
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020 667

Massively Distributed Graph Distances
Armin Moharrer , Jasmin Gao, Shikun Wang, José Bento , and Stratis Ioannidis

Abstract—Graph distance (or similarity) scores are used in
several graph mining tasks, including anomaly detection, near-
est neighbor and similarity search, pattern recognition, transfer
learning, and clustering. Graph distances that are metrics and,
in particular, satisfy the triangle inequality, have theoretical and
empirical advantages. Well-known graph distances that are met-
rics include the chemical or the Chartrand-Kubiki-Shultz (CKS)
distances. Unfortunately, both are computationally intractable.
Recent efforts propose using convex relaxations of the chemical
and CKS distances. Though distance computation becomes a con-
vex optimization problem under these relaxations, the number of
variables is quadratic in the graph size; this makes traditional opti-
mization algorithms prohibitive even for small graphs. We propose
a distributed method for massively parallelizing this problem using
the Alternating Directions Method of Multipliers (ADMM). Our
solution uses a novel, distributed bisection algorithm for computing
a p-norm proximal operator as a building block. We demonstrate
its scalability by conducting experiments over multiple parallel
environments.

Index Terms—ADMM, distributed algorithms, graph matching,
optimization.

I. INTRODUCTION

GRAPHS are ubiquitous combinatorial objects, represent-
ing real-world phenomena from social and information

networks to technological, biological, chemical, and brain net-
works. Graph distance (or similarity) scores find applications in
varied fields, such as image processing [1], chemistry [2], [3],
and social network analysis [4], [5]. Graph distances are used
in several graph mining tasks, including anomaly detection [6],
[7], nearest neighbor and similarity search [6], [8]–[11], pattern
recognition [8], [11], transfer learning [12], and clustering [13],
to name a few. Distance scores that are metrics–and satisfy the

Manuscript received February 28, 2020; revised July 18, 2020; accepted
August 22, 2020. Date of publication September 7, 2020; date of current version
September 30, 2020. This work was supported in part by the National Science
Foundation under Grants IIS-1741197, IIS-1741129, and CCF-1750539) and
in part by the National Institutes of Health under Grant 1U01AI124302. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Paolo Di Lorenzo. (Corresponding author: Armin
Moharrer.)

Armin Moharrer is with the Department of Electrical and Computer Engi-
neering of Northeastern University, Boston, MA 02115 USA (e-mail: amohar-
rer@ece.neu.edu).

Jasmin Gao is with the Department of Operations Research and Finan-
cial Engineering of Princeton University, Princeton, NJ 08544 USA (e-mail:
jasming@princeton.edu).

Shikun Wang and José Bento are with the Department of Computer Science,
Boston College, Chestnut Hill, MA 02467 USA (e-mail: wangapb@bc.edu;
jose.bento@bc.edu).

Stratis Ioannidis is with the Department of Electrical and Computer Engi-
neering of Northeastern University, Boston, MA 02115 USA (e-mail: ioanni-
dis@ece.neu.edu).

Digital Object Identifier 10.1109/TSIPN.2020.3022003

triangle inequality property–exhibit significant computational
advantages. From a theoretical standpoint, operations such as
nearest-neighbor search [14]–[16], outlier detection [17], clus-
tering [18]–[20], and diameter computation [21] can be com-
puted or approximated efficiently over objects embedded in a
metric space. Beyond theoretical guarantees, in practice, metrics
often significantly improve performance and/or quality com-
pared to non-metrics in a variety of tasks. For example, graph
clustering algorithms are better at detecting clusters over metric
spaces (see, e.g., [13]). Metric graph distances are therefore
highly desirable.

Well-known graph distances that are metrics include the so-
called chemical [3] and the Chartrand-Kubiki-Shultz (CKS) [22]
distances. The chemical distance between two graphs GA and
GB with adjacency matricesA,B ∈ {0, 1}n×n, respectively, is
defined as:

minP∈Pn ‖AP − PB‖2, (1)

where Pn is the set of permutation matrices, and ‖ · ‖2 is
the p = 2 (a.k.a. Frobenius) norm. Intuitively, the solution to
Prob. (1) counts the number of edges present in one graph but
not the other, under a node correspondence (mapping) captured
by permutation matrix P . The CKS distance has the same for-
mulation, replacing the adjacency matrices with matrices com-
prising shortest path distances. Unfortunately, both distances are
computationally intractable [23].

To address this, Bento and Ioannidis [13] recently proposed
a convex relaxation of these distances, which attains tractability
while also naturally incorporating node features. In a nutshell,
the authors define the distance between two n-node graphs GA

and GB as the optimal value of the problem:

min
P∈Wn

‖AP − PB‖p + λ · tr (P�DA,B

)
, (2)

where Wn is the set of doubly stochastic matrices, ‖ · ‖p is
the entry-wise p-norm, DA,B ∈ Rn×n denotes dissimilarities
between the nodes of the two graphs, and λ ≥ 0 is a hyper-
parameter.

The relaxation of the chemical distance defined by Prob. (2)
has several advantages. First, it is tractable, as it involves solving
a convex optimization problem. Second, Bento and Ioannidis
show that the distance resulting from solving Prob. (2) is a metric
and, in particular, satisfies the triangle inequality. This yields the
aforementioned benefits of metrics in downstream tasks such
as, e.g., graph clustering or nearest-neighbor search. Third, it
incorporates node features via the linear trace term. This has
computational advantages (which we discuss in Section III-G),
but is also important in practice: nodes in real-life graphs often
contain such information (e.g., demographic information of

2373-776X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8374-7286
https://orcid.org/0000-0003-1835-1530
https://orcid.org/0000-0001-8355-4751
mailto:amoharrer@ece.neu.edu
mailto:jasming@princeton.edu
mailto:wangapb@bc.edu
mailto:jose.bento@bc.edu
mailto:ioannidis@ece.neu.edu

668 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

users in a social network, atom properties in a molecule, etc.).
Finally, Prob. (3) encompasses multiple p-norms and possible
distance matrices DA,B , for which both the metric property
and convexity are maintained [13]. The ability to span different
norms is also very important in practice, as the right value of p
can be data dependent (see Tables III and IV in Sec. VI-B).

Even though Prob. (2) is a convex optimization problem, the
number of variables is quadratic in the graph size n; this makes
traditional optimization methods for solving (2) prohibitive even
for small n. Nevertheless, for p = 1, the problem can be solved
in a distributed fashion via the Alternating Directions Method
of Multipliers (ADMM) [24], since its objective decomposes
into a sum of simpler objective functions. Unfortunately, it is
not clear how to efficiently distribute the solution for p > 1; this
is precisely because, for p > 1, the objective of (2) cannot be
written as a sum of distinct terms.

Our present work directly addresses this challenge: we pro-
pose a distributed algorithm solving (2) for arbitrary p ≥ 1. Our
solution combines ADMM with a distributed proximal operator
for arbitrary p-norms, which is both novel and of independent
interest. Finally, we demonstrate the applicability of our algo-
rithm via massively distributed implementations over OpenMP
and Apache Spark, which we make publicly available.1

In summary, we make the following contributions:
� We propose an ADMM-based distributed algorithm for

solving (3) for all p ≥ 1. Our solution for the case p > 1
uses a nested-ADMM (Alg. 1 and 2) in combination with a
distributed bisection algorithm (Alg. 3) as building blocks.

� We describe the algorithm’s parallel complexity in terms of
the sparsity of graphs GA, GB , and additional constraints
we introduce in the problem. In particular, we bound mes-
sage exchanges in terms of these sparsity parameters.

� We implement our algorithm in OpenMP [25] and
Spark [26]. Our publicly available implementation scales
to hundreds of CPUs. Over a 448 CPU cluster, we attain
speedups as much as 153×.

The remainder of the paper is organized as follows. We review
related work in Sec. II. We review basic definitions, convex
relaxation (2), and ADMM in Sec. III. We present our main
algorithm in Sec. IV, its computational complexity in Sec. V,
and our experiments in Sec. VI. We conclude in Sec. VII.

II. RELATED WORK

Graph Distances: A distance between two graphs can be
defined naturally when they are labeled, i.e., the correspondence
between their nodes is known (see, e.g., [5], [27], [28]). Two clas-
sic examples are the edit distance [29], [30] and the maximum
common subgraph distance [31], [32].

Some recent works focus on distances for labeled graphs that
are easy to compute (e.g in linear or quadratic time) [5], [27],
[28] without maintaining the properties of a metric. We study
the (harder) unlabeled setting, in which the node correspondence
between graphs is unknown. Examples of distances in this set-
ting include the chemical [3] and the Chartrand-Kubiki-Shultz

1[Online]. Available: https://github.com/neu-spiral/GraphMatching

(CKS) [22] distances, while the edit and the maximum common
subgraph distances can also be extended to the unlabeled setting.
All four [31]–[34] are metrics and hard to compute, while
existing heuristics (e.g., [35], [36]) do not satisfy the triangle
inequality property.

A simple approach to induce a metric over unlabeled graphs
is to embed them in a common metric space and then measure
the distance of these embeddings. Riesen et al. [37], [38] embed
graphs into real vectors by computing their edit distances to a
set of prototype graphs. The same embedding is also used to
compute a median of graphs [39]. Other works [40]–[42] map
graphs to spaces determined by their spectral decomposition.

Such approaches are not as discriminative as the metrics
considered here [13], because embeddings only summarize the
graph structure.

Metrics: Metrics naturally arise in data mining tasks, includ-
ing clustering [43], [44], nearest neighbour search [14]–[16], and
outlier detection [17]. Some of these tasks become tractable,
or admit formal guarantees, precisely when performed over a
metric space. For example, finding the nearest neighbor [14]–
[16] or the diameter of a dataset [21] become polylogarithimic
under metric assumptions; similarly, approximation algorithms
for clustering (which is NP-hard) rely on metric assumptions,
whose absence leads to a deterioration of known bounds [18].
Our focus on metrics is motivated by these considerations.

Graph Matching: Graph matching has a long history in ma-
chine learning and pattern recognition [1], [45], [46]. Given
two graphs, the graph matching problem amounts to finding
a node-to-node correspondence (or mapping) that preserves
edge relationships across two graphs. This relates to distance
computation, as the optimal mapping can be cast as the solution
of a minimum distance computation problem.

For example, graph matching is commonly formulated as a
quadratic assignment problem [1], [47]–[49], which is generally
NP-hard [45]. There are many works solving this problem ap-
proximately (see [1] for a thorough review). NetAlignMR [47]
proposes and solves an integer linear programming relaxation.
For the same linear relaxation, NetAlignBP [50] uses a more
efficient belief propagation (BP) method. Natalie [49] proposes
another integer linear programming relaxation. A different ap-
proach via a graduated assignment was proposed by Gold and
Rangarajan [45]. IsoRank [51] finds a score matrix via a spectral
algorithm. Closest to us, Lyzinski et al. [52] propose both a con-
vex and non-convex relaxation over the set of doubly stochastic
matrices: their convex relaxation is Eq. (2) with λ = 0 andp = 2,
while the objective in the non-convex relaxation is the quadratic
function tr((AP)�PB). Schellewald and Schnörr [53] pro-
pose a semi-definite programming relaxation. Though highly
efficient, these approaches generally do not yield distances that
are metrics (see [13]).

Proximal Operators: We use a bisection algorithm due to
Liu and Ye [54] to compute the proximal operator of p-norms.
The original presentation of the algorithm was serial; we show
(and exploit) in our work the fact that the algorithm can be
implemented in parallel via map-reduce operations. Beyond this,
we also provide a convergence guarantee (Thm. IV.3), which
was absent from their work. Sra [55] extends Liu and Ye’s

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

https://github.com/neu-spiral/GraphMatching

MOHARRER et al.: MASSIVELY DISTRIBUTED GRAPH DISTANCES 669

TABLE I
SUMMARY OF NOTATION

approach, proposing a bisection method for finding the proximal
operators of mixed �1,p norms. The same author also provides a
proximal operator algorithm for mixed �p,q norms in a follow-up
work [56]. Proximal operators can be seen as generalizations of
projection operators [57]; in the case of norms, they are coupled
to projections via Moreau’s decomposition [58]. Exploiting the
latter, some works solve the problem in the dual domain via
projections on the unit ball of the dual norm [57] or via gradient
methods [59]. These methods are not readily parallelizable.

