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Abstract—The framework of Integral Quadratic Constraints
(IQC) introduced by Lessard et al. (2014) reduces the com-
putation of upper bounds on the convergence rate of several
optimization algorithms to semi-definite programming (SDP). In
particular, this technique was applied to Nesterov’s accelerated
method (NAM). For quadratic functions, this SDP was explicitly
solved leading to a new bound on the convergence rate of
NAM, and for arbitrary strongly convex functions it was shown
numerically that IQC can improve bounds from Nesterov (2004).
Unfortunately, an explicit analytic solution to the SDP was
not provided. In this paper, we provide such an analytical
solution, obtaining a new general and explicit upper bound on
the convergence rate of NAM, which we further optimize over
its parameters. To the best of our knowledge, this is the best,
and explicit, upper bound on the convergence rate of NAM for
strongly convex functions.

I. INTRODUCTION

Consider the problem

min
x∈Rp

f(x) (1)

under the following additional assumption, which holds
throughout this paper.

Assumption 1. 1) The function f is convex, closed and
proper;

2) Let Sd(m,L) be the set of functions h : Rd → R ∪
{+∞} such that m‖x−y‖2 ≤ (∇h(x)−∇h(y))

T
(x−

y) ≤ L‖x− y‖2 for all x, y ∈ Rd where 0 < m ≤ L <
∞ and ‖ · ‖ denotes the Euclidean norm; We assume
that f ∈ Sp(m,L), i.e. f is strongly convex and ∇f is
Lipschitz continuous.

In this paper, we provide a new bound on the convergence
rate of NAM when solving (1).

NAM has wide applications in machine learning. It is the
base of the well-known FISTA algorithm largely used to solve
problems arising in signal processing [1], and it was also
extensively applied in compressed sensing, as for instance in
[2], [3]. A trace norm regularization using NAM was proposed
in [4], which has applications in multi-task learning, matrix
classification and matrix completion. Even to train deep neural
networks, it was shown that NAM with a careful initialization
is able to achieve state-of-the-art accuracy [5].

NAM is parametrized by α > 0 and β ≥ 0 and takes the
form in Algorithm 1. We assume that α and β are fixed. A
classical choice for these parameters is [6]

α = 1/L, β = (
√
κ− 1)/(

√
κ+ 1), (2)
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Fig. 1. Different known linear rate bounds for NAM.

where κ = L/m. We define an upper bound on the conver-
gence rate of NAM, for fixed α, β and function f , as any
τ ∈ [0, 1] for which

‖xt − x∗‖ ≤ Cτ t‖x0 − x∗‖, (3)

where C > 0 is a constant, and x∗ is a fixed point of
Algorithm 1. Choosing α and β according to (2), [6] uses
the technique of estimate sequences and obtains

τ = τNG ,
√

1− 1/
√
κ. (4)

In addition, if f is quadratic, then

τ = τNQ , 1− 1/
√
κ. (5)

In [6] it was also shown that any first order method must obey

τ ≥ τBP , 1− 2/
√
κ+ 1. (6)

Several recent works have revisited NAM and computed
bounds on its convergence rate based on different techniques.
Although these re-derivations have increased our understand-
ing of NAM, and in some cases even inspiring new variations,
they have not improved previous results. A partial exception
is [7], where they reduce computing a bound on the rate of

Algorithm 1 Nesterov’s accelerated method (parameters α, β)
1: Initialize x0, x1
2: repeat
3: yt = (1 + β)xt − βxt−1
4: xt+1 = yt − α∇f(yt)
5: until stop criterion
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convergence to finding solutions to a semi-definite program-
ming (SDP) problem. This SDP has multiple solutions, each of
which gives a bound on the convergence rate, some better than
others. For quadratic functions, [7] explicitly solve this SDP,
optimize the result over α and β, and obtain a new improved
bound on the convergence rate of NAM with the tuning rules

α = 4/(3L+m), β = (
√

3κ+ 1− 2)/(
√

3κ+ 1 + 2),

τ = τLQ , 1− 2/
√

3κ+ 1.
(7)

For general strongly convex functions, they numerically solve
this SDP and obtain τLG as shown in Fig. 1. From the plot
we see that the results from the IQC-framework improve on
(4). However, no explicit and analytical solution to the SDP
associated to NAM was provided. Even more discouraging
is the fact that the only explicit solution obtained was for
Gradient Descent (GD), yielding a previously known bound
on convergence rate.

