represented by templates T) and

possible template edits (Θ) via recursive dependency on Φi(A,B)
and Ψ(A,B, T).

The PDM inference framework may easily be extended to handle

alternate and optional content. Alternate images may be handled

T1

th
1

tw

T2

th
2

tw

F1

Θ2

Θ6

ml mrg

Θ3

Θ1

Θ5
Θ4 Θ4

X =

[
0 0 0 0 0 0
1 0 0 2 0 0

]T

Y =

[
0 1 1 0 1 1
0 1 1 0 1 1

]T

Y′ =
[

0 2 2 0 2 2
]T

w=
[
W−ml−2tw−g−mr W

]T

h(Ã)=
[

H−th
1 (Ã) H−th

2 (Ã)
]T

h′(Ã)=
[

2H−th
1 (Ã)−th

2 (Ã)
]T

(a) (b)

Figure 3: (a) Example Probabilistic page template containing

one figure and two linked text stream blocks with random pa-

rameters Θ = [Θ1, Θ2, Θ3, Θ4, Θ5, Θ6]
T

. (b) Matrix represen-

tation

by simply evaluating the RHS of (21) for all possible alternatives

and choosing the maximum value for Ψ(A,B, T). Optional im-

ages may be handled by allowing content allocations with optional

images to match templates with or without available template slots

to render them. Templates without available slots for any images

may simply ignore optional images. However the optional images

are still deemed to have been allocated.

The entire inference process is essentially dynamic programming

with the coefficients Ψ(A,B, T), Φi(A,B), and τi(A) playing

the role of dynamic programming tables. The optimization itself

may also be considered analogous to the minimization of an en-

ergy function proportional to the negative logarithm of (5). In this

case we simply replace products with sums, throughout but the es-

sential math remains the same. Inference complexity is analyzed in

the Appendix.

4. MODEL PARAMETERIZATION
The results of Section 3 are valid for arbitrary template param-

eterizations and general probability distributions. This section fo-

cuses one specific efficient parameterization of the general PDM

model to illustrate the value of probabilistic modeling with aes-

thetic priors. This specialization can express arbitrary soft lin-

ear parameter relationships probabilistically. It can support multi-

column layouts (with sidebars) but without element overlaps. This

is still an important class of documents. This is not a limitation of

the general model. This formulation is convenient since it makes

the the innermost sub-problem of model inference, given by equa-

tion (21) particularly efficient.

4.1 Template Representation
Content fit to a template is assessed along all paths that go from

top to bottom and left to right on a page. X-paths and Y-paths are

computed for each template. For the example in Figure 3(a) we

define two Y-paths (Y1 = Θ2 → Θ5 → Θ3 → th
1 → Θ6, Y2 =

Θ2 → Θ5 → Θ3 → th
2 → Θ6) and two X-paths (X1 = ml →

tw → g → tw → mr, X2 = Θ4 → Θ1 → Θ4).

Paths have constant and variable parameter components. In the

PDM model described in Section 3 each template had fixed text el-

ements and potentially variable image and whitespace parameters.

We sampled the content for a page after the template parameters

were sampled. In our model inference procedure however the situ-

ation is reversed. When we compute Ψ(A,B, T) we are given the

allocation to the current page Ã = A − B and then solve for the

maximizing template parameters. Thus, text heights on a template

can vary with the content allocation Ã to the template. However,

we still regard text heights as constants since, while they vary with

Ã they do not vary as the variable parameters change.

Variable path components of the N X-paths and M Y-paths com-

prising V random parameters may be described by matrices X =
[x1 x2 · · · xN] and Y = [y1 y2 · · · yM] consisting of column

vectors of dimension V × 1 for each path. The element (v, n) in

matrix X is the number of times random parameter Θv appears in

the nth X-path. Similarly, the element (v, m) in matrix Y is the

number of times random parameter Θv appears in the mth Y-path.

X and Y matrices corresponding to the example template in Figure

3(a) are shown in Figure 3(b).

Residual path heights and widths represent the adjustable por-

tion of each of the paths. These are the path heights and widths after

subtracting constant path elements. Residual path sizes are repre-

sented by the vectors h(Ã) and w in Figure 3(b) where H and W
represent the height and width of the page respectively. Note the

dependence of the residual path heights on Ã due to the depen-

dency of the text heights on Ã as discussed earlier.