ADMM: The Alternating Direction Method of Multipliers
(ADMM) [60] is a convex optimization algorithm. Consensus
ADMM [24], which we use here, is a classic approach to
distribute optimization problems; its applications are numer-
ous [48], [61]–[66]. For strongly convex problems, its optimally-
tuned convergence rate is as fast as that of the fastest first-order
method [67].

Though we focus on the simplest setting, extensions include
asynchronous [64] and stochastic [66] versions, adaptive ways
of updating parameter ρ [65], and faster variants that solve
subproblems inexactly [68]. Applying such optimizations to our
work is an interesting open question.

III. TECHNICAL PRELIMINARY

A. Basic Definitions and Notations

Graphs: We represent a graph G(V, E) with node set V =
[n] ≡ {1, . . . , n} and edge set E ⊆ [n]× [n] by its adjacency
matrix, i.e.,A = [aij]i,j∈[n] ∈ {0, 1}n×n s.t. aij = 1 iff (i, j) ∈
E .

A graph is bipartite if its node set can be partitioned into
two disjoint sets VL and VR such that no edges exist within the
same partition, i.e., E ⊆ VL × VR. We denote bipartite graphs
by G(VL,VR, E).

Matrix Norms and Projections: Given a matrix A =
[aij]i,j∈[n] ∈ Rn×n and p ∈ R+, where p ≥ 1, its entry-wise
p-norm is ‖A‖p = (

∑n
i=1

∑n
j=1 |aij |p)1/p. We use ‖A‖0 to

indicate the number of non-zero elements (a.k.a. the size of the
support) ofA, i.e., ‖A‖0 ≡ |{(i, j) : aij �= 0}| = | supp(A)|.

Given a vectorx ∈ Rn and an ordered set S ⊆ [n], we denote
the projection ofx on a subsetS of its coordinates byxS ∈ R|S|.

Similarly, given a matrix A = [aij]i,j∈[n] ∈ Rn×n and a set
S ⊆ [n]× [n], we define AS ∈ R|S| to be the projection of A

on its coordinates in S; that is,AS is the |S|-dimensional vector
comprising the elements aij , (i, j) ∈ S. We denote by Pn =
{P ∈ {0, 1}n×n : P1 = 1,P�1 = 1} the set of permutation
matrices and by Wn = {P ∈ [0, 1]n×n : P1 = 1,P�1 = 1}
the set of doubly-stochastic matrices (i.e., the Birkhoff polytope).

B. Chemical Distance

Let A,B ∈ {0, 1}n×n be the adjacency matrices of two
graphs GA(V, EA) and GB(V, EB). Graphs GA and GB are
isomorphic iff there exists P ∈ Pn s.t. P�AP = B or, equiv-
alently, AP = PB. The chemical distance extends the latter
relationship to capture graph distances. The chemical distance
betweenGA andGB is defined via Prob. (1). Intuitively, Prob. (1)
counts the number of edges present in one graph but not the other,
under a node correspondence (mapping) captured by permuta-
tion matrix P . Unfortunately, there is no poly-time algorithm
for solving (1) [23].

C. Convex Relaxation

Bento and Ioannidis [13] introduce a tractable family of
distances that generalizes the chemical distance. The family
can be expressed via convex optimization problems, that can
be solved via, e.g., barrier methods; nevertheless, the number of
variables is quadratic in the graph size n, which motivates our
exploration of a distributed implementation.

Formally, given the n-node graphs GA(V, EA) and
GB(V, EB), where V = [n], Bento and Ioannidis suggest com-
puting the distance between graphs as the minimum of the
following problem:

Minimize ‖AP − PB‖p + λ · tr (P�DA,B

)
, (3a)

subj. to: P ∈ Wn, pij = 0 for all (i, j) /∈ Q, (3b)

where Q ⊆ [n]× [n] is a set of pairs constraining the support
of P , DA,B = [dij](i,j)∈[n]×[n] is a matrix, s.t., dij measures
the dissimilarity between some features of the nodes i ∈ V and
j ∈ V, and λ ≥ 0 is a tuning parameter.

Intuitively, Prob. (3) finds a stochastic mapping between
nodes that minimizes edge discrepancy, while also taking into
account node feature distances as well as hard constraints. More
specifically, the doubly-stochastic matrix P can be interpreted
as a stochastic mapping, where pij ∈ [0, 1] shows the probability
that node i inGA is mapped to node j inGB . Prob. (3) thus seeks
a stochastic mappingP that (a) minimizes the edge discrepancy
between adjacency matrices, captured by term ‖AP − PB‖,
(b) penalizes mappings between nodes i inGA and node j inGB

that have distinct features, captured by linear term tr(P�DA,B),
and (c) further restricts mappings to have support in Q.

We discuss examples illustrating different feature distance
matricesDA,B and constraintsQ below, in Sec. III-D. In short,
node features can be incorporated in a soft manner, through
the linear term in objective (3a), or as hard constraints in Q
(requiring, e.g., nodes with different categorical features to never
be mapped to each other).

Computing distances via Prob. (3) has several important ad-
vantages. First, under mild conditions on DA,B and Q, the

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

670 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

distance computed by Prob. (3) is a metric; this is proved by
Bento and Ioannidis [13]. Second, for arbitrary p-norms, (3) is
a convex optimization problem. As a result, a solution can be
computed using standard methods [69]. Third, the linear term
tr(P�DA,B) and the constraintsQ allow us to capture auxiliary
information that often exists in practice, such as node features
or labels. Beyond this expressive power, both have significant
computational advantages, as we show in Sec. VI.

D. Constraints and Node Features

In practice, graph nodes are often endowed with features or
attributes that we can leverage in graph distance computations.
Here, we explain how node features can be incorporated in
Prob. (3) via either the linear term or the constraint set Q.

Node Features in Rd. Node attributes can be represented
as, e.g, k-dimensional feature vectors in Rd. Having access to
such features, we can compute the elements of the dissimilarity
matrix DA,B = [dij]i,j∈[n] by taking, e.g., the �2 (or other
vector) norm of the difference between these vectors: that is
dij = ‖xi − xj‖2, where xi, xj ∈ Rk are the k-dimensional
feature vectors for i in GA and j in GB .

Node features can be exogenous, e.g., the demographic at-
tributes of a user in a social network, the atomic number of an
atom in a molecule, etc. Alternatively, features can be endoge-
nous, i.e., computed directly from the adjacency matrix: these
include, e.g., a node’s degree, it’s centrality, its pagerank [70],
node2vec representation [71], [72], or some other vector com-
puted via graph signal processing [71], [73]. Exogenous features
are often available in practical settings, while endogenous fea-
tures can have computational advantages: we observe this in
Sec. VI, where adding a linear term often accelerates conver-
gence but also produces higher quality solutions.

Categorical Features (Colors/Labels). Rather than including
categorical node features as soft constraints, via the trace penalty,
such features can also be used to produce hard constraints,
captured by Q. Suppose that we are given a categorical node
feature, referred to as a node’s color. We can construct the
constraint set Q by including only pairs (i, j) s.t. the nodes i
and j across the two graphs have the same color.

Colors can again be either exogenous or endoge-
nous/structural. As examples of exogenous colors, if the graph
represents an organic molecule, the color can be the node’s
atomic number; then, constraintQ requires that identical atoms
are mapped to each other across the two graphs. If the graph
represents a social network, colors can correspond to different
demographic attributes, (e.g., gender, age group, etc.) Struc-
tural/endogenous colors, on the other hand, can be categorical
variables capturing the local neighborhood structure around a
node. These can be, e.g., node degrees, the number of triangles
that pass through a node, or some other discrete statistic gener-
ated from a node’s k-hop neighborhood. One such statistic is the
output of the so-called Weisfeiler-Lehman (WL) algorithm [74],
executed after k iterations.

Using categorical variables of the above nature to con-
struct constraint set Q has several advantages. First, Bento and
Ioannidis show that Prob. (3) remains a metric, even when

incorporating such constraints. Most importantly, introducing
constraints can significantly decrease the number of optimiza-
tion variables and, hence, the computational complexity of
Prob. (3). As we discuss in Section V, the sparsity of Q also
dictates the communication complexity our parallel algorithm
for solving Prob. (3).

E. Consensus ADMM

Consensus ADMM is an iterative optimization algorithm
well-suited for solving convex optimization problems in a dis-
tributed fashion. Problems amenable to a distributed solution
via consensus ADMM have a specific form: their objective can
be written as a sum of functions, each depending only on a few
variables. Formally, consider the optimization problem:

Minimize F (x) =
∑N

i=1 Fi(xSi), (4)

where x ∈ Rn and each term Fi : R|Si| → R is convex and
depends on a subset Si ⊆ [n] of the coordinates of x. Prob.
(4) can be re-written with N local variables xi ∈ R|Si|, i ∈ [N]
and a single consensus variable z ∈ Rn as:

Minimize
∑N

i=1 Fi(xi) (5a)

subj. to: xi = zSi i = 1, . . . , N, (5b)

where zSi is the projection of z on the subset Si.
The k-th iteration of consensus ADMM for (5) is as follows:

xk+1
i = arg min

xi

Fi(xi)+
ρ

2
‖xi−zkSi+yk

i ‖22, ∀i ∈ [N], (6a)

zk+1
j =

∑
i:j∈Si

(
(xk+1

i)�i(j) + (yk
i)�i(j)

)
|{i ∈ [N] : j ∈ Si}| , ∀j ∈ [n], (6b)

yk+1
i = yki + (xk+1

i − zk+1
Si), ∀i ∈ [N], (6c)

where ρ > 0 is a tuning parameter and yi ∈ R|Si|, i ∈ [n],
are dual variables corresponding to the constraints (5b). and
�i : Si → {1, . . . , |Si|} maps coordinates in Si to their “local”
representations in xi.

Incorporating Constraints: We can include constraints in
ADMM by adding them to the objective (5a) via their charac-
teristic functions: a constraint x ∈ D, where D is a convex set,
is added to (5a) as a term χD(x), where χD is the characteristic
function of D (0 if x ∈ D, +∞ o.w.). Then, the corresponding
step (6a) becomes a Euclidean projection onto convex set D.

A Parallel Implementation: All the above steps in (6) can be
parallelized. To see this, suppose that we haveN + nprocessors,
as illustrated in Fig. 1. The N processors in Vobj ≡ [N] are
responsible for solving problems (6a) and performing the dual
variable adaptation (6c), in parallel. To do so, they store functions
Fi as well as “local” primal and dual variables xi,yi, i ∈ [N].
The remaining n processors Vvar = [n] store the coefficients zj ,
j ∈ [n], of the consensus variable z and perform the averaging
(6b). In each iteration, the processors in Vvar send the consensus
variables to the corresponding processors in Vobj. Subsequently,
the latter perform adaptations (6c) and (6a), and then send their
new local variables to the processors in Vvar for averaging.

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

MOHARRER et al.: MASSIVELY DISTRIBUTED GRAPH DISTANCES 671

Fig. 1. A bipartite graph G(Vobj,Vvar, EG) showing the dependencies of the
functions Fi on the coordinates of the global consensus variable z, as well as
communication pattern during parallelism. Each node in the graph corresponds
a processor. Processors in Vobj store Fi, xi, yi, i ∈ [N], and perform steps (6a)
and (6c), while processors in Vvar store zi, i ∈ [n], and perform (6b).

The communication complexity of each step (6), as well as
the dependencies between steps, are determined by the bipartite
graph G(Vobj,Vvar, EG) shown in Fig. 1: each processor i ∈ [N]
on the left needs to receive the |Si| consensus variables zj , j ∈ Si
to perform (6a) and (6c), while processors j ∈ [n] on the right
need to collect |{i ∈ [N] : j ∈ Si}| local variables (xi)�i(j). As
a result, the number of messages exchanged is proportional to
the number of edges in G, namely,

∑
i∈[N] |Si|.