On the other hand, in our recent paper at ISIT 2016, [8], we
show that it is possible to extract explicit solutions from the
IQC-framework for non classical optimization algorithms and
for general strongly convex functions. In particular, optimally
tuning ADMM algorithm, we obtain a convergence rate that
matches the τBP , the best possible for any first order methods.

The main contribution of this paper is to apply the IQC
framework of [7] to obtain an explicit and new bound on
the convergence rate of NAM. In particular, we derive an
analytical solution to the corresponding SDP for which [7]
only provides numerical solutions. To the best of our knowl-
edge, our result is the best explicit bound for NAM and
arbitrary strongly convex functions. It is also one of the only
three explicit bounds obtained from the IQC-framework so far;
others are for GD and ADMM.

II. RELATED WORK

Several recent works have revisited NAM and computed
bounds on its convergence rate based on different techniques.
In addition to [7], the following works are relevant. [9] views
NAM as a linear coupling between GD and Mirror Descent,
and, for f ∈ Sp(0, L), re-derives the previously known bound
f(xt)− f(x∗) = O

(
L
t2

)
, [10], with the choice α = C√

L
and

β = 1
αL+1 , which is different from Nesterov’s bound. This

rate is not of the type (3) that we consider in this paper.
The work of [11] views (an adaptive version of) NAM with

β = t−1
t+r−1 as the discretization of the second-order ODE

d2x
dt2 + r

t
dx
dt +∇f(x) = 0. For f ∈ Sp(m,L) and 2 ≤ α ≤ 2r/3

they obtain f(xt) − f(x∗) ≤ C(α,r)
tα . If m > 0, this leads to

‖xt − x∗‖ = O
(

1
tα/2

)
. Unfortunately, [11] show that their

framework is incapable of providing linear convergence rates
in general, which we know to hold for f ∈ Sp(m,L).

The work of [12] does not give a bound for the fixed
step-size NAM for a general smooth function but only for
an adaptive NAM and a function f ∈ Sp(0, L) that convex
and quadratic. For such a function, and for β = 1− 2

t+1 and
α = 1/L, they show that f(xt)− f(x∗) = O( Lt2 ).

� Â

rf [1, 0, 0]>

B̂

unit 
delay 

D̂

�
yt

Ĉ

Fig. 2. The variables in NAM appear in a linear system inserted in a non-
linear feedback loop. Above, we show yt only. [1, 0, 0]> outputs the first
component of its input. The system is more complex than NAM, and, in
particular, the matrices Ĉ and D̂ are used to probe it. [7] use the properties
of the output of this probe to prove properties about the convergence of NAM
as stated in Theorem 2.

The work of [13] focuses only on a convex quadratic
function f ∈ Sp(m,L), and obtain τ = 1−1/

√
κ for α = 1/L

and β = (
√
κ− 1)/(

√
κ+ 1), basically re-deriving (5).

Finally, [14] gives a possible geometric interpretation of
why NAM accelerates convergence. For their NAM-type
method, the result τ =

√
1− 1/

√
κ is obtained, basically re-

deriving (4).