In many cases we have multi-column flows where text flows from

one column to the next. In this case, the Y-paths with linked text

flows are be grouped into a single path by simply summing the

corresponding columns of Y and h giving rise to new matrices Y′

and h′ respectively.

Thus, we represent a probabilistic template t by matrices Xt,

Yt, Y′
t and vectors ht(Ã), wt and h′

t(Ã). Figure 3(b) gives the

complete matrix representation of the example template in Figure

3(a). This representation will prove useful when we discuss the

parameterization of the probability distributions in PDM, next.

4.2 Parameterized probability distributions
In this section we parameterize probability distributions used

in the PDM model of (1)-(3) to make various conditional design

choices more or less probable.

4.2.1 Aesthetic priors

We use a multinomial distribution for the template probabilities.

This gives us the flexibility of making certain templates more or

less likely to be used in creating a document. Thus Pi(Ti = ti) =
pti

= 1/|Ωi|, ∀ti, if there is no a priori preference for a template.

We model the prior distribution of template parameters P(Θ|T)
in equation (2) to be a multi-variate Normal distribution:

P(Θ|T = t) = N(Θ|Θ̄t,Λ
−1
t) (24)

where Θ̄t is the mean of Θ|T = t. Λt represents the precision

(inverse of covariance) matrix. For the rest of the paper we will

use the shorthand Θt for Θ|T = t (the parameters of a particular

template t 2).

While the full multivariate distribution of equation (24) is quite

general, it is hard for a designer to specify a full covariance matrix.

It is easier to specify the means, variances (hence precisions), min-

imum and maximum values of each random parameter. This leads

to a diagonal precision matrix Λtd
= diag[λt1, λt2, · · · , λtV].

It is also desirable to consider linear relationships among param-

eters (ex: ratios) whose aesthetics should be encoded. Thus we

consider general soft linear relationships expressed by

CtΘt − dt ∼ N(0,∆−1
td

) (25)

2not to be confused with Θi used in Section 3.2 which refers to the
parameters sampled for the ith page

for general Ct and dt or equivalently, Θt ∼ N(Θ̄t,Λ
−1
t), with

Λt = C
T
t ∆td

Ct (26)

Θ̄t = Λ
−1
t C

T
t ∆td

dt (27)

Note that in the case Ct = I, we have Θ̄t = dt and Λt = ∆td
=

Λtd
, so this formulation is a more general than simple mean and

diagonal precision specification. This representation is particularly

useful in developing priors for image scaling and re-targeting as

discussed in Section 4.2.2.

4.2.2 Incorporating image scaling and re-targeting

A template may have parameters Θw and Θh that describe the

width and height of an image. However, these cannot vary inde-

pendently. In this case we have

Θw ≈ a Θh , with precision ρ (28)

This is simply a linear relationship that may be handled by encod-

ing it into the prior as described in Section 4.2.1. If we do not

want to allow the aspect ratio of an image to change (in the case of

pure image scaling) we let ρ → ∞. On the other hand, we may

use image re-targeting algorithms to allow the image aspect ratio

to change. In this case the value of ρ will determine if we allow

small (by setting ρ to a large value) or large (by setting ρ to a small

value) changes in aspect ratio. We use the re-targeting algorithm

described in [8] to generate the results presented in this paper.

4.2.3 Content allocation likelihood

The probability distribution that determines the likelihood of an

allocation as described by equation (3) is represented by the fol-

lowing distribution

P(A|B,Θ, T) ∝ exp(−γ|R(A,B)|)×

N(wt|X
T
t Θt, α

−1
I)×

× N(h′
t(A− B)|Y′T

t Θt, β
−1

I) (29)

In the above equation, |R(A,B)| represents the number of dangling

references due to the allocation A − B to the current page and B
to the previous pages. The constant γ represents an exponential

weighting factor that represents how much to penalize mismatched

references in the probability distribution. For good page fill in the

Y and X directions the heights and widths of all Y-path groups

must satisfy h′
t(A− B)−Y′T

t Θt ≈ 0 and X-paths must satisfy

wt −XT
t Θt ≈ 0. The normal distributions above simply assign

high probability to these events and lower probability for deviations

from ideal. The constants α and β are precision parameters of the

normal distribution with diagonal precision matrices (I is the iden-

tity matrix) that control the degree to which we want to produce

full pages.