F. Map-Reduce

Given an N -dimensional vector x ∈ XN , for some domain
X , amap operation applies a function to every elementx. That is,
given f : X → X ′, the operation x′ = x.map(f) creates a vec-
torx′ in which every elementxi, i ∈ [N], is replaced with f(xi).
A reduce operation aggregation overx; a canonical example is,
e.g., computing the sum of x’s coordinates. Formally, let ⊕ be
a commutative, associative, binary operator ⊕ : X × X → X .
Then,x.reduce(⊕) iteratively applies the binary operator⊕ on
x, returning

⊕
i∈[N] xi = x1 ⊕ . . .⊕ xN .

Both map and reduce operations are “embarrassingly paral-
lel”. Presuming that x is distributed over N processors, a map

can be executed without any communication among processors,
other than the one required to broadcast the code that executes f .
This broadcast can be done in log2 N rounds via the transmission
of N − 1 messages, when the N processors are connected in a
hypercube network. Again, under a hypercube network, reduce
operations have the same parallel complexity (can be computed
in log2 N rounds via N − 1 messages) [75].

G. Importance of p-Norms and Linear Term

Given the size of both the input graphs, our goal is to produce
a distributed algorithm for solving Prob. (3). As we discuss in
Sec. IV, the main challenge arises from presence of the p-norm
in combination with the linear term. One possible solution is to
limit objective (3a) to the case p = 1. This leads to an objective
paralellizable via consensus ADMM. This, on the other hand, is
unsatisfactory, as the ideal norm may depend on the underlying
graphs; we elaborate on this in Sec. VI, where we see how inher-
ent noise can effect our norm choice (see p-norms in Sec. VI-B).
Another solution is to modify objective (3a), replacing ‖ · ‖p
with ‖ · ‖pp. This has two significant drawbacks. First, under this
modification, the distance is no longer a metric; in particular,

it fails to satisfy the triangle inequality, which is a significant
disadvantage for downstream applications, as mentioned earlier.
Second, from an optimization standpoint, it is important to keep
the two terms in objective (3a) balanced; this is harder in this
case as ‖ · ‖pp is not absolutely homogeneous (in contrast to both
the trace and norms).

A final alternative is to remove the linear term altogether. In
this case, minimizing ‖ · ‖p is equivalent to minimizing ‖ · ‖pp.
This annuls any benefits of incorporating features, both in terms
of modeling, e.g., exogenous node attributes, but also in terms
of efficiency: as our experiments demonstrate (see, e.g., Fig. 2 in
Sec. VI-B), including the linear term can significantly accelerate
convergence.

IV. MAIN RESULTS

We now turn our attention to solving (3) via ADMM. We
incorporate constraints (3b) in (3a), yielding objective:

‖AP−PB‖p+λ tr
(
P�DA,B

)
+ χR(P) + χC(P), (7)

where the sets

R = {P ∈ [0, 1]n×n : P1 = 1, pij = 0 ∀(i, j) /∈ Q}, and

C = {P ∈ [0, 1]n×n : P�1 = 1, pij = 0 ∀(i, j) /∈ Q},
correspond to the (doubly stochastic) constraints on the rows
and columns, respectively. With the exception of the first term,
all remaining terms in (7) can be written as sums. Indeed, the
following lemma holds:

Lemma IV.1: There exists a set I ⊆ [n]× [n] as well as sets
Sij ⊆ [n]× [n], Si ⊆ [n]× [n], Sj ⊆ [n]× [n], for i, j ∈ [n],
such that the terms in (7) can be written as:

‖AP − PB‖p =
(∑

(i,j)∈I |fij(P Sij)|p
) 1

p

, (8a)

tr(P�DA,B) =
∑

(i,j)∈Q pijdij , (8b)

χR(P) =
∑

i∈[n] χR(i)(P Si), (8c)

χC(P) =
∑

j∈[n] χC(j)(P Sj), (8d)

where fij(·), (i, j) ∈ I, are affine functions and

R(i) = {p ∈ [0, 1]|Si||1�p = 1}, (9)

C(j) = {p ∈ [0, 1]|Sj ||1�p = 1}, (10)

for i ∈ [n], j ∈ [n], are the |Si|-dimensional and |Sj |-
dimensional simplices, respectively.

The proof can be found in Appendix A. Under this character-
ization, Prob. 3 becomes:

min
P∈Wn

[⎛⎝ ∑
(i,j)∈I

|fij(P Sij)|p
⎞
⎠

1
p

+
∑

(i,j)∈Q
pijdij (11a)

+
∑
i∈[n]

χR(i)(P Si) +
∑
j∈[n]

χC(j)(P Sj)
]
. (11b)

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

672 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

Fig. 2. Effects of adding the linear term on the convergence. The plot shows the traces for the objective and the primal and dual residual throughout ADMM
iterations (Alg. 1 for p = 2) for different λ. We observe that giving a larger coefficient to the linear term makes the convergence considerably faster.

The first term in (11a) (i.e., (8a)) cannot be written as a sum of
functions, except when p = 1. Hence, it is not immediately obvi-
ous how to parallelize ADMM when p �= 1. For p = 1, however,
the entire objective can be written as a sum of constituent “local”
objectives; hence, in this case, algorithm (6) can be directly
parallelized. In all other cases however, we need a specialized
implementation to parallelize the optimization of the term (8a).

The application of ADMM (6) to all the terms in Prob. (11)
is summarized Alg. 1; primal-dual variable pairs:

(pij ,yij)(i,j)∈I , (qij , ξij)(i,j)∈Q, (ri,ψi)i∈[n], (cj ,φj)j∈[n],

correspond to terms (8a)-(8d), respectively. We note that Alg. 1
requires special care to handle term (8a) in the case p > 1; we
describe how to address this case in the next two subsections.

A. Distributing Consensus ADMM for p > 1.

Applying consensus ADMM directly on (7) stumbles on the
fact that the first term in the objective cannot be written as a
sum; although the “local” optimization step (6a) of ADMM can
be parallelized for all other terms, (6a) for this term (i.e., Line 12
of Alg. 1) takes the following form:

min
pij ,i,j∈[n]

⎛
⎝ ∑

(i,j)∈I
|fij(pij)|p

⎞
⎠

1
p

+
ρ

2

∑
(i,j)∈I

‖pij−Zk
Sij+y

k
ij‖22

(12)

where pij ∈ R|Sij | is the local vector containing coefficients
corresponding to ZSij and ykij ∈ R|Sij | is the dual variable
corresponding to pij = ZSij . We rewrite this as:

Minimize: ‖u‖p + ρ

2

∑
(i,j)∈I

‖pij − z̄ij‖22 (13a)

subj. to: uij = fij(pij), for (i, j) ∈ I, (13b)

where u = [uij](i,j)∈I ∈ R|I| is a vector of auxiliary variables
corresponding to the the affine terms fij(pij), and z̄ij ≡ Zk

Sij −
ykij ∈ R|Sij |, for (i, j) ∈ I.

As fij(·) are affine functions, so are the set of constraints.
Then, we can also solve (13) w.r.t. u and pij via ADMM,

Algorithm 1: Outer ADMM.

1: Input: A,B ∈ {0, 1}n×n, D = DA,B ∈ Rn×n
+ ,

Q ⊆ [n]× [n]
2: Local primal & dual variables at processors in

Vobj: (pij ,yij)(i,j)∈I , (qij , ξij)(i,j)∈Q, (ri,ψi)i∈[n],
(cj ,φj)j∈[n]

3: Consensus variables at processors in Vvar:
Z = [zij](i,j)∈Q

4: Initialize consensus variables and local/dual variables
to 0;

5: Send copies of consensus variables zij to processors in
Vobj

6: while not converged do
7: if p = 1 then
8: for all (i, j) ∈ I in parallel do
9: pij ←

arg min
pij∈R|Sij |

(|fij(pij)|+ ρ
2‖pij −ZSij + yij‖22)

10: end for
11: else if p > 1 then
12: Compute pij , (i, j) ∈ I, by solving (12) via Alg. 2
13: end if
14: for all (i, j) ∈ Q in parallel do
15: qij ←

arg minqij∈R(λ · qijdij + (qij − zij + ξij)
2)

16: end for
17: for all rows i ∈ [n] and all columns j ∈ [n] in

parallel do
18: ri ← arg minri∈R|Si |(χR(i)(ri) +

ρ
2‖ri −ZSi +

ψij‖22)
19: cj ← arg min

cj∈R|Sj |(χC(j)(cj) +
ρ
2‖cj −ZSj +

φij‖22)
20: end for
21: Send local variables to processors in Vvar
22: Update zij , (i, j) ∈ Q, via averaging (6b)
23: Send copies of consensus variables zij to processors

in Vobj
24: Update all dual variables via (6c)
25: end while
26: return consensus variables Z

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

MOHARRER et al.: MASSIVELY DISTRIBUTED GRAPH DISTANCES 673

Algorithm 2: Inner ADMM.

1: Input: {z̄ij : (i, j) ∈ I}
2: Local primal & dual variables at |I| processors in

Vobj:
(pij , uij , vij)(i,j)∈I ,
3: Initialize pij to their previous values at the outer

iteration, and dual variables vij to 0
4: while not converged do
5: Compute u by solving (14a) via Alg. 3
6: for all (i, j) ∈ I in parallel do

7: pij ← arg min
pij∈R|Sij |

(
ρ

2
‖pij−z̄ij‖22 +

ρ′

2
(uij−

fij(pij) + vij)
2)

8: Update dual variable vij via (14c).
9: end for

10: end while
11: return consensus variables Z

where the steps are

uk = arg min
u∈R|I|

‖u‖p+ ρ′

2

∑
(i,j)∈I

(uij−fij(pkij)+vkij)
2 (14a)

pk+1
ij =arg min

pij∈R|Sij |

ρ

2
‖pij−z̄ij‖22+

ρ′

2
(uk+1

ij −fij(pij) + vkij)
2

(14b)

vk+1
ij = vkij + (uk+1

ij − fij(p
k+1
ij)) (i, j) ∈ I, (14c)

where ρ′ > 0 is a tuning parameter and vij ∈ R, i, j ∈ [n], are
the dual variables corresponding to linear constraints (13b).
Step (14b) comprises |I| quadratic problems, while (14c) is a
simple adaptation; both can be executed in parallel across the
|I| processors that store pij , yij , and which have receivedZSij
from the (outer) consensus ADMM step (line 23 of Alg. 1). In
contrast, it is not apriori clear how to parallelize step (14a); as
in the case of the outer ADMM, this is due to the ‖ · ‖p term: we
present our algorithm solving (14a) in parallel (Alg. 3) next.

The pseudocode for this inner ADMM step is presented in
Alg. 2. The code is executed in parallel across the |I| machines
described above. Note that steps (14b) and (14c) are executed in
parallel but require no communication; hence, all communica-
tion in Alg. 2 is the one needed by Alg. 3 to compute u; as we
discuss in the next section, this amounts to a logarithmic number
of map and reduce operations.

B. Parallel p-Norm Proximal Operator

For p > 1, motivated by (14a), we consider the problem:

min
u∈Rd

‖u‖p + ρ

2
‖u−w‖22, (15)

for a givenw ∈ Rd where d ≡ |I|. In doing so, we assume that,
as is the case in (14a), the elements of vector w are distributed
across dmachines, that need to collectively solve (15) in parallel.
Following Liu and Ye [54], we define first a non-negative vector

Algorithm 3: p-norm Prox. Operator.

