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Abstract

We consider the problem of learning a coefficient veatgre R from noisy
linear observatioy = Axg + w € R™. In many contexts (ranging from model
selection to image processing) it is desirable to cons@usparse estimataf.

In this case, a popular approach consists in solving, gpenalized least squares
problem known as the LASSO or Basis Pursuit DeNoising (BPDN)

For sequences of matrices of increasing dimensions, with independent gaus-
sian entries, we prove that the normalized risk of the LAS8@verges to a limit,
and we obtain an explicit expression for this limit. Our dessithe first rigor-
ous derivation of an explicit formula for the asymptotic mesguare error of the
LASSO for random instances. The proof technique is basedh®rmamalysis of
AMP, a recently developed efficient algorithm, that is imegifrom graphical
models ideas.

Through simulations on real data matrices (gene expredsi@and hospital med-
ical records) we observe that these results can be relavariirioad array of prac-
tical applications.

1 Introduction

Let zo € RY be an unknown vector, and assume that a vegter R” of noisy linear measure-
ments ofz, is available. The problem of reconstructimg from such measurements arises in a
number of disciplines, ranging from statistical learningtgnal processing. In many contexts the
measurements are modeled by

y=Axg+w, (1.2)
whereA € R™*¥ is a known measurement matrix, ads a noise vector.

The LASSO or Basis Pursuit Denoising (BPDN) is a method foonstructing the unknown vector
o giveny, A, and is particularly useful when one seeks sparse soluti®os givenA, y, one
considers the cost functiods, ,, : RY — R defined by

1
Cay(@) = 5 lly = Az|* + Az, (1.2)

with A > 0. The original signal is estimated by
Z(A\ A, y) = argming Ca (). (1.3)
In what follows we shall often omit the argumemsy (and occasionally\) from the above nota-

tions. We will also us&i(\; N) to emphasize thév-dependence. Furthép|, = (>, vF)1/?
denotes thé,-norm of a vectow € RP (the subscripp will often be omitted ifp = 2).

A large and rapidly growing literature is devoted(i Developing fast algorithms for solving the
optimization problem (1.3)(ii) Characterizing the performances and optimality of theesidrz.
We refer to Section 1.3 for an unavoidably incomplete ovawi



Despite such substantial effort, and many remarkable eetiients, our understanding of (1.3) is
not even comparable to the one we have of more classicaktapitatistics and estimation theory.
For instance, the best bound on the mean square éviSE] of the estimator (1.3), i.e. on the
quantity N—1||Z — x|, was proved by Candes, Romberg and Tao [CRT06] (who in fachdt
consider the LASSO but a related optimization problem). iTresult estimates the mean square
error only up to an unknown numerical multiplicative fact@ork by Candes and Tao [CTO7] on
the analogou®antzig selectgrupper bounds the mean square error up to a factog N, under
somewhat different assumptions.

The objective of this paper is to complement this type of glouut robust’ bounds by proving
asymptotically exacexpressions for the mean square error. Our asymptotictreslds almost
surely for sequences of random matricewith fixed aspect ratio and independent gaussian entries.
While this setting is admittedly specific, the careful stuafysuch matrix ensembles has a long
tradition both in statistics and communications theorylaaslspurred many insights [Joh06, Tel99].
Further, our main result provides asymptotically exactregpions for other operating characteristics
of the LASSO as well (e.g., False Positive Rate and Trueipgesiate). We carried out simulations
on real data matrices with continuous entries (gene exipreskata) and binary feature matrices
(hospital medical records). The results appear to be gonitewaging.

Although our rigorous results are asymptotic in the prohbdigmensions, numerical simulations have
shown that they are accurate already on problems with a fewddeds of variables. Further, they
seem to enjoy a remarkablmiversalityproperty and to hold for a fairly broad family of matrices
[DMM10]. Both these phenomena are analogous to ones in randatrix theory, where delicate
asymptotic properties of gaussian ensembles were subshgpeoved to hold for much broader
classes of random matrices. Also, asymptotic statementgnidom matrix theory have been re-
placed over time by concrete probability bounds in finite elisions. Of course the optimization
problem (1.2) is not immediately related to spectral pripsiof the random matrid. As a conse-
guence, universality and non-asymptotic results in ranchatmix theory cannot be directly exported
to the present problem. Nevertheless, we expect such geweluts to be foreseeable.