4.3 MAP estimation of template parameters
The particular parameterization of the prior and likelihood given

above makes the computation of Ψ(A,B, T) particularly efficient

since the posterior distribution formed from the product of P(Θ|T)
(24) and P(A|B,Θ, T) (29) is a multi-variate Normal distribution

in Θt. With some algebraic manipulation (not shown here due to

space constraints) we can compute the optimal MAP estimate in

closed form by simply calculating the mean of this product poste-

rior distribution. This results in the following closed form solution

for Θ∗
t = A−1

t bt, where:

At = Λt + αXtX
T
t + βY

′
tY

′T
t (30)

bt = ΛtΘ̄t + αXtwt + βY
′
th

′
t(A− B) (31)

In general, however, there may be bound constraints on some of

the components of Θt (ex: figure dimensions cannot be negative).

To incorporate these constraints we solve the following bound-

constrained least-squares quadratic program.

Θ
∗
t = argmax

{Θt:l≤Θt≤u}

(AtΘt − bt)
T (AtΘt − bt) (32)

where l and u are lower and upper bound vectors constraining Θt.

Note that our likelihood formulation of equation (29) attempts

to ensure that the content fits the X-paths and the aggregate Y-path

flows represented by Y′
t. In an ideal world if text flow is contin-

uous this would be all that is required. Y-paths Yt were left out

of this optimization because text flow across columns is discrete

and it is unclear how text allocated to a page is to be distributed

across columns. Using Y′
t instead of Yt allows us to get around

this issue by considering how the whole flow (aggregating across

columns) fits the page. This approach of course implicitly assumes

that the flow is continuous. This is not true for text, but is usually a

good approximation.

Fortunately, in practice, we may refine this approximation since

Θ∗
t computed using equation (32) effectively converts the proba-

bilistic template into a static template. This means that the text

block sizes are now known, so we can distribute the text across the

blocks. This may be done without rendering the text if we knew the

number of lines to be allocated and the font size. This procedure

will produce actual text block height estimates (taking into account

discrete line breaks across columns). We can therefore re-compute

ht using the correct text heights for text blocks in every path and

re-solve for Θt using equation (32) with Yt substituted for Y′
t

and ht(A− B) substituted for h′
t(A− B).

5. PRACTICAL CONSIDERATIONS
The input raw content to the document composition engine is an

XML file. The XML elements match the element types that are

allowed on a page template. In our examples we allow three ele-

ment types including text blocks, figures and sidebars (a grouping

of figures and/or text blocks that must appear together on a page).

The XML file also encodes figure/sidebar references via an XML

attribute indicating the id of the text block that referenced it. Each

content XML file is coupled with a style sheet. Content blocks

within the content XML have attributes that denote their type. For

example, text blocks may be tagged as head, subhead, list, para,

caption etc. The document style sheet defines the type definitions

and the formatting for these types. Thus the style sheet may require

a heading to use Arial bold font with a specified font size, linespac-

ing etc. The style sheet also defines overall document characteris-

tics such as, margins, page dimensions etc.

We use a GUI based authoring tool to author templates and style

sheets. Note that the template library design task is fixed over-

head cost. The design process a graphic designer must go through

to create a template includes a) content block layout, b) specifica-

tion of linked text streams and c) specification of prior probability

distributions (mean-precision and min-max). For images the de-

signers set min-max of height/width and the precision of the aspect

ratio (we use the native aspect ratio as the mean). Note that it is

the relative values of variances (precisions) that matter. So a de-

signer could use order of magnitude precision changes to indicate

preference. For example if a whitespace precision is set to 100,

setting figure aspect precision to 10 would allow figure aspect ra-

tio to change much more freely than whitespace. We automatically

compute overall prior of (24) using equations (26) and (27). All

other distributions and probabilities are calculated computationally

without designer involvement.