1: Input: w ∈ Rd, p ≥ 1, ρ > 0, ε > 0
2: Set ŵi ← ρ|wi| for i = 1, . . . , d.
3: if ‖ŵ‖q ≤ 1 then
4: returnu∗ ← 0
5: end if
6: Set u← 0, sL ← 0, and sU ← ‖ŵ‖p
7: for k = 1, . . . , log2

⌈
1
ε

⌉
do

8: Set s← (sL + sU)/2

9: Compute ui ← ŵig(s · (ŵi)
2−p
p−1) for all

i ∈ supp(ŵ);
10: Compute ‖u‖p;
11: if ‖u‖p < s then
12: Set sU ← s
13: else
14: Set sL ← s
15: end if
16: end for
17: Set u∗i ← signwi

ρ ui for i = 1, . . . , d.
18: return u∗

ŵ via

ŵi = ρ|wi|. (16)

We then consider the following simpler problem:

min
u∈Rd

+

‖u‖p + 1

2
‖u− ŵ‖22. (17)

Note that this differs from Prob. (15) in that (a) ρ = 1 and (b)
vectorw ∈ Rd replaced with non-negative vectorw ∈ Rd

+, and
(c) optimization happens overu ∈ Rd

+. Nevertheless, Prob. (15)
is equivalent to Prob. (17) (see Lemma B.4 below). In particular,
if û is the optimal solution of (17), the optimal solution to (15)
is given by u∗ such that:

u∗i =
sign(wi)

ρ
ûi, for i ∈ [d]. (18)

We therefore turn our attention to solving Prob. (17). To do so,
we define first an auxiliary function. Given α ∈ (0,∞), define
the function α �→ g(α), as the unique solution of the following
equation over x ≥ 0:

(x/α)p−1 + x− 1 = 0, (19)

We extend g to [0,∞) by setting g(0) ≡ 0 for α = 0, by def-
inition. Function g is hard to express in closed form,2 but it is
well-defined. This is because, forα > 0, the l.h.s is−1 forx = 0
and positive for x = min(1, α). Hence, by the intermediate
value theorem, Eq. (19) always has a positive solution between 0
and min(1, a); uniqueness is implied by the strict monotonicity
of the l.h.s. of Eq. (19) in x. Hence, g : R+ → [0, 1] is indeed
well-defined.

2Though its inverse g−1 is easy to describe explicitly; see Eq. (31).

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

674 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

Having defined g, given a vector ŵ ∈ Rd
+, we define functions

gi : R+ → R+, i ∈ [d] as:

gi(s) = ŵi · g
(
s · (ŵi)

2−p
p−1
)
, (20)

as well as function h : R+ → R as:

h(s) =
(∑d

i=1 gi(s)
p
) 1

p − s. (21)

The optimal solution to Prob. (17) can be determined w.r.t. a
root of equation h(s) = 0. In particular, the following holds:

Theorem IV.2 (Liu and Ye [54]): Given ŵ ∈ Rd
+ and p > 1,

let û ∈ Rd
+ be an optimal solution to Prob. (17). Let also q ∈ R+

be such that 1
p + 1

q = 1. Then, û is unique, and:
� If ‖ŵ‖q ≤ 1, then û = 0.
� If ‖ŵ‖q > 1, then

ûi = gi(s
∗), for i ∈ [d], (22)

where s∗ is the unique value in (0, ‖ŵ‖p] s.t. h(s∗) = 0.
Intuitively, the above theorem suggests that there are two cases

we need to consider. The first, “easy” case, is when ‖ŵ‖q ≤ 1:
then, the optimal solution is 0. If ‖ŵ‖q > 1, i.e., on the “hard
case,” solving Prob. (17) is tantamount to finding the unique,
scalar root s∗ ∈ (0, ‖ŵ‖p] of the equation:

h(s) = 0, where h is given by Eq. (21).

This is because, once this root s∗ is computed, the optimal
solution û ∈ Rd can be constructed via Eq. (22), by computing
gi(s

∗) for every i ∈ [d].
Crucially, a root of h can be found with a simple bisection

algorithm, the steps of which can be easily parallelized via map
and reduce operations. This bisection algorithm, summarized in
Alg. 3, proceeds as follows: given ŵ ∈ Rd

+, we test whether the
condition ‖ŵ‖q ≤ 1 holds; if so, we return u∗ = 0. Otherwise,
we find s∗ via bisecting [0, ‖ŵ‖p]. That is, at each iteration, we
maintain an upper (sU) and lower (sL) bound on s∗, initialized at
the above values. By construction, function h alternates signs on
each of the two bounds: i.e., h(sL)h(sU) ≤ 0; at each iteration,
we (a) compute the average s = 0.5(sL + sU), between the two
bounds, (b) find the sign of h on this average, and then (c) update
the bounds accordingly. As signs alternate, by the intermediate
value theorem, s∗ is guaranteed to be in [sL, sU] at all times.

Another way to get some intuition behind how Alg. 3 behaves
in the “hard” case is the following. At any iteration, s is compared
to p-norm of the current solution u ∈ Rd. If ‖u‖ < s, then s is
too big, and we search at a smaller value; if the opposite is
true, we search for a larger value, always adjusting the bounds
accordingly. At all times, we set u by following the trajectory
in Rd determined by functions gi, linking the current s to the u.

Since Alg. 3 ensures that the root s∗ is be within [sL, sU] at
all times; Liu and Ye show that the algorithm thus approximate
s∗ within ε accuracy by performing log2 ε

−1 bisections [54]. We
show this implies the following convergence guarantee:

Theorem IV.3: Alg. 3 outputs a solution u ∈ Rd such that
‖u− û‖p ≤ p−1

√‖ŵ‖q · ‖ŵ‖p · ε.
Hence, Alg. 3 can approximate the optimal solution within

arbitrary accuracy within a logarithmic number of iterations.

Finally, it is easy to see that the computations involved in Alg. 3
can be parallelized across the d processors that store the values
wi, i ∈ [d]. Given an s, the computation of values ûi can happen
in parallel via an application of Eq. (22) at each ŵi (Line 9).
Moreover, the p-norm of u (Line 10), needed to compute the
sign of h(s), can be computed via a reduce; the updated value of
s can subsequently be broadcast to processors, to initiate the next
iteration. We further elaborate on parallelism in Section V, where
we discuss the computation and communication complexity
of the entire process, combining Algorithms 1,2, and 3. For
completeness, we provide proofs of Theorems IV.2 and IV.3
in Appendix B.

V. PARALLEL COMPLEXITY

ADMM is a first-order method, and its convergence is O(1k)
[76]. All dual variable adaptations are linear in their input sizes
and so are averaging operations involved in consensus variable
computations; both are parallelized. All primal variable adap-
tations are convex optimization problems with self-concordant
objectives, either unconstrained or linearly constrained; as such,
they can generically be solved within accuracy ε by interior point
methods in steps that are polylogarithmic in 1/ε, with each step
being polynomial in the input size. In particular:
� When p = 1, updating pij , (i, j) ∈ I involves solving a

generalized lasso regression problem (Line 9 of Alg. 1),
which can be solved using the algorithm proposed by Tib-
shirani [77]. Alternatively, the inner ADMM Eq. (14) can
again be applied; Eq. (14a) then amounts to |I| soft-max
operations (each at O(n) cost for computing fij). All all
trivially parallelizable via a map.

� The row and column updates (Lines 18 and 19 of Alg. 1)
amount to orthogonal projections on the simplex; we use
the strongly polynomial algorithm by Michelot [78], which
has complexity O(n log n). There are a total of n (one per
row/column) such operations, all of which can again be
parallelized via a map applying Michelot’s algorithm.

� The optimization of the trace term involves |Q| one-
dimensional quadratic problems (Line 15 of Alg. 1), which
have a closed form and can be computed in O(1) time.
Again, these operations can be parallelized via a map; in
practice, however, we avoid these computations altogether
by “completing the squares” and incorporating these terms
along with the column and row projections, as adjustments
to the vectors projected to the simplices.

� The update of pij in Alg. 2 is an unconstrainted con-
vex quadratic program that has a closed form solution.
Each of these |I| such operations can be computed in
O(|Sij |) = O(n) time; again, they can be parallelized over
|I| processors via a map.

� The norm computations in Alg. 3 (Lines 3 and 10) depend
on vector size |I| and can be parallelized via a reduce.
Updates in Line 9 areO(1) for each of the |I| coordinates;3

this is parallelizable over |I| processors, via a map.

3Function g can be computed efficiently at an arbitrary accuracy as it is strictly
monotone and g−1 has a closed form.

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

MOHARRER et al.: MASSIVELY DISTRIBUTED GRAPH DISTANCES 675

� There are a total of |I|+ |Q|+ 2n outer and |I| inner dual
adaptations, they are all O(1) and parallelizable via a map.

� The consensus averaging step involves |Vvar| = |Q|
scalar summations, adding in total of |EG| terms, where
G(Vobj,Vvar, EG) is the bipartite graph (illustrated in Fig. 1)
induced by our problem. Parallelizing this involves mes-
sage passing between the nodes storing all Vobj objectives
and the |Q| processors storing the consensus values, with
the total number of messages passed being |EG|. Below, we
establish bounds on all these quantities.

Putting everything together, assuming the number of itera-
tions of the outer and inner ADMM are k1, k2 ∈ N, respectively,
and that the accuracy used in Alg. 3 is ε, the serial complexity
of our algorithm is:

k1k2

[
O

(
|I|
(
n+ log

1

ε

))
+O

(
n2 log n

)]
+ k1O(|EG|).

(23)

Assuming access to max(|I|, n, |Q|) processors, each inner
iteration (first term in Eq. (23)) can be fully implemented via a
constant number of map and reduce operations over these pro-
cessors, with maps involving operations of at most O(n log n)
complexity, and reduces terminating within O(log |I|) rounds.
On the other hand, the consensus step (second step in Eq. (23))
can be done via message passing between the processors cor-
responding to nodes of graph G. The parallel complexity of
the algorithm depends on the size of set EG . In particular, we
would like to determine conditions under which G is sparse. We
therefore turn our attention to bounding the sparsity of G of the
problem input size.

A. Characterizing the Sparsity of G
The induced bipartite graph G(Vobj,Vvar, EG), as illustrated

in Fig. 1, depends on the number of terms that appear in the
problem objective (determining Vobj) as well as on the number
of times each variable appears in each such term (determining
EG). We first bound the size of Vobj:

Lemma V.1: Let E ∈ {0, 1}n×n be the binary matrix whose
support is Q, and let m0 ≡ ‖AE +EB‖0.

Then, the summation inside the first term (8a) of objective
(7) contains |I| ≤ m0 terms; collectively, the remaining three
terms (8b)-(8d) contain at most |Q|+ 2n terms.

The proof is in Appendix C1. Lemma V.1 immediately implies
that the bipartite graph G(Vobj,Vvar, EG) satisfies:

|Vobj| ≤ m0 + |Q|+ 2n and |Vvar| = |Q|. (24)

Our next lemma characterizes |EG|:
Lemma V.2: The supports of fij(·), χR(·), χC(·)
satisfy:∑

(i,j)∈I|Sij |≤min(n|EA|,n|Q|)+min(n|EB |,n|Q|), (25a)∑
i∈[n] |Si| ≤ |Q|,

∑
j∈[n] |Sj | ≤ |Q|. (25b)

The support of functions fij(·) is also bounded by:∑
i,j∈[n] |Sij | ≤ m0 (max(dA, dQ) + max(dB , dQ)) , (25c)

where dA, dB , and dQ denote the maximum degrees of graphs
GA, GB , and G([n], [n],Q), respectively.

The proof is in Appendix C2.
Lemma V.2 implies that the number of edges in G is:

|EG| ≤M + 3|Q|, (26)

where M is the minimum among the bounds in (25a) and (25c).
Hence, Eq. (24) and (26) together provide conditions under
which when G is sparse. This happens if, e.g., m0 = O(n2) and
both GA and GB are sparse: by Eq. (25a), graph G would then
have a number of edges that isO(Vobj + Vvar). Alternatively, the
same occurs when dA, dB , and dQ are bounded (by Eq. (25c)).