III. MAIN RESULTS

We start recalling results from [7]. Algorithm 1 can be stud-
ied through a linear dynamical system involving the matrices1

Â =

 β + 1 −β 0
1 0 0

L(−β − 1) βL 0

 , B̂ =

 −α0
1

 ,
Ĉ =

[
L(β + 1) −Lβ ρ2

−m(β + 1) mβ 0

]
, D̂ =

[
−1
1

]
,

(8)

inserted in a nonlinear feedback loop, where the feedback gain
is essentially ∇f . The constant ρ > 0 will be specified later.
See Figure 2 for an illustration. The stability of this dynamical
system is related to the convergence rate of Algorithm 1, which
involves numerically solving a 4× 4 semidefinite program.

Theorem 2 ( [7]). Let {xt} evolve according to Algorithm 1
for fixed α > 0 and β ≥ 0. Let x∗ be a fixed point of the
algorithm. Fix 0 < ρ ≤ τ < 1. If there exists a 3 × 3 matrix
P � 0 and a constant λ ≥ 0 such that[
ÂTPÂ− τ2P ÂTPB̂

B̂TPÂ B̂TPB̂

]
+λ
[
Ĉ D̂

]T
M
[
Ĉ D̂

]
� 0, (9)

where M = [ 0 1
1 0 ], then, for all t ≥ 0, we have

‖xt − x∗‖ ≤
√
κPC0 τ

t, (10)

where the constant C0 =
√
‖x1 − x∗‖2 + ‖x0 − x∗‖2, and

κP = σmax(P )/σmin(P ) is the condition number of P .

Note that any fixed point x∗ of Algorithm 1 satisfies the
KKT conditions for problem (1), which due to strong convex-
ity make x∗ the unique minimizer. Thus, Theorem 2 enables

1The connection between Algorithm 1 and these matrices can only be
formally established if we use Â⊗ Ip, B̂ ⊗ Ip ,Ĉ ⊗ Ip and D̂ ⊗ Ip, where
⊗ is the Kronecker product and Ip ∈ Rp×p is the identity matrix. Note,
however, that Theorem 2 holds with the matrices Â, B̂, Ĉ and D̂ exactly as
specified in (8). See [7, Section 4.2] for more details.



us to find an explicit convergence rate τ = τ(α, β, L,m): just
find P , λ, ρ and τ satisfying the conditions above.

Unfortunately, [7] does not give an explicit expression for
τ as a function of κ, α and β. Our main result in this paper
provides such an explicit formula when α = 1/L. To arrive
at this result, we first prove a series of intermediate steps.

Theorem 3. Equation (9) holds if β > 0, κ > 1, λ = α =
L = 1, ρ = τ > 0, τ is such that

− 4(−κ+ 1)2β2(−2 + ω) + ω(κ− 1 + κω)2

− 4(−κ+ 1)βω(−3κ+ 1 + κω) = 0, (11)

where ω = τ2 , and P =
[
a b c
b d e
c e f

]
, where

a = −
(

1
β + 2

)
ω + 2(β + 2) + β(s−1)

ω − 2(β + 1)s, (12)

b = 1
2 ((2β + 1)(s− 1) + ω) , (13)

c = β − ω(s+ω−1)
2β(s−1) − (β + 1)s− ω + 1, (14)

d = (1− s)β, (15)
e = ω − (1− s)β, (16)

f = ω2

β−βs . (17)

Note that ω in (12)-(17) satisfies (11) and we defined s = κ−1.

Remark 4. Note that (11) is a third degree polynomial in ω
with real coefficients, which always has a real root. Moreover,
all roots have a closed form expression. This defines τ =
τ(κ, β) through τ2 = ω.

Proof of Theorem 3. Let

H =

[
H1 H2

H>2 H3

]
(18)

be the left hand side of (9) multiplied by −1, where H1, H2

and H3 are 2 × 2 matrices and H>2 denotes the transpose of
H2. To show that H is positive semidefinite we are going to
use the following property of the Schur complement [15]: H
is positive semidefinite if and only if

H3 � 0, (19)

H1 −H2H
†
3H
>
2 � 0, (20)

(I −H3H
†
3)H>2 = 0, (21)

where H†3 is the pseudoinverse of H3 [16].
To check that conditions (19)–(21) hold, we first replace