(a) λf = 10 (b) λf = 100 (c)

(d) λf = 10 (e) λf = 100 (f)

Figure 4: Soft probabilistic encodings vs. one way constraints.

Owl: c©Steve Brace (http://www.flickr.com/photos/steve_brace/)

To run PDM inference we need to generate several discrete con-

tent setsA and B from the input content. Since figures and sidebars

cannot break across pages, it is straightforward to allocate them to

sets. A single text block in the content stream may be chunked as a

whole if it cannot flow across columns or pages (ex: headings, text

within sidebars etc.). However if the text block attribute indicates

that it is allowed to flow (paragraphs, lists etc.), it must be decom-

posed into smaller atomic chunks for set allocation. We use a line

based text chunk decomposition in our experiments. We assume

that text width is selected from a discrete set of widths allowed for

a template library. The height of a chunk is determined by ren-

dering the text chunk at all possible text widths using the specified

style sheet style in a preprocess rendering pass. We use the open

source desktop publishing software Scribus as the rendering engine

and are able to query the number of rendered lines via an API. We

use the number of lines and information regarding the font style,

line spacing etc. to calculate the rendered height of a chunk. Thus

when allocating a text chunk to a text element of a template, we

may simply look up its height using the chunk index and template

text element width. We can do this if text column widths are known

and text is not allowed to wrap around figures. The choice of lines

as the unit of text allocation restricts the class of layouts to multi-

column layouts with no text wrapping around figures, since when

wrap-around is allowed a paragraph may break into different num-

ber of lines depending on the extent of wrap-around and so would

not be a reliable unit of allocation. Since our specific template pa-

rameterization also does not allow text wrap-around, line based al-

location is an efficient choice. This is however not a restriction on

the generality of the PDM model.

6. EXPERIMENTAL RESULTS
In this section we illustrate the performance PDM based docu-

ment composition with example 1 and 2-page document compo-

sitions (due to space restrictions) shown in Figures 4 and 5. Our

template library is designed for 2-page News content with multiple

articles in a 3-column format. Each article has at most one figure

associated with it and must appear naturally adjacent to article text.

(a) (b)

(c) (d)

(e) (f)

Figure 5: PDM compositions with variations in content and form factor. Each row has exactly the same content with variation

only in form factor. (a) and (b) show three articles composed onto two pages. (c) and (d) have a new article inserted between the

original articles 2 and 3. (e) and (f) have a new figure with a different aspect ratio substituted for the original figure in article 3.

Our algorithm actively paginates content, selects content arrangements (templates), re-targets images, re-flows text and manages

whitespace to fit the content in each case. The same template library is used for both form factors. Since we only encode relative

position in templates we only need to set H and W to the appropriate values for the new form factor. Punk girl and Veiled girl: c©D

Sharon Pruitt (http://www.flickr.com/photos/pinksherbet/) , Boat: c©Mike Baird (http://www.flickr.com/photos/mikebaird/)

Figure 6: First six pages of the HP Labs 2010 annual report generated using PDM inference. The entire report can be downloaded

from http://www.hpl.hp.com/news/2011/jan-mar/annual_report.html

Our template library consists of a total of 133 probabilistic tem-

plates including 83 first page and 50 back page templates encod-

ing various relative arrangements of figures, article titles, and text

streams. Since the design intent was to have images span columns,

only the height of the images was parameterized with a mean equal

to the height that maintained aspect ratio. Most whitespace was pa-

rameterized with a desired mean of 8 points between text and mar-

gins and 16 points between text and figures. Whitespace precision

was set to 100 points−2. The precision parameters for the likeli-

hood function in equation (29) are set as follows, α = β = 1000
and γ = 10000. These settings reflect our desire to produce full

pages and force figures to appear on the same page as their corre-

sponding articles (since the corresponding probability distributions

have a tight spread).

Fig. 4 illustrates the value of soft probabilistic encodings vs.

hard one way constraint based specification (ex: [7]). To simulate a

constraint-based template evaluation system, we set the parameter

values of all the templates in our library to their mean values (most

aesthetically desired values). This gives us a set of static templates

that can be interpreted using one-way constraints. When a figure is

flowed into an image copy hole, the height of the hole is adjusted

to maintain the aspect ratio, and the text below it is constrained as a

result. We evaluate the posterior probability of the mean parameter

settings and use this to score templates.