VI. EXPERIMENTS

A. Experimental Setup

Implementation: implemented Alg. 1 over Spark (version
2.3.2), an open-source cluster-computing framework [26], via its
Python interface (version 2.7.15). We also implemented Alg. 1
in Ansi C (glibc version 2.23), using OpenMP (version 4.0) and
Atlas (version 3.10.2).

Execution environment: We run Spark on a local cluster that
comprises 8 machines. Each machine has 2 Intel(R) Xeon(R)
CPUs (E5-2680 v4) with 14 cores , and the cluster has 8× 28 =
224 cores in total. We run OpenMP on the Google Cloud
Platform4 and on a n1-standard-96 machine with 96 (vir-
tual) cores and 360 GB RAM.

Metrics: We report the objective as well as the primal and dual
residuals as the iterations of our ADMM algorithm progress. The
latter measure convergence. We evaluate the optimality of our so-

lution by a parameter ε ∈ R defined as: ε = max(‖r
K‖2√
|I| ,

‖sK‖2√
|I|),

where rK and sK are the primal and dual residuals [24] at the
last iteration. The smaller ε is, the closer the solution is to the
optimal.

Datasets: We experiment on several real graphs from the
Network Repository5 and the Stanford Large Network Dataset
Collection6, which we summarize in Table II. Four graphsbnm1,
bnm2,bnc1, andbnc2 are brain networks.ptn1 andptn2 are
biological networks, while rt1 and rt2 are re-tweet networks.
The nodes in dzr1 and dzr2 are users of the music streaming
service Deezer for two different countries, where edges show
friendship. The graphs sld1 and sld2 represent social in-
teractions between the users of the website Slashdot. We also
experiment on synthetic Erdős Rényi, ER(n, q), graphs with n
nodes and edge probability q, where n ranges from 26 to 217.

Preprocessing: For real graphs we use 4 node features: the
size of the first-hop and second-hop neighborhoods, the number
of paths of length 2, and their pagerank. For synthetic graphs,
in addition to these 4 features, we also compute the number of
paths and cycles of length 3 along with the size of the third-hop
neighborhood. Given two graphs, we construct the dissimilarity
matrix DA,B using the �2 distance between features. We con-
struct the constraint setQ for real graphs by one of the following

4[Online]. Available: https://cloud.google.com
5[Online]. Available: http://networkrepository.com
6[Online]. Available: https://snap.stanford.edu/data/index.html

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

https://cloud.google.com
http://networkrepository.com
https://snap.stanford.edu/data/index.html

676 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

TABLE II
A SUMMARY OF REAL GRAPH PAIRS ALONG WITH THE PREPROCESSING METHOD FOR GENERATING Q

methods, which we report along with the size of the set Q in
Table II.
� all: Q includes all pairs (i, j) ∈ V2, i.e., |Q| = n2.
� degree:Q includes pairs (i, j) ∈ V2, s.t., the nodes i and
j have the same node degree.

� WLk:Q includes pairs (i, j) ∈ V2, s.t. i, j have the same
color: we generate node colors by running the Weisfeiler-
Lehman (WL) algorithm [74] (see also Sec. 2 in [13]) for
k iterations.

For synthetic graphs we use all for generating Q.

B. Experimental Results

Linear Term: We begin by studying the effects of the linear
term in (3) on convergence. GA is an ER(64,0.1) and GB is a
random permutation of GA. We show the trace of residuals and
the norm throughout iterations of ADMM for λ = 0, 0.1, 10 in
Fig. 2. We run ADMM for each λ value for a fixed number
of iterations (160). In all cases the optimal solution is the
permutation matrix used to generateGB fromGA, so the optimal
objective value is 0. Note that in Fig. 2 all of the objective values
as well as the residuals indeed converge to zero.

We see that non-zero λ values significantly accelerate con-
vergence, as the linear term directs the algorithm faster to the
correct solution. The logarithm-scaled plot accentuates the faster
linear convergence of ADMM for λ = 0.1, 10 in comparison
with slower sub-linear convergence for λ = 0.
p-norms: We next assess the quality of the computed dou-

bly stochastic matrix P w.r.t. p-norms. We let again GA be
ER(64,0.1).

We generate another graphGB by adding different noise types
to GA according to the following scenarios:
� Bernoulli noise (BRN): We flip each element in A with

probability 0.01.
� Outliers (OUTk): We choose k nodes (outliers) from GA

uniformly at random and make them connected to every
other node inGB . We experimented with k = 1, 2 outliers,
(i.e, OUT1 and OUT2, respectively).

� Gaussian noise (GSS): We add i.i.d. zero-mean Gaussian
noise with variance 0.01 to the elements of A.

� Laplacian noise (LPC): We add i.i.d. zero-mean Laplacian
noise with variance 0.01 to the elements of A.

� Mixture of Gaussian and Laplacian noise (MIX): We add a
mixture of i.i.d. zero-mean Gaussian and Laplacian random
variables with 0.01 variance; the mixture coefficients are
equally set to

√
0.5 so that the variance is 0.01.

We obtain the matrixP by solving (3) for different pair (p, λ)
values. As GB is a perturbed version of GA, i.e., generated

TABLE III
COMPARISON OF DIFFERENT p-NORMS AND λ COEFFICIENTS FOR THE LINEAR

TERM FOR BRN, OUT1, AND OUT2. WHEN CONSIDERING ONLY THE LINEAR

TERM, WE DENOTE p VALUE BY N/A AND REPORT THE CORRESPONDING

RESULTS IN THE LAST ROW

TABLE IV
COMPARISON OF DIFFERENT NORMS FOR GSS, LPC, AND MIX. HERE WE DO

NOT REPORT RESULTS FOR λ �= 0, AS THE SECOND GRAPH IS WEIGHTED AND

FULLY CONNECTED

via the addition of noise, we measure the quality of the re-
sulting solution by how far it deviates from the identity. As
metrics, we report the Diagonal Probability Mass (DPM) of
P , defined as the sum of the diagonal elements normalized
by n = 64, and the Diagonal Probability Mass after Projec-
tion (DPMP) on the set of permutation matrices Pn, i.e.,
DPM = 1

n

∑
i∈[n]P ii and DPMP = 1

n

∑
i∈[n]P

π
ii, where

Pπ = arg minP ′∈Pn ‖P − P ′‖22.
We report results for the first three cases with unweighted

edges, i.e.,BRN,OUT1, andOUT2 in Table III. Note that for other
cases, i.e., GSS, LPC, and MIX, the edges in GB are weighted
and thusly GB is fully connected, so we do not add the linear
term (λ = 0). We report results for the latter in Table IV. The
reported results are averaged over 5 random runs; graphs GA

are generated independently at random for each run, then GB is
generated following the scenarios outlined above.

We make the following observations from Table III. We first
concentrate on BRN, reported in the first column of the table.
We see that in the absence of the linear term (λ = 0), p = 1

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

MOHARRER et al.: MASSIVELY DISTRIBUTED GRAPH DISTANCES 677

Fig. 3. Effects of adding linear term on solutions for p = 5 and BRN noise. We assess that adding the linear term λ = 0.1 increases the values on the diagonal.
However, increasing λ further to 1.0 makes solution highly biased on the extracted node features; this is obvious from the non-diagonal gray elements.

TABLE V
SCALING RESULTS FOR ALG. 1 AND ‖AP −PB‖22 OBJECTIVE (λ = 0). IN THIS CASE ALG. 1 SKIPS THE INNER LOOP ALG. 2 AS THE OBJECTIVE IS SEPARABLE.

WE RUN OUR ADMM ALGORITHMS USING BOTH OPENMP AND SPARK IMPLEMENTATIONS ON THE SYNTHETIC GRAPHS. tIT IS THE AVERAGE OVER 5
ITERATIONS. WE DENOTE THE CASES THAT THE EXECUTION RAN OUT OF MEMORY BY � AND ONES THAT PRODUCED A SEGMENTATION FAULT WITH�.

has a superior performance and recovers the identity matrix. We
further observe that for other p values adding the linear term
(λ = 0.1, 1) improves the solution. For instance, by comparing
metrics for λ = 0 and λ = 0.1 in the first column (BRN case) we
see that adding the linear term generally increases DPM, while
DPMP stays almost the same (above 0.9). However, increasing
λ further to 1 decreasesDPMP significantly. The reason is that
increasing λ makes the solution highly biased on the extracted
features. Motivated by this observation we also tested the case
with only the linear term, where p is denoted byN/A, we see that
DPM andDPMP values are grossly inferior, in comparison to
other cases. These observations suggest that there is a trade-off
between the first norm term, and the second linear term in (3);
the linear term can improve the solution by incorporating node
features; however, using a high λ values makes the results highly
dependent on the crafted node features.

To make this point more vivid we visualize solutions as
heatmaps for p = 5 and different λ values and the case with only
linear term in Fig. 3; from the figure we see that increasingλ from
0 to 0.1 increases the overall diagonal values (see Fig 3a and 3b).
We see that increasing λ further to 1 slightly increases the diag-
onal mass but also increases non-diagonal values (see Fig. 3c);
by comparing Fig. 3c and Fig. 3d we see that the non-diagonal
elements in the former corresponds to the solution generated by

adding the linear term (see the non-diagonal elements in Fig. 3c
and Fig. 3f).

For the two types of outliers (OUT1 and OUT2) reported in
next columns of Table III, we see that p = 1.5 outperforms
other p values. This is in contradiction to the previous case
(BRN), where p = 1 outperformed other p values. We further
observe that despite the case of BRN adding the linear term only
deteriorates solutions. The reason is that adding outlier nodes
adversely interfere with the extracted node features that are all
dependent on degree and neighborhood information.

Finally we report results for other noise types with weighted
edges, i.e., GSS, LPC, and MIX in Table IV. Here all p norms
have comparable performances ; they all achieve DPMP = 1,
but DPM is slightly higher for higher p values.

Scalability: We evaluate the scalability of our proposed
ADMM algorithm w.r.t. the graph size n and the number
of CPUs. We report the results for two different objectives
‖AP − PB‖22 and ‖AP − PB‖2 with λ = 0, in Tables V and
VI, respectively. The two problems are mathematically equiva-
lent. However, ‖AP − PB‖22 has a separable form, therefore,
Alg. 1 skips the inner loop (Alg. 2); in this case, Line 9 in Alg. 1
is an unconstrained quadratic problem, which has a closed form
solution. In particular, we report setup time tSU and iteration
time tIT. tSU includes the time spent creating and initializing the

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

678 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

TABLE VI
SCALING RESULTS FOR ALG. 1 AND ‖AP −PB‖2 OBJECTIVE (λ = 0). IN COMPARISON TO TABLE V, WE SEE THAT IN GENERAL THE ITERATION TIME IS

LONGER BECAUSE EACH ITERATION OF ALG. 1 EXECUTES THE INNER ADMM LOOP ALG 2 (FOR 60 ITERATIONS).

Fig. 4. Traces of our ADMM algorithm for p = 2 and real graphs pairs. For cortex, retweet, deezer, and slashdot pairs λ is set to 0.001, while
for monkey and protein it is 0.1. We run the inner loop (Alg. 2) for 60 iterations. The average iteration time (of Alg. 1) for cortex, monkey, protein,
retweet, deezer, and slashdot is 364(s), 712(s), 3836(s), 4375(s), 3797(s), and 2290(s), respectively.

variables, i.e., Lines 2 to 4 in Alg. 1. tIT is the average iteration
time of Alg. 1, i.e., Lines 7 to 24. ADMM is a first-order-method
and it usually needs≈100 iterations to converge. Therefore, the
iteration time dominates the setup time, but for completeness we
report setup times too. In this experiment GA, GB , and Q are
Erdős Rényi graphs. We experiment with two settings, i.e., (a)
“dense” graphs ER(n, 0.01) (n = 210 to 212) and (b) “sparse”
graphs ER(n, 1.1 log n/n) for n = 213 to 217.