λ = α = L = 1 and formulas (12)–(17) in H . Hence, for (19)
we have

H3 =

[
ω3

β−sβ −ω
−ω β−sβ

ω

]
(22)

whose eigenvalues are 0 and 1
ω

(
β(1− s) + ω4

β(1−s)

)
. Both

are nonnegative since s = κ−1 < 1, β > 0 and ω > 0.
Now we check (21). H3 has no inverse but it has an explicit
pseudoinverse given by

H†3 =

 − (s−1)βω5

(ω4+(s−1)2β2)2
− (s−1)2β2ω3

(ω4+(s−1)2β2)2

− (s−1)2β2ω3

(ω4+(s−1)2β2)2
− (s−1)3β3ω

(ω4+(s−1)2β2)2

 . (23)

Replacing this expression in the left hand side of (21) confirms
that it holds true. Finally, we check (20). After a simple, but
tedious, calculation one can obtain

H1 −H2H
†
3H
>
2 =[

−4β2(s−1)2(ω−2)−4β(s−1)ω(s+ω−3)+ω(−s+ω+1)2

4β(s−1) 0

0 0

]
.

(24)

Let δ = δ(ω, s, β) be the numerator of the top-left ele-
ment in the matrix above. A direct calculation shows that
κ2δ(ω, κ−1, β) is the left hand side of (11), which is zero by
assumption. Hence, H1−H2H

†
3H
>
2 = 0 and (20) is true.

Let τ = τ(κ, β) be the smallest (real) solution of (11) such
that τ ∈ (0, 1). Our next theorem gives an expression for the
choice of β = β(κ) that minimizes τ(κ, β) for each κ > 1.

Theorem 5. Let β(κ) minimize τ(κ, β), for fixed κ > 1. We
have

β(κ) =
2κ−

√
2κ− 1− 1

2
(
κ+
√

2κ− 1
) , (25)

τ(κ, β(κ)) =

√
1−
√

2κ− 1

κ
. (26)

Proof. Note that (11) is a quadratic polynomial in β. Its zeros
are

β =
x±√y

z
, (27)

where

x = (κ− 1)ω(κ(ω − 3) + 1), (28)

y = 2(κ− 1)2(ω − 1)ω
(
κ
(
κ(ω − 1)2 − 2

)
+ 1
)
, (29)

z = 2(κ− 1)2(ω − 2). (30)

For each κ > 1, we want to find the smallest τ ∈ (0, 1)
for which we still have real roots in the above equation.
This is the same as finding the smallest ω ∈ (0, 1) for
which

(
κ
(
κ(ω − 1)2 − 2

)
+ 1
)
, a quadratic function of ω, is

nonnegative. This is easy to find, yielding

ω = 1−
√

2κ− 1

κ
, (31)

for which we have

β =
x

y
=
ω(κ(ω − 3) + 1)

2(κ− 1)(ω − 2)
= −−2κ+

√
2κ− 1 + 1

2
(
κ+
√

2κ− 1
) . (32)

Theorem 6. If τ and β are chosen as (25) and (26), re-
spectively, and the entries in P according to (12)–(17), then
P � 0.

Proof. Let P ′ be P with its rows and columns permuted such
that the first, second and last row/column become the last,
second and first row/column. Note that P ′ and P have the
same spectrum. We are going to show that all the principal
minors of P ′ are strictly positive, a necessary and sufficient



condition for positive definitiveness known as Sylvester’s
criterion [17].