Each row of Fig. 4 shows compositions of the same content. The

second row has more content than the first row. Each PDM template

has precision matrix of (24) set to Λt = diag[λf , λw, · · · , λw].
The precision of whitespace, λw = 100 for all the PDM composi-

tions. Along each row for PDM, the precision of the figure height

λf is varied from a small value λf = 10 to a value equal to the

whitespace precision λf = 100. Thus the PDM compositions (a)

and (d) use mainly figure height (hence, aspect ratio) changes to

fit content since it has a low precision relative to whitespace vari-

ation. The compositions (b) and (e) allow both figure aspect ratio

and whitespace to vary from nominal desired values to fit content

since their precisions are the same 3. While changes in image as-

pect ratio and whitespace lower the contribution of prior parameter

probability to the overall document probability (since they deviate

from desired mean values), this impact is offset by relatively higher

contributions for pagination or content fit. Of course, if possible,

the algorithm will attempt to preserve the mean values of all quanti-

ties. In contrast, One one way constraints are much more rigid, not

allowing figure aspect ratio and whitespace to change from desired

value to fit content. This often results in voids (c) or overflows (d).

One approach to add more flexibility to one way constraint methods

is to allow several alternate versions of images and/or filler images

[7]. Even if alternates were allowed, since each image has a discrete

aspect ratio, it is very easy to make content by adding/deleting lines

where voids and overflows occur. In general, one way constraint

based composition requires huge template libraries so that a good

sequence of templates can be found in the library [14]. For PDM

compositions, since the templates are actively adjusted to fit con-

tent, consistently good results can be achieved even with modest

template libraries.

Fig. 5 illustrates 2 page document compositions with variations

in content along a column and form factor along a row. Note how

we are able to actively paginate content, choose appropriate ar-

rangements and actively re-target images to fit the content. In gen-

eral our parameter prior favors aspect ratio changes to changes in

whitespace since λf = 10 in this case.

As a real world example, we also used the PDM inference al-

3(d) and (e) produced the same composition since the whitespace
in (e) could not be further reduced since its min value was reached

gorithm to create the 64 page HP Labs 2010 annual report using a

template library of 37 templates. Figure 6 shows the first six pages

of the report. The report includes richer formatting including side-

bars and profile pictures with text overlay. Changes in image as-

pect ratio were not allowed in this case, so we had to parameterize

whitespace precision around images to allow more flexible image

resizing. A high emphasis was placed on referenced (γ = 10000)

figures and sidebars occurring on the same spread as their text ref-

erence. Note how the algorithm automatically resizes the images

to allow the figures to appear close to their references. While the

same 1-figure template was chosen for pages 4 and 6, the algorithm

automatically scaled down the image (allowing modest whitespace

on its left and right) on page 4 to allow it to be close to the HP Labs

Singapore heading.

Our code for these experiments was written in MATLAB (unop-

timized for efficiency and for-loops). The longest 2-page content

consisting of 171 lines of text and two figures took around 45 sec-

onds while the report (1719 lines of text, 14 floating figures and

38 floating sidebars) took around 1 hour. Experiments were per-

formed on a Linux machine with single core 3GHz Intel Xeon pro-

cessor with 3GB of RAM. We expect that an order of magnitude

performance improvement can be achieved with optimized C code.

7. CONCLUSIONS
This paper presented a probabilistic framework for adaptive doc-

ument layout that supports automated generation of paginated doc-

uments for variable content. We attempted to address one of the

main weaknesses of template based automated document composi-

tion, the fact that one-way constraint-based templates can be overly

rigid. Our approach uniquely encodes soft constraints (aesthetic

priors) on properties like whitespace, exact image dimensions and

image rescaling preferences. Our main contribution is a proba-

bilistic document model (PDM) that combines all of these prefer-

ences (along with probabilistic formulations of content allocation

and template choice) into a unified model. In addition, we describe

a model inference algorithm for computing the optimal document

layout for a given set of inputs. PDM opens the door to leverag-

ing probabilistic machinery and machine learning algorithms for

both inference and learning of parameterizations directly from ex-

amples. This may reduce if not eliminate the need for designer in-

volvement in creating templates and specifying prior distributions.