Our proof is based on the analysis of an efficient iteratigmiathm first proposed by [DMMO09],
and called AMP, for approximate message passing. The #igois inspired by belief-propagation
on graphical models, although the resulting iteration ggisicantly simpler (and scales linearly
in the number of nodes). Extensive simulations [DMM10] skdwhat, in a number of settings,
AMP performances are statistically indistinguishablen® dnes of LASSO, while its complexity is
essentially as low as the one of the simplest greedy algosith

The proof technique just described is new. Earlier literafnalyzes the convex optimization prob-
lem (1.3) —or similar problems— by a clever constructionmfgproximate optimum, or of a dual

witness. Such constructions are largely explicit. Herdéeimd we prove an asymptotically exact
characterization of a rather non-trivial iterative alglom. The algorithm is then proved to converge
to the exact optimum. Due to limited space in this paper wg stadte the main steps of the proof.
More details are available in [BM10b]

1.1 Definitions

In order to define the AMP algorithm, we denotepyR x R, — R the soft thresholding function

z—0 ifxz>0,
n(x; 0) = { 0 if —0 <xz<49, (1.4)
z + 60 otherwise.

The algorithm constructs a sequence of estimates R”, and residuals’ € R", according to the
iteration

= n(A*2t + 25 0y), (1.5)

t
St :y—A:vt—i—Mzt_l,
initialized with z° = 0. Here A* denotes the transpose of matrix and||zt||o is number of non-
zero entries oft’. Given a scalar functiorf and a vectou € R™, we let f(u) denote the vector
(f(u1), ..., f(um)) € R™ obtained by applying componentwise. Finallyu) = m= 3", u; is
the average of the vectare R™.



As already mentioned, we will consider sequences of insmp€increasing sizes, along which the
LASSO behavior has a non-trivial limit.

Definition 1. The sequence of instancés,(N), w(N), A(N)}nen indexed byN is said to be a
converging sequendé zo(N) € RN, w(N) € R, A(N) € R™¥ with n = n(N) such that
n/N — ¢ € (0,00), and in addition the following conditions hold:

(a) The empiricat distribution of the entries af,(N) converges weakly to a probability measure
px, ONR with bounded second moment. Furthér® S | a4 ;(N)? — Epy, {X3}.

(b) The empirical distribution of the entries of V) converges weakly to a probability measupre
onR with bounded second moment. Furtmer' > | w;(N)? — E,,,, {W?}.

(¢) it {eit1i<i<n, e € RN denotes the standard basis, thenax;cin)|A(N)e;llz,
min;eny [[A(N)eill2 — 1,asN — oo where[N] = {1,2,..., N}.

For a converging sequence of instances, and an arbitrangseq of threshold§, }:>o (indepen-
dent of N'), the asymptotic behavior of the recursion (1.5) can beatttarized as follows.

Define the sequende?}:>o by settingrg = o2 + E{X2}/§ (for Xo ~ px, ando? = E{W?},
W ~ pw) and letting, for alt > 0: 72, = F(77, 6;) with

F(r2,6) = 0 + 3 E{ [n(Xo +72;0) — X'}

whereZ ~ N(0, 1) is independent oK. Notice that the functioft depends on the lay, .

We say a function) : R2 — R is pseudo-Lipschitif there exist a constarlt > 0 such that for all
z,y € R% [(x) — ¥(y)| < L(1 + ||z|2 + |lyll2)]lz — yl|2. (This is a special case of the definition
used in [BM10a] where such a function is called pseudo-Llifizof order 2)

Our next proposition that was conjectured in [DMMO09] andya in [BM10a]. It shows that the
behavior of AMP can be tracked by the above one dimensiorars®n. We often refer to this
prediction bystate evolution

Theorem 1([BM10a]). Let{zo(N),w(N), A(N)}nen be a converging sequence of instances with
the entries ofd(V) iid normal with mear) and variancel /n and lety) : R x R — R be a pseudo-
Lipschitz function. Then, almost surely

N
Jim % ; b(@ T mo,) = E{w(n(xo Y1 Z:0,), Xo)} : (1.6)

whereZ ~ N(0, 1) is independent oK ~ px,.

In order to establish the connection with the LASSO, a spegifilicy has to be chosen for the
thresholds{6, },>o. Throughout this paper we will tak = a7, with « is fixed. In other words,
the sequencér; };>¢ is given by the recursion? ; = F(77,ar). This choice enjoys several
convenient properties [DMMO9].

1.2 Mainresult

Before stating our results, we have to describeabbration mapping betweerx and \ that was
introduced in [DMM10] (Propositions 2, 3 and Corollary 4hdir proofs are presented in [BM10b].
Let us start by stating some convenient properties of thie stalution recursion.

Proposition 2([DMMO09]). Letamin = amin(0) be the unique non-negative solution of the equation
(1 4+ a®)®(—a) — ap(a) = 3, with ¢(2) = e~*/2/\/2r the standard gaussian density and
D(z) = ffoo ¢(x) dx.

For anyo? > 0, @ > amin(9), the fixed point equation’ = F(72, ar) admits a unique solution.
Denoting byr. = 7.(«) this solution, we havim;,_,., 7: = 7.(«). Further the convergence takes
place for any initial condition and is monotone. Finalif5 (72, a7)| < 1 atr = ..