Replacing (12)–(17) in P ′, the first minor is given by

f =
κω2

β(κ− 1)
> 0. (33)

The second minor is∣∣∣∣d e
e f

∣∣∣∣ =
β(κ− 1)(β(−κ) + β + 2κω)

κ2
, (34)

whose sign is dictated by β(−κ) + β + 2κω and which, by
substituting (25)–(26), becomes

β(−κ)+β+2κω =
(κ− 1)

(
2κ+

√
2κ− 1− 3

)
2
(
κ+
√

2κ− 1
) > 0, (35)

since κ ≥ 1.
The third minor is just the determinant of P ′, which is

1
ωβ

3
(
1
κ − 1

)3
(ω − 1) + β2

(
1
κ − 1

)2 ( 1
κ + 3ω − 5

)
+ 2β

(
1
κ − 1

)
ω
(
1
κ + ω − 3

)
− 1

2ω
(
− 1
κ + ω + 1

)2
. (36)

We can use (11) to simplify this expression to

β2(κ− 1)2((ω − 1)(β(−κ) + β + κω) + ω)

κ3ω
, (37)

whose sign is dictated by (ω − 1)(β(−κ) + β + κω) + ω. If
we substitute (25)–(26) we obtain

(ω − 1)(β(−κ) + β + κω) + ω =
(κ− 1)

(√
2κ− 1− 1

)
2κ
(
κ+
√

2κ− 1
)

> 0
(38)

since κ > 1.

We now provide our main result, which directly follows
from our previous theorems and a simple rescaling argument.

Theorem 7. Let f ∈ Sp(m,L) and κ = L/m ≥ 1. Consider
Algorithm 1 to solve the optimization problem (1). If α = 1

L

and β = 2κ−√2κ−1−1
2(κ+

√
2κ−1)

, then

‖xt − x∗‖ ≤ C0C1 τ
t, (39)

where C0 =
√
‖x1 − x∗‖2 + ‖x0 − x∗‖2, C1 > 0 is a

function of κ, and

τ =

√
1−
√

2κ− 1

κ
. (40)

Proof. We can assume, without loss of generality, that κ > 1.
The case κ = 1 follows by a continuity argument, applying a
small quadratic perturbation to f and letting the perturbation
converge to zero.

The convergence rate of Algorithm 1 on f with α = 1/L is
the same as its convergence rate on f̂ = f/L ∈ Sp(m, 1) with
α = 1. In this setting, Theorem 3 and Theorem 6 tell us that
the conditions to apply Theorem 2 hold for our choice of α
and β. Furthermore, according to Theorem 5, for this choice
of α and β, the convergence rate τ satisfies (40).

IV. THE PATHWAY TOWARDS THE PROOF

The reader might have noticed that our previous proofs
amount to substituting expressions into conditions and sub-
sequently checking that these conditions are satisfied. It is
enlightening to explain how we obtained these expressions in
the first place. Specifically, how did we obtain (12)–(17) from
which all other formulas follow? In a nutshell, we built our
ansatz based on numerical experimentation. Reveling this path
might be useful for other researchers to use the IQC framework
to derive explicit formulas for other algorithms as well.

First, we reduce the number of variables in the problem by
setting λ = 1, ρ = τ and α = L = 1.

Second, we fix β > 0 and κ ∈ (0, 1), and use a convex
optimization solver to numerically find the smallest τ for
which (9) is satisfied under the assumption that P � 0. Let
H be the right hand side of (9) multiplied by −1. To find this
τ , we start with τ = 0.5 and check if the SDP

min
P

1 s.t. H � 0 and P � 0 (41)

has a feasible solution2. In the affirmative case, we reduce
τ , otherwise we increase τ . Notice that the eigenvalues of H
increase monotonically with τ . Hence, we can use bisections to
find the smallest possible τ in a few steps. After this procedure
is done, we check if P � 0. If this does not hold, we try a
different β and/or κ.

Third, we repeat this procedure for several pairs of (β, κ).
For each pair, we obtain numerical values for P and H such
that H � 0 and P � 0 hold. From these numerical values, we
try to identify some very simple properties that H or P might
satisfy for all tested values of β and κ. Labeling the entries
of P as in Theorem 3, the properties that we can easily guess
based on our numerical experiments are the following:

1) Recall that P = P> =
[
a b c
b d e
c e f

]
. Then,

e = ω − d, (42)
d = β(1−m). (43)

2) Let ∆i be the principal minor of H obtained by remov-
ing the ith row and column. We observe ∆i = 0 for
i = 1, . . . , 4;

3) Let ∆1,2;1,2 be the principal minor of H obtained from
removing the 1st and 2nd column/row from H . We
observe that ∆1,2;1,2 = 0.