8. REFERENCES

[1] G. J. Badros, A. Borning, and P. J. Stuckey. The cassowary

linear arithmetic constraint solving algorithm. ACM Trans.

Comput.-Hum. Interact., 8(4):267–306, 2001.

[2] G. J. Badros, J. J. Tirtowidjojo, K. Marriott, B. Meyer,

W. Portnoy, and A. Borning. A constraint extension to

scalable vector graphics. In WWW ’01: Proceedings of the

10th international conference on World Wide Web, pages

489–498, New York, NY, USA, 2001. ACM.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet

allocation. J. Mach. Learn. Res., 3:993–1022, 2003.

[4] A. Brüggemann-Klein, R. Klein, and S. Wohlfeil. On the

pagination of complex documents. In Computer Science in

Perspective: Essays Dedicated to Thomas Ottmann, pages

49–68, New York, NY, USA, 2003. Springer-Verlag New

York, Inc.

[5] T. Hofmann. Probabilistic latent semantic indexing. In SIGIR

’99: Proceedings of the 22nd annual international ACM

SIGIR conference on Research and development in

information retrieval, pages 50–57, New York, NY, USA,

1999. ACM.

[6] N. Hurst, W. Li, and K. Marriott. Review of automatic

document formatting. In DocEng ’09: Proceedings of the 9th

ACM symposium on Document engineering, pages 99–108,

New York, NY, USA, 2009. ACM.

[7] C. Jacobs, W. Li, E. Schrier, D. Bargeron, and D. Salesin.

Adaptive grid-based document layout. ACM Transactions on

Graphics, 22(3):838–847, Jul. 2003.

[8] Z. Karni, D. Freedman, and C. Gotsman. Energy-based

image deformation. In Proceedings of the Symposium on

Geometry Processing, SGP ’09, pages 1257–1268,

Aire-la-Ville, Switzerland, Switzerland, 2009. Eurographics

Association.

[9] X. Lin. Active layout engine: Algorithms and applications in

variable data printing. Comput. Aided Des., 38(5):444–456,

2006.

[10] S. Lok and S. Feiner. A survey of automated layout

techniques for information presentations. In SmartGraphics

’01: Proceedings of SmartGraphics Symposium ’01, pages

61–68, New York, NY, USA, 2001. ACM.

[11] J. Lumley, R. Gimson, and O. Rees. A framework for

structure, layout & function in documents. In DocEng ’05:

Proceedings of the 2005 ACM symposium on Document

engineering, pages 32–41, New York, NY, USA, 2005.

ACM.

[12] J. Pearl. Probabilistic reasoning in intelligent systems:

networks of plausible inference. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1988.

[13] M. F. Plass. Optimal pagination techniques for automatic

typesetting systems. PhD thesis, Stanford University,

Stanford, CA, USA, 1981.

[14] E. Schrier, M. Dontcheva, C. Jacobs, G. Wade, and

D. Salesin. Adaptive layout for dynamically aggregated

documents. In IUI ’08: Proceedings of the 13th international

conference on Intelligent user interfaces, pages 99–108, New

York, NY, USA, 2008. ACM.

[15] B. T. Vander Zanden, R. Halterman, B. A. Myers,

R. McDaniel, R. Miller, P. Szekely, D. A. Giuse, and

D. Kosbie. Lessons learned about one-way, dataflow

constraints in the garnet and amulet graphical toolkits. ACM

Trans. Program. Lang. Syst., 23(6):776–796, 2001.

APPENDIX

A. INFERENCE COMPLEXITY
The forward pass given by equations (21)-(23) dominates the

asymptotic complexity of PDM inference. A naive computation

of the table Ψ(A,B, T) has asymptotic complexity O(|Ω||c′|2)
(where |Ω| = |

⋃

i
Ωi|) since we must loop over all sets A,B ∈ c

′

withA ⊇ B and over all |Ω| distinct templates in the library. Recall

that c
′ is the set of all legal content allocations (Section 3.1).