For ‖AP − PB‖22 we use both the OpenMP (in C) and the
Spark (in Python) implementations. For Spark, when running
with 56 cores or less, we use a single machine out of the
cluster. From Table V we see that for dense graphs OpenMP
has excellent speedup; for example, we see that tIT for 30
CPUs is 30× smaller than tIT for 1 CPU, matching the level
of parallelism. However, the Spark implementation is slower
for these dense graphs. This is due to both the high-level pro-
gramming language (Python) and the Spark overheads, e.g., the
cost of communicating the consensus variables across machines,
which is more considerable in the dense graphs. We report
speedups for running over a Spark cluster with 480 CPUs based
on Gustafoson’s law [79] that computes speedup as follows,
sspeedup = 1− γ + γsparspeedup, where γ ∈ [0, 1] is the portion
of the serial program that can be parallelized (ADMM iterations
in Alg. 1) and sparspeedup is the speedup for the portion of the
program that benefits from parallelism. We compute γ as the
ratio of running time for ADMM iterations (we consider 100
iterations) to the total running time for serial execution (1 CPU),
i.e., γ = 100×tIT

100×tIT+tSU
, where tIT, tSU correspond to 1 CPU in

Table V. We compute sparspeedup by comparing tIT values for 1
CPU and 480 CPUs. The speedups for Table V are 26, 153, 84,
92, and, 110, respectively for n = 210, 211, 213, 214, and 215.

As expected from Lemma V.2, the Spark scales better for
sparse graphs. For each n, by increasing the number of CPUs
from 1 to 56, on a single machine, we see a consistent speedup
in both tIT and tSU. Moreover, when running over cluster
(448CPUs) it is 4.5, 5, and 6.7 times faster then a single machine
(56CPUs) for n = 213, 214, and 215, respectively.

For ‖AP − PB‖2 we only report the results for Spark
implementation in Table VI.

By comparing the running times for 448 CPUs and 56 CPUs
we see speedups of 2.89 and 7.69, for the dense graphs with
n = 210 and 211, respectively, and speedups of 6.68, 7.13,
and 7.41 for the sparse graphs of size n = 213, 214, and 215,
respectively. We again observe that for sparse graphs our al-
gorithm scales better than dense graphs: for spares graphs the
running times almost consistently double as we double n. In
comparison to Table V, we see that setup times are lower as for
the case of ‖AP − PB‖22 our implementation pre-computes
some matrices.

Real Graph Pairs: We use our proposed ADMM algorithm
to compute distances for the real graph pairs summarized in
Table II. We force a pair of graphs GA and GB to have the
same number of nodes n = max(|VA|, |VB |) by adding isolated
(degree 0) dummy nodes to the smaller graphs.

For brevity, we only report results for p = 2. Fig. 4 shows
the trace of residuals and norm. We see that our algorithm
converges for all these graph pairs; for cortex, monkey,
protein, retweet, deezer, and slashdot, the param-
eter ε is 0.01, 0.005, 0.0006, 0.001, 0.3, and 0.06, respectively.
The average iteration time of Alg. 1 for these pairs are 364(s),
712(s), 3836(s), 4375(s), 3797(s), and 2290(s), respectively,
scaling well with |Q| and |I|.

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

MOHARRER et al.: MASSIVELY DISTRIBUTED GRAPH DISTANCES 679

VII. CONCLUSION

We present a massively parallel algorithm for graph distance
computation via ADMM. We can consider penalty terms beyond
the trace. Accelerating this method further, via, e.g., optimally
partitioning the data, are important open problems. Our approach
allows introducing additional penalty terms beyond the trace we
considered here. Identifying means of accelerating this method
further, as well as how to optimally partition the data, are
important open problems.

APPENDIX A
PROOF OF LEMMA IV.1

For (i, j) ∈ [n]× [n] the (i, j)-th element ofAP − PB is:

(AP − PB)ij =
∑

k:(k,j)∈S(i,j)L

aikpkj −
∑

k:(i,k)∈S(i,j)R

pikbkj ,

where S(i,j)L = {(k, j) ∈ Q|(i, k) ∈ EA} and S(i,j)R =
{(i, k) ∈ Q|(k, j) ∈ EB}. We can write (AP − PB)ij
as fij(P Sij), where fij(P Sij) �

∑
k:(k,j)∈S(i,j)L

aikpkj −∑
k:(i,k)∈S(i,j)R

pikbkj , where Sij = S(i,j)L ∪ S(i,j)R and

fij : R|Sij | → R is a linear function. The entry-wise p
norm of AP − PB is thus (8a), where I comprises
pairs (i, j) for which Sij �= ∅. On the other hand,
tr(P�DA,B) =

∑
(i,j)∈Q pijdij by the fact that pij = 0

for (i, j) /∈ Q. The function χR(P) states that each row i of
P belongs to the set: R(i) = {p(i) ∈ [0, 1]|Si||1�p(i) = 1},
where Si = ({i} × VB) ∩ Q. As a result, we can write χR(P)
as the sum of the corresponding characteristic functions.
Similarly, χC(P) can be written as the sum of the characteristic
functions for the sets C(j) = {p(j) ∈ [0, 1]|Sj ||1�p(j) = 1},
corresponding to each column j ∈ [n] of P . �

APPENDIX B
PROOFS OF THEOREMS IV.2 AND IV.3.

We present here the proofs of Theorems IV.2 and IV.3. We
first give high-level proofs as derived from key lemmas, and
then prove these lemmas.

A. Proof of Theorem IV.2

The objective of Prob. (17) is strongly convex. Hence, the
optimal solution û ∈ Rd

+ is unique. We first show that û lies,
coordinate-wise, between 0 and ŵ ∈ Rd

+:
Lemma B.1: Let û be the optimal solution of Prob. (17). Then

ûi ∈ [0, ŵi], for all i ∈ [d].
The proof can be found in Appendix B4. The lemma implies

that we only need to look for a solution in a bounded domain.
Note also that, as an immediate implication of Lemma B.1, if
ŵi = 0, then necessarily also ûi = 0.

The optimal solution û satisfies the KKT conditions:

0 ∈ {g + u− ŵ −α|g ∈ ∂fp(u)}, (27a)

αiui = 0 for all i ∈ [d], u ≥ 0, α ≥ 0, (27b)

where ∂fp(u) is the subdifferential7 of the function fp(u) =
‖u‖p at the point u. Eq. (27a) implies a condition on ŵ under
which the optimal solution to (17) is the zero vector:

Lemma B.2: Given p ≥ 1, let q ≥ 1 be such that 1
p + 1

q = 1.

If ŵ ∈ Rd
+ satisfies ‖ŵ‖q ≤ 1, the optimal solution to Prob. (17)

is û = 0.
The proof can be found in Appendix B5. Intuitively, we prove

this by verifying that if ‖ŵ‖q ≤ 1 then u = α = 0 satisfy the
KKT conditions in Eq. (27). Lemma B.2 therefore immediately
implies the first (“easy”) case of Theorem IV.2.

We therefore turn to the case where ‖ŵ‖q > 1 (the “hard”
case). For u �= 0, fp is differentiable and its subdifferential is a
singleton, i.e., ∂fp(u) = {∇fp(u)}, where

∂fp(u)/∂ui =

(
ui

‖u‖p

)p−1
,

for i ∈ [d]. Suppose that the i-th element of the optimal point û
is positive, i.e., ûi > 0. Then,αi = 0 by Eq. (27b), and Eq. (27a)
implies that û satisfies the following equation:

(ûi/‖û‖)p−1+(ûi−ŵi)=0, for all i s.t. ûi > 0. (28)

The optimality condition (28) can equivalently be written as

ûi = ŵig
(
‖û‖p(ŵi)

2−p
p−1
)
, for all i s.t. ûi > 0. (29)

where g : R+ → R+ is defined via Eq. (19). Recall that
Lemma B.1 implies that, if i /∈ supp(ŵ), then necessarily ûi =
0. We can therefore consider w.l.o.g. a vector ŵ for which
supp(ŵ) = [d]; if not, we can compute the optimal solution
by setting ûi = 0 for i /∈ supp(ŵ), and focus on what happens
on the remainder of the coordinates, that have full support. Not
surprisingly, the optimal solution in this case is characterized by
Eq. (29). In particular, the following lemma holds:

Lemma B.3: Consider aw ∈ Rd
+ s.t. (a) supp(ŵ) = [d], and

(b) ‖w‖q > 1, where 1
p + 1

q = 1. Let gi : R→ Rd, i ∈ [d], and
h : R+ → R be given by Eqs. (20) and (21), respectively. Then,
the unique solution û to Prob. (17) is given by ûi = gi(s

∗), for all
i ∈ [d], where s∗ is the unique value in (0, ‖w‖p] s.t. h(s∗) = 0.

The proof can be found in Appendix B6. Intuitively, we show
this by first establishing that h(0) = 0 and h(‖ŵ‖p) ≤ 0. We
show that, if ‖w‖q > 1, then h′(0) > 0; thus, h must be strictly
positive in the neighborhood of 0. As h(‖ŵ‖p) ≤ 0, there must
exist a root of h in (0, ‖ŵ‖p]; any such root corresponds to an
optimum of Prob. (17) via (29); uniqueness is implied by strong
convexity.

Lemma B.3, along with our observation on cases where i /∈
supp(ŵ), immediately imply Theorem IV.2. To see this, note
first that for i /∈ supp(ŵ), gi(s) = 0 for all s ∈ R+. Moreover,
these 0 coordinates do not contribute to ‖u‖p or ‖ŵ‖p; as such,
they do not affect h and, thereby, the root s∗: the latter is fully
determined by only elements in supp(ŵ). Hence, Eq. (22) holds
for all coordinates in [d]. �

7Note that fp is not differentiable at u = 0, hence the need to refer to its
subdifferential.

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

680 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

B. Proof of Theorem IV.3

We begin by showing the equivalence of Problems (15)
and (17):

Lemma B.4: Let û be an optimal solution to Prob. (17), where
ŵ is given by Eq. (16), then u∗, given by Eq. (18), is an optimal
solution to Prob. (15).

The proof can be found in Appendix B3. Armed with this
result, we next show that Alg. 3 correctly bounds the root s∗,
whenever the corresponding for-loop is executed:

Lemma B.5: If ‖ŵ‖q > 1, at every iteration of Alg. 3, s∗ ∈
[sL, sU].

The proof is in Appendix B7. Observe that the distance
between the two bounds is halved at each iteration. Hence, at
the last (log2

⌈
1
ε

⌉
) iteration,

|s− s∗| ≤ |sL − sU | ≤ ‖ŵ‖pε. (30)

On the other hand, functions gi : R+ → R+ are Lipschitz:
Lemma B.6: Each function gi : R+ → R+ is Lipschitz con-

tinuous with Lipschitz parameter ŵ
1

p−1
i .

The proof is in Appendix B8. Lemma B.6 immediately im-
plies that, foru the output of the algorithm, and s the last estimate

of the root: (
∑

i∈[d](ui − ûi)
p)1/p ≤ (

∑
i∈[d] ŵ

p
p−1
i)1/p · |s−

s∗|, and the theorem follows from Eq. (30), as q = p
p−1 . �

C. Proof of Lemma B.4

We have that: minu∈Rd ρ(‖u‖p + ρ
2‖u−w‖22) =

minu′∈Rd ‖u′‖p + 1
2‖u′ −w′‖22 for u′ = ρu, w′ = ρw.