Fourth, we replace (42) and (43) into H and we solve the
condition ∆1 = 0 for a. This leads to

a = 1
ω (−β + 2cω − fω + βm+ 2ω) . (44)

We substitute this expression into H and solve ∆3 = 0 for b,
yielding

b = 1
2 ((2β + 1)(m− 1) + ω) . (45)

2Note that the standard formulation of convex optimization problems, and
existing solvers, does not allow us to enforce P � 0. This is why we enforce
P � 0 and later check if P � 0.



Again, we substitute this expression in H and solve ∆4 = 0
for c, obtaining

c = 1
z (x±√y) , (46)

where

x = −2β(m− 1)ω((β + 1)(m− 1)− f)

− (2β + 1)(m− 1)ω2 + ω3, (47)

y = ω(−4β2(m− 1)2(ω − 2)− 4β(m− 1)ω(m+ ω − 3)

+ ω(−m+ ω + 1)2)(βf(m− 1) + ω2), (48)
z = 2β(m− 1)ω. (49)

We substitute the expression for c with + sign in H and solve
∆1,2;1,2 = 0 for f . This leads to

f = − ω2

β(m− 1)
. (50)

Finally, we eliminate f , d and c from equations (42), (44)
and (46). This leads to (12)–(17), observing that m = s = κ−1

when L = 1. Note that (11) can be obtained from (12)–(17)
by forcing H � 0 (see the proof of Theorem 3).

V. NUMERICAL RESULTS AND DISCUSSION

We first note that our optimal choice for β in (25) is
numerically very close, but not equal, to Nestervo’s choice
in (2); see Figure 3 (left). Our convergence rate for NAM
is almost indistinguishable to τLG in Figure 1, and it is
indistinguishable from the curve obtained by running the
Matlab code of [7] for the plot of τLG with our optimal choice
of α and β. However, plotting τLG for the choice in (7) gives a
numerical rate that is better than the one derived in this paper;
see Figure 3 (right). This shows that we have not extracted
the best possible convergence rate for NAM from the IQC
framework. Indeed, we assumed that ρ = τ and α = 1/L
which might be suboptimal. We did so because we were unable
to find an ansatz without restricting α or ρ. There are too many
free variables to perform closed form calculations, e.g. could
not solve some of the resulting polynomial equations.

We know that any bound produced by the IQC-framework
must be above or equal to τLQ in Figure 3. It is an important
open question to know what is the best possible bound that
the IQC-framework can produce. Can it reach τLQ?

VI. CONCLUSION AND FUTURE WORK

We have derived a new, improved, and explicit convergence
rate of Nesterov’s accelerated method for strongly convex
functions. Our numerical experiments using the IQC frame-
work [7] show that our results can be further improved. Future
work should include deriving better and explicit convergence
rates using the IQC framework, and demonstrating that these
cannot be improved. It would also be important to know if
IQC allows us to prove the best possible upper bound on
the convergence rate of Nesterov’s method. To do so, one
would have to produce a family of “bad” functions for which
the convergence rate of Nesterov’s method matches the rate
obtained from IQC.

100 101 102 103
0

0.2

0.4

0.6

0.8

1

κ

β = eq. (2)
β = eq. (25)

100 101 102 103
0

0.2

0.4

0.6

0.8

1

κ

τNG
τLQ
τ = eq. (26)
τLG with
α, β as in
in eq. (7)

Fig. 3. Left: There is a very small difference between the standard choice
for β given in (25) and our optimal choice of β in (2). Right: It is possible
to obtain better rates than the one we derived in this paper if we choose α
and β as in (7).
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