We observe that we can effectively bound the set A − B that

represents the content allocated to a page. This assumption im-

plies that we do not need to loop over all legal subsets A and

B in building Ψ(A,B, T), but only those that are close enough

so that the content A − B can reasonably be expected to fit on a

page. In general, for eachA the allowed B’s are in a neighborhood

Nf (A) = {B : δ(A− B) ≤ f}. The function δ(A− B) returns a

vector of the counts of various page elements in the setA−B. f is

a vector that expresses what it means to be close by bounding the

numbers of various page elements allowed on a page. For example

we may set f = [100 (lines), 2 (figures), 1 (sidebar)]T. This will

eliminate an allocation comprising 110 lines of text and 1 sidebar.

This page capacity bound improves the complexity of computing

Ψ(A,B, T) to O(|Ω||c′|).

Once the table Ψ(A,B, T) has been computed, the computation

of Φi(A,B) for each i is O(|Ωi||c
′|) since the maximization over

templates only occurs over a sub-library containing |Ωi| templates.

The computation of Φi(A,B) for all i is thus O(maxi(|Ωi|)|c
′|Î),

where Î is the estimated page count for the forward pass. Since Î ∝
|c| this complexity may also be expressed as O(maxi(|Ωi|)|c

′||c|).

Once all the tables Φi(A,B) have been computed, we recur-

sively compute τi(A) for all A, i with τ0(A) = Φ0(A, ∅). This

computation has complexity O(|c′||c|) since we loop over everyA
and all pages. Thus, overall asymptotic algorithm complexity of

PDM inference (under the mild assumption that page capacity is

bounded) is O(|Ω||c′||c|) or O(|Ω||c|3), since4 |c|2 > |c′|.
If we make a further assumption that Φi(A,B) is independent

of i (i.e. templates for all pages are drawn from the same template

library) then |Ωi| = |Ω| and Φi(A,B) = Φ(A,B). Thus the com-

putation of Φ(A,B) now has complexity O(|Ω||c′|). This does

not change overall asymptotic complexity since the computation of

τi(A) for all A, i is still O(|c′||c|) or O(|c|3).

However, if we are seeking to automatically determine optimal

page count we only need to compute and store τ(A) = maxi≥0τi(A)
since, from (15), we have

max
i≥0

τi(c) = max
i≥1

{

τ0(c), max
B

Φ(c,B)τi−1(B)
}

= max







τ0(c), max
B

Φ(c,B) max
i≥0

τi(B)

︸ ︷︷ ︸

τ(B)







If we allow B = ∅ above (so that τ0(c) = Φ(c, ∅)), define τ(∅) =
1 and substitute A for c we have the much more succinct general

recursion for the computation of τ(A) and page count Pg(A)

τ(A) = max
B

Φ(A,B)τ(B) (33)

B∗ = argmax
B

Φ(A,B)τ(B) (34)

Pg(A) = 1 + Pg(B∗) (35)

with Pg(∅) = 0. Thus the complexity of computing τ(A) for allA
is O(|c′|). Overall algorithm complexity now becomes O(|Ω||c′|)
or O(|Ω||c|2). In fact, we can generalize these asymptotic results

even more, to support the common case that templates for even

and odd pages are drawn from distinct libraries. In this case we

need to compute and store Φodd(A,B), Φeven(A,B), τodd(A) and

τeven(A). The additional computational complexity does not grow

with content and so has no impact on asymptotic inference com-

plexity.

Finally, if we make the assumption that content follows a linear

ordering (i.e. text and figures are organized and allocated within

a single flow order), then |c′| = |c| + 1 (the +1 is to include the

empty set). This assumption implicitly means that a figure that

appears after a text block must be allocated immediately after it. In

practice this forces figures to appear on the same page or on the next

page instead of allowing them to float freely. This extra assumption

means that the best case complexity of PDM inference is O(|Ω||c|).

Thus in the case of linear content ordering, finite sub-libraries and

bounded page capacity, the task of infering the optimal document

is linear in content and the size of the template library.

4|c|2 = (|cl|+ |cf |)
2 > |c′| = (|cl|+ 1)(|cf |+ 1) as |c| → ∞