One can show that the coordinates of the optimal solution
to the latter problem will have the same sign as the
coordinates of w. Let � : Rd ×R→ Rd indicate the
element-wise multiplication between two vectors, and
sign : Rd → {−1,+1}d be the vector resulting from
element-wise application of the sign operator. Then, under
the transformation v = sign(w)� u′ ∈ Rd

+, Prob. (15) is
equivalent to: minv∈Rd

+
‖ sign(w)� v‖p + 1

2

∥∥ sign(w)�
v − sign(w)� ŵ∥∥2

2
= minv∈Rd

+
‖v‖p + 1

2‖v − ŵ‖22, as

‖e� y‖p = ‖y‖p for all e ∈ {−1, 1}d, y ∈ Rd, and p ≥ 1.
Hence, given an optimal solution û to Prob. (17), the optimal
solution to Prob. (15) is given by u∗ = 1

ρ (sign(w)� û). �

D. Proof of Lemma B.1

Suppose that û is an optimal solution of (17), s.t., ûi < 0 for
some i ∈ [d]. Then, for the vector û′ with all elements equal
to the elements û except the i-th element with û′i = 0 we have
the following ‖û′‖p + 1

2‖û′ − ŵ‖22 < ‖û‖p + 1
2‖û− ŵ‖22, a

contradiction. Similarly, if ûi > ŵi for some i ∈ [d], we can
construct a vector û′, s.t., all of its elements are the same with
the elements of û, except û′i = ŵi, then again ‖û′‖p + 1

2‖û′ −
ŵ‖22 < ‖û‖p + 1

2‖û− ŵ‖22, a contradiction. �

E. Proof of Lemma B.2

We show that u = 0,α = 0 satisfy the KKT conditions
(27). For u = α = 0 Eq. (27b) is obviously satisfied. Then

we need to show that 0 ∈ {g − ŵ | g ∈ ∂fp(0)}, or equiv-
alently, ŵ ∈ ∂fp(0). Formally, the subdifferential at zero
is the set ∂fp(0) = {g ∈ Rd | g�v ≤ ‖v‖p for all v ∈ Rd}.
By Holder’s inequality, for every v ∈ Rd we have ŵ�v ≤∑d

i=1 |ŵi||vi| ≤ ‖ŵ‖q‖v‖p ≤ ‖v‖p, where the last inequality
holds as‖ŵ‖q ≤ 1. Hence, ŵ ∈ ∂fp(0), andu = α = 0 satisfy
the KKT conditions, so û = 0 is optimal. �

F. Proof of Lemma B.3

The inverse g−1 of function g is given by

g−1(x) = x(1− x)−1/(p−1). (31)

As g−1 is monotone and continuous in [0,1), we have that g is
also monotone and continuous in R+. Hence, function h is con-
tinuous in the interval [0, ‖ŵ‖p]. Given that, by the intermediate
value theorem, g(a) ∈ [0, 1], we have that h(‖ŵ‖p) ≤ 0. Since,
by definition, g(0) = 0, we also have that h(0) = 0. Moreover,

dh(0)

ds
= lim

δ→0

(∑d
i=1(gi(δ))

p
) 1

p − δ

δ

= lim
δ→0

(∑d
i=1(gi(δ))

p

δp

) 1
p

− 1.

By Taylor’s theorem, the first-degree Taylor approximation of
gi at 0 is gi(δ) = g′i(0)δ + o(δ2). The partial derivative g′i(0) is

given by: g′i(0) = ŵ
1

p−1
i g′(0). Note that g′(0) = (dg

−1(0)
dx)−1 =

1, and, as a result,

g′i(0) = ŵ
1

p−1
i . (32)

Therefore, we have:

∂h(0)

∂s
= lim

δ→0

(
d∑

i=1

(ŵ
1

p−1
i δ +O(δ2))p/δp

) 1
p

− 1

= ‖ŵ‖
1

p−1
q − 1 > 0,

as ‖ŵ‖q > 1 for q = p
p−1 by the hypothesis of the theorem.

Hence, h(s) is positive in a neighborhood of 0. As h is contin-
uous, and h(‖w‖p) ≤ 0, by the intermediate value theorem h
must contain an s∗ ∈ (0, ‖ŵ‖p] s.t, h(s∗) = 0. Such a solution
satisfies Eq. (29) for all i ∈ [d] and, as such, it satisfies the KKT
conditions of Prob. (17); therefore, it is an optimal solution.
Strong convexity implies its uniqueness. �

G. Proof of Lemma B.5

By Lemma B.3, there must exist a unique root of h(s) = 0
in (0, ‖ŵ‖p]. This, along with the strict positivity of h in the
vicinity of 0 when ‖ŵ‖q > 1, implies that if h(‖ŵ‖p) = 0,
all values h(s) for s ∈ (0, ‖ŵ‖p) are strictly positive, and the
bisection will repeatedly update the lower bound but never the
upper bound. The lemma therefore holds. If, on the other hand
h(‖ŵ‖p]) < 0, s∗ must be in (0, ‖ŵ‖p) by Lemma B.3, so the
lemma holds for the first iteration. We can show, by induction
on iterations, that h(sL) ≥ 0, with equality holding only if

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

MOHARRER et al.: MASSIVELY DISTRIBUTED GRAPH DISTANCES 681

sL = 0, and h(sU) < 0. If h(sL) > 0, the lemma follows from
the intermediate value theorem. If h(sL) = 0, the lemma again
follows from the intermediate value theorem, and the fact that h
is strictly positive in the vicinity of 0. �

H. Proof of Lemma B.6

The inverse of g is given by Eq. (31), which is strictly increas-
ing, differentiable, and convex in [0,1); the latter follows from
the fact that the second derivative is non-negative for p > 1,
x ∈ [0, 1). Hence, g is strictly increasing, differentiable, and
concave. Each function gi, i ∈ [d], consists of a composition of g
with an affine function, and a multiplication with a non-negative
scalar, so it is also concave. Hence, it is Lipschitz continuous
with parameter given by g′i(0); the latter is characterized by
Eq. (32). �

APPENDIX C
PROOFS OF PARALLEL COMPLEXITY RESULTS

A. Proof of Lemma V.1

The number of non-zero elements in the matrix AP − PB
is at most the number of the non-zero elements in AP + PB,
whereP is a matrix has the full support under constraintsG, e.g.,
P = E. Each set Sij defines the support of the (i, j)-th element
of AP − PB; therefore, we conclude that the total number of
non-empty sets Sij is upper-bounded by m0. For the terms (8c)
and (8d), it is easy to see that we have |VA| = n sets Si and
|VB | = n sets Sj , each corresponding to the nodes i ∈ VA and
j ∈ VB , respectively. �

B. Proof of Lemma V.2

Let S(i,j)L = {(k, j) ∈ Q} ∩ {(i, k) ∈ EA} and S(i,j)R =

{(i, k) ∈ Q} ∩ {(k, j) ∈ EB}. Then
∑

i,j∈[n] |S(i,j)L | =∑
j∈[n]

∑
i∈[n] |S(i,j)L | ≤∑j∈[n] min(|EA|, ndj) ≤

min(n|EA|,
∑

j∈[n] ndj) = min(n|EA|, n|Q|), where
dj is the node degree for j ∈ VB . Similarly, we can

show that
∑

i,j∈[n] |S(i,j)R | ≤ min(n|EB |, n|Q|). As

a result,
∑

i,j∈[n] |Sij | ≤
∑

i,j∈[n] |S(i,j)L |+ |S(i,j)R | ≤
min(n|EA|, n|Q|) + min(n|EB |, n|Q|).

Now we prove (25c). For each set Sij we have that:

|Sij | ≤ |S(i,j)L |+ |S(i,j)R | ≤ max(di, dQ) + max(dj , dQ) ≤
max(dA, dQ) + max(dB , dQ).

From this and Lemma V.1, which shows that I ≤ m,
we get

∑
i,j∈[n] |Sij | ≤ mmaxi,j(|Sij |) ≤ m(max(dA, dQ) +

max(dB , dQ)). For Si, i ∈ [n] we have that:
⋂

i Si = ∅, and⋃
i Si = {(k, j) ∈ Q|j ∈ VB} ⊆ Q.Therefore, for the total size

we have:
∑

i |Si| = | ∪i Si| ≤ |Q|. �

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the Na-
tional Science Foundation (grants IIS-1741197, IIS-1741129,
and CCF-1750539) and the National Institutes of Health (grant
1U01AI124302).

REFERENCES

[1] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph
matching in pattern recognition,” Int. J. Pattern Recognit. Artif. Intell.,
vol. 18, no. 03, pp. 265–298, 2004.

[2] F. H. Allen, “The Cambridge Structural Database: A quarter of a million
crystal structures and rising,” Acta Crystallogr. Section B: Struct. Sci.,
vol. 58, no. 3, pp. 380–388, 2002.

[3] V. Kvasnička, J. Pospíchal, and V. Baláž, “Reaction and chemical dis-
tances and reaction graphs,” Theoretical Chemistry Accounts: Theory,
Comput., Model. (Theoretica Chimica Acta), vol. 79, no. 1, pp. 65–79,
1991.

[4] O. Macindoe and W. Richards, “Graph comparison using fine structure
analysis,” in IEEE IInd Conf. Soc. Comput., 2010.

[5] D. Koutra, J. T. Vogelstein, and C. Faloutsos, “DeltaCon: A principled
massive-graph similarity function,” in Space Division Multiplexing, 2013.

[6] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos, “Network
similarity via multiple social theories,” in Proc. Conf. Adv. Social Net.
Analysis and Mining, 2013.

[7] D. Koutra, N. Shah, J. T. Vogelstein, B. Gallagher, and C. Faloutsos,
“DeltaCon: Principled massive-graph similarity function with attribution,”
ACM Trans. Knowl. Discovery Data, vol. 10, no. 3, pp. 28:1–28:43,
2016.

[8] C. Chen, X. Yan, F. Zhu, and J. Han, “gApprox: Mining frequent approx-
imate patterns from a massive network,” in Proc. Int. Conf. Data Mining,
2007, pp. 445–450.

[9] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad, “Fast best-effort
pattern matching in large attributed graphs,” in Proc. Knowl. Discovery
Databases, 2007, pp. 513–522.

[10] F. Falchi, C. Gennaro, and P. Zezula, “A content–addressable network for
similarity search in metric spaces,” in DBISP2P, 2006.

[11] S. B. Roy, T. Eliassi-Rad, and S. Papadimitriou, “Fast best-effort search on
graphs with multiple attributes,” IEEE Trans. Knowl. Data Eng., vol. 27,
no. 3, pp. 755–768, Mar. 2015.

[12] K. Henderson et al., “Rolx: Structural role extraction & mining in large
graphs,” in Proc. Knowl. Discovery Databases, 2012.

[13] J. Bento and S. Ioannidis, “A family of tractable graph metrics,” Appl.
Netw. Sci., vol. 4, no. 1, p. 107, 2019.

[14] K. L. Clarkson, “Nearest-neighbor searching and metric space dimen-
sions,” Nearest-Neighbor Methods for Learning and Vision: Theory and
Practice, pp. 15–59, 2006.

[15] K. L. Clarkson, “Nearest neighbor queries in metric spaces,” Discrete &
Comput. Geometry, vol. 22, no. 1, pp. 63–93, 1999.

[16] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest
neighbor,” in Proc. Int. Conf. Mach. Learn., 2006, pp. 579–587.

[17] F. Angiulli and C. Pizzuti, “Fast outlier detection in high dimensional
spaces,” in Proc. Europ. Conf. Mach. Learn. and Practice Knowl. Discov-
ery in Databases, 2002, pp. 2451–2461.

[18] M. R. Ackermann, J. Blömer, and C. Sohler, “Clustering for metric and
nonmetric distance measures,” ACM Trans. Algorithms, vol. 6, no. 4, p. 59,
2010.

[19] R. R. Mettu and C. G. Plaxton, “Optimal time bounds for approximate
clustering,” Mach. Learn., vol. 56, no. 1–3, pp. 35–60, 2004.

[20] Y. Bartal, M. Charikar, and D. Raz, “Approximating min-sum K-clustering
in metric spaces,” in Proc. Satellite Technical Oper. Committee, 2001.

[21] P. Indyk, “Sublinear time algorithms for metric space problems,” in Proc.
Satellite Tech. Oper. Committee, 1999, pp. 154–159.

[22] G. Chartrand, G. Kubicki, and M. Schultz, “Graph similarity and distance
in graphs,” Aequationes Math., vol. 55, no. 1–2, pp. 129–145, 1998.

[23] L. Babai, “Graph isomorphism in quasipolynomial time,” in Proc. Satellite
Tech. Oper. Committee, 2016, pp. 89–100.