The probability distribution that puts a point massV at each of theV entries of the vector.



We then define the function — A(a) on (amin(6), ), by A(a) = ar,[1 — tP{| X, + 7. 2| >
at}].

This function defines a correspondence (calibration) betwtbe sequence of thresholft },>¢
and the regularization parameter It should be intuitively clear that largercorresponds to larger
thresholds and hence largessince both cases yield smaller estimatespf

In the following we will need to invert this function. We thdgfinea : (0,00) — (@min, 00) in
such away that(A) € { a € (min,0) : A(a) = A}.

The next result implies that the set on the right-hand sideisempty and therefore the function
A= ) is well defined.

Proposition 3 ((DMM10]). The functiomn — A(«) is continuous on the intervdbyiy, oo) with
)\(amin+) = —0 andlima_mo )\(CY) = 00.

Therefore the function — () satisfyinga(X) € { a € (amin, 00) : A(a) = A} exists.

We will denote byA = «((0, o)) the image of the function.. Notice that the definition of is a
priori not unique. We will see that uniqueness follows from our nth@orem.

Examples of the mappingg — F(72, a7), a — 7.(a) anda — \(«) are presented in [BM10b].

We can now state our main result.

Theorem 2. Let{z(V), w(N), A(N)} nven be a converging sequence of instances with the entries
of A(N) iid normal with mean0 and variancel /n. Denote byz(\; N) the LASSO estimator

for instance(zo(N), w(N), A(N)), with 02, A > 0, P{X, # 0} and lety) : R x R — R be a
pseudo-Lipschitz function. Then, almost surely

N
lim > (@ w04) = E{w(n(Xo + 7. 230.), Xo) } 1.7)
i=1

whereZ ~ N(0,1) is independent oK ~ px,, 7« = T« (a(\)) andf, = a(N) 7. (a(N)).

As a corollary, the function — «()) is indeed uniquely defined.

Corollary 4. For any \,0? > 0 there exists a unique > au,i, such that\(a) = X\ (with the
functiona — A(a) defined by\ (o) = a7, [1 — tP{|Xo + 7. Z| > ar.}].

Hence the function — «(\) is continuous non-decreasing witt{(0, o0)) = A = (ag, 00).

The assumption of a converging problem-sequence is impofta the result to hold, while the
hypothesis of gaussian measurement matrit@s) is necessary for the proof technique to be cor-
rect. On the other hand, the restrictions> > 0, andP{X, # 0} > 0 (whencer, # 0 using
Ma) = ar [l — 3$P{|Xo + 7. Z| > ar.}]) are made in order to avoid technical complications due
to degenerate cases. Such cases can be resolved by cgranguitnents.

1.3 Related work

The LASSO was introduced in [Tib96, CD95]. Several papeoviple performance guarantees for
the LASSO or similar convex optimization methods [CRT06,0C][ by proving upper bounds on
the resulting mean square error. These works assume arpaigpedisometry’ condition to hold for
A. While such condition hold with high probability for someaclom matrices, it is often difficult to
verify them explicitly. Further, it is only applicable to mesparse vectorsy. These restrictions are
intrinsic to the worst-case point of view developed in [CBTCTO7].

Guarantees have been proved for correct support recovgfyy 6], under an appropriate ‘irrepre-
sentibility’ assumption oml. While support recovery is an interesting conceptualiwafor some
applications (e.g. model selection), the metric considi@nehe present paper (mean square error)
provides complementary information and is quite standardany different fields.

Closer to the spirit of this paper [RFG09] derived expressifor the mean square error under
the same model considered here. Similar results were fsgseacently in [KWT09, GBS09].
These papers argue that a sharp asymptotic charactenipdtive LASSO risk can provide valuable



guidance in practical applications. For instance, it canded to evaluate competing optimization
methods on large scale applications, or to tune the regaléwn parametex.

Unfortunately, these results were non-rigorous and wetaindd through the famously powerful
‘replica method’ from statistical physics [MMO09].

Let us emphasize that the present paper offers two advantage these recent developmen(ts:
Itis completelyrigorous, thus putting on a firmer basis this line of resear@h); It is algorithmicin
thatthe LASSO mean square error is shown to be equivalem¢torte achieved by a low-complexity
message passing algorithm.

2 Numerical illustrations

Theorem 2 assumes that the entries of matriare iid gaussians. We expect however that our
predictions to be robust and hold for much larger family oftmicas. Rigorous evidence in this
direction is presented in [KM10] where the normalized a®&k)/N is shown to have a limit as
N — oo which is universal with respect to random matricesvith iid entries. (More precisely, it

is universal ifE{4;;} = 0, E{A4?;} = 1/n andE{A};} < C/n? for a uniform constant