[24] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[25] L. Dagum and R. Menon, “OpenMP: An industry-standard API for shared-
memory programming,” Comput. Sci. Eng., no. 1, pp. 46–55, 1998.

[26] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets.” in HotCloud, 2010.

[27] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph similarity
for anomaly detection,” Internet Serv. Appl., vol. 1, no. 1, pp. 19–30,
2010.

[28] S. Soundarajan, T. Eliassi-Rad, and B. Gallagher, “A guide to selecting a
network similarity method,” in Proc. Space Division Multiplexing, 2014,
pp. 102554–102560.

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

682 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

[29] M. R. Garey and D. S. Johnson, Computers and Intractability. WH
Freeman New York, 2002.

[30] A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, and H. Bunke, “Approx-
imation of graph edit distance based on Hausdorff matching,” Pattern
Recognit., vol. 48, no. 2, pp. 331–343, 2015.

[31] H. Bunke and K. Shearer, “A graph distance metric based on the maximal
common subgraph,” Pattern Recognit. Lett., vol. 19, no. 3, pp. 255–259,
1998.

[32] H. Bunke, “On a relation between graph edit distance and maximum
common subgraph,” Pattern Recognit. Lett., vol. 18, no. 8, pp. 689–694,
1997.

[33] J. Koca, M. Kratochvil, V. Kvasnicka, L. Matyska, and J. Pospichal,
Synthon Model of Organic Chemistry and Synthesis Design. Springer
Science & Business Media, 2012, vol. 51.

[34] B. J. Jain, “On the geometry of graph spaces,” Discrete Appl. Math.,
vol. 214, pp. 126–144, 2016.

[35] K. Riesen and H. Bunke, “Approximate graph edit distance computation
by means of bipartite graph matching,” Image Vision Comput., vol. 27,
no. 7, pp. 950–959, 2009.

[36] S. Fankhauser, K. Riesen, and H. Bunke, “Speeding up graph edit distance
computation through fast bipartite matching,” in GBR, 2011, pp. 1–6.

[37] K. Riesen, M. Neuhaus, and H. Bunke, “Graph embedding in vector spaces
by means of prototype selection,” in GBR, 2007, pp. 1500–1505.

[38] K. Riesen and H. Bunke, Graph Classification and Clustering Based on
Vector Space Embedding. World Scientific, 2010, vol. 77.

[39] M. Ferrer, E. Valveny, F. Serratosa, K. Riesen, and H. Bunke, “General-
ized median graph computation by means of graph embedding in vector
spaces,” Pattern Recognit., vol. 43, no. 4, pp. 1642–1655, 2010.

[40] P. Zhu and R. C. Wilson, “A study of graph spectra for comparing graphs,”
in Proc. British Mach. Vision Conf., 2005, pp. 2319–2323.

[41] R. C. Wilson and P. Zhu, “A study of graph spectra for comparing graphs
and trees,” Pattern Recognit., vol. 41, no. 9, pp. 2833–2841, 2008.

[42] H. Elghawalby and E. R. Hancock, “Measuring graph similarity using
spectral geometry,” in Proc. Int. Conf. Image Anal. Recognit., 2008,
pp. 517–526.

[43] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance metric
learning with application to clustering with Side-Information,” in Neural
Inf. Process. Syst., 2002, pp. 3084–3095.

[44] J. A. Hartigan and J. Hartigan, Clustering Algorithms. New York: Wiley,
1975.

[45] S. Gold and A. Rangarajan, “A graduated assignment algorithm for
graph matching,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 4,
pp. 377–388, Apr. 1996.

[46] L. Wiskott, N. Krüger, N. Kuiger, and C. von der Malsburg, “Face recog-
nition by elastic bunch graph matching,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 19, no. 7, pp. 775–779, Jul. 1997.

[47] G. W. Klau, “A new graph-based method for pairwise global network
alignment,” BMC Bioinformatics, vol. 10, no. 1, p. S59, 2009.

[48] T. Goldstein, G. Taylor, K. Barabin, and K. Sayre, “Unwrapping ADMM:
Efficient distributed computing via transpose reduction,” in Artif. Intell.
Statist., 2016.

[49] M. El-Kebir, J. Heringa, and G. W. Klau, “Natalie 2.0: Sparse global
network alignment as a special case of quadratic assignment,” Algorithms,
vol. 8, no. 4, pp. 1035–1051, 2015.

[50] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and Y. Wang, “Algorithms
for large, sparse network alignment problems,” in Proc. Int. Conf. Data
Mining Series, vol. 8, no. 4, pp. 705–710, 2009.

[51] R. Singh, J. Xu, and B. Berger, “Pairwise global alignment of protein
interaction networks by matching neighborhood topology,” in Proc. Conf.
Comput. Molecular Biol., 2007, pp. 325–328.

[52] V. Lyzinski, D. E. Fishkind, M. Fiori, J. T. Vogelstein, C. E. Priebe, and G.
Sapiro, “Graph matching: Relax at your own risk,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 38, no. 1, pp. 60–73, 2016.

[53] C. Schellewald and C. Schnörr, “Probabilistic subgraph matching based
on convex relaxation,” in Proc. Comput. Vision Pattern Recognit., 2005,
pp. 1–8.

[54] J. Liu and J. Ye, “Efficient l1/lq NormRregularization,” 2010,
arXiv:1009.4766.

[55] S. Sra, “Fast Projections Onto l1, Q-norm balls for grouped feature
selection,” in ECML PKDD, 2011.

[56] S. Sra, “Fast projections onto mixed-norm balls with applications,” Data
Mining Knowledge Discovery, vol. 25, no. 2, pp. 358–377, 2012.

[57] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations Trends Optim.,
vol. 1, no. 3, pp. 127–239, 2014.

[58] J. J. Moreau, “Décomposition orthogonale d’un espace hilbertien selon
deux cônes mutuellement polaires,” 1962.

[59] S. R. Becker, E. J. Candès, and M. C. Grant, “Templates for convex cone
problems with applications to sparse signal recovery,” Math. Program.
Comput., vol. 3, no. 3, p. 165, 2011.

[60] D. Gabay and B. Mercier, “A dual algorithm for the ssolution of non
linear variational problems via finite element approximation,” Comput.
Mathematics Appl., vol. 2, no. 1, pp. 17–40, 1976.

[61] C. Song, S. Yoon, and V. Pavlovic, “Fast ADMM algorithm for distributed
optimization with adaptive penalty,” in AAAI Conf. Artif. Intell., 2016.

[62] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous Dis-
tributed Alternating Direction Method of Multipliers: Algorithm and
Convergence Analysis,” in Int. Conf. Acoustics, Speech, Sig. Process.
(ICASSP), 2016.

[63] E. Wei and A. Ozdaglar, “Distributed Alternating Direction Method of
Multipliers,” in IEEE Conf. Decision Cont., 2012.

[64] R. Zhang and J. Kwok, “Asynchronous distributed ADMM for consensus
optimization,” in Proc. Int. Conf. Mach. Learn., 2014.

[65] Z. Xu, G. Taylor, H. Li, M. A. Figueiredo, X. Yuan, and T. Goldstein,
“Adaptive consensus ADMM for distributed optimization,” in Proc. Int.
Conf. Mach. Learn., 2017.

[66] L. Majzoobi and F. Lahouti, “Analysis of distributed ADMM Algorithm
for consensus optimization in presence of error,” in Int. Conf. Acoust.,
Speech Signal Process., 2016, pp. 4831–4835.

[67] G. França and J. Bento, “An explicit rate bound for over-relaxed ADMM,”
in Proc. Int. Symp. Inf. Theory, 2016, pp. 2104–2108.

[68] T. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization
via inexact consensus ADMM,” IEEE Trans. Signal Process., vol. 63,
no. 2, pp. 482–497, 2015.

[69] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge university
press, 2004.

[70] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999,
previous number = SIDL-WP-1999-0120.

[71] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. Knowl. Discovery Databases, 2016, pp. 79–88.

[72] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Proc. Neural Inf. Process. Syst., 2017, pp. 438–452.

[73] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[74] B. Weisfeiler and A. Lehman, “A reduction of a graph to a canonical form
and an algebra arising during this reduction,” Nauchno-Technicheskaya
Informatsia, vol. 2, no. 9, pp. 12–16, 1968.

[75] F. T. Leighton, Introduction to Parallel Algorithms and Architectures:
Trees Hypercubes. Elsevier, 2014.

[76] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating
direction method of multipliers,” Math. Program., vol. 162, no. 1–2,
pp. 165–199, 2017.

[77] R. J. Tibshirani et al., “The solution path of the generalized LASSO,” The
annals of statistics, vol. 39, no. 3, pp. 1335–1371, 2011.

[78] C. Michelot, “A finite algorithm for finding the projection of a point
onto the canonical simplex of n,” J. Optim. Theory Appl., vol. 50, no. 1,
pp. 195–200, 1986.

[79] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Commun. ACM, vol. 31,
no. 5, pp. 532–533, 1988.

Armin Moharrer received the B.Sc. degree in elec-
trical engineering from the Amirkabir University of
Technology (Tehran Polytechnic), Tehran, Iran, in
2015 and the M.Sc. degree in electrical and computer
engineering in 2018 from Northeastern University,
Boston, MA, USA, in 2018, where he has been work-
ing toward the Ph.D. degree in electrical and computer
engineering, since January 2016, under supervision
of Prof. S. Ioannidis. His research interests focus on
distributed algorithms and data mining.

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

MOHARRER et al.: MASSIVELY DISTRIBUTED GRAPH DISTANCES 683

Jasmin Gao is currently working toward the B.Sc.
and Engineering degree with the Department of Op-
erations Research and Financial Engineering, Prince-
ton University, Princeton, NJ, USA. She is obtaining
minors in Computer Science, Finance, and Cognitive
Science. Her research interests include graph match-
ing, machine learning, and optimization, currently
combining those interests in a thesis research role
on optimization of financial asset allocation using
machine learning.

Shikun Wang received the B.Sc. degree in computer
science from Boston College, Chestnut Hill, MA,
USA. During his senior year with Boston College,
he worked with Prof. Bento on topics related to dis-
tributed computing and graph distance. After gradu-
ation in 2019, he was a Software Engineer at Audible
on integrating Audible books and podcasts experience
with Alexa smart home system.

José Bento received the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA,
USA, where he worked with Prof. A. Montanari on
statistical inference and structural learning of graph-
ical models. After his Ph.D., he moved to Disney
Research, Boston lab, where he worked with Dr. J.
Yedidia on algorithms for distributed optimization,
robotics, and computer vision. He is currently with the
Department of Computer Science, Boston College,
Chestnut Hill, MA, USA. His current research inter-
ests lie at the intersection of distributed algorithms

and machine learning. In 2014, he received a Disney Inventor Award for his
work on distributed optimization, which recently lead to an approved patent.
In 2016, he was awarded a 10M$ NIH joint grant to study the emergence of
antibiotic resistance and in 2017 a 2M$ NSF joint grant to study measures of
distance between large graphs.

Stratis Ioannidis received the B.Sc. degree in elec-
trical and computer engineering from the National
Technical University of Athens, Athens, Greece, in
2002, and the M.Sc. and Ph.D. degrees in computer
science from the University of Toronto, Toronto, ON,
Canada, in 2004 and 2009, respectively. He is cur-
rently an Associate Professor with the Department of
Electrical and Computer Engineering, Northeastern
University, Boston, MA, USA, where he also holds
a courtesy appointment with the Khoury College of
Computer Sciences. Prior to joining Northeastern, he

was a Research Scientist at the Technicolor research centers in Paris, France,
and Palo Alto, CA, as well as at Yahoo Labs in Sunnyvale, CA. He was the
recipient of an NSF CAREER award, a Google Faculty Research Award, a
Facebook Research Award, and Best Paper Awards at the 2017 ACM Conference
on Information-centric Networking (ICN) and the 2019 IEEE International
Symposium on Dynamic Spectrum Access Networks (DySPAN).

Authorized licensed use limited to: Boston College. Downloaded on February 19,2024 at 21:59:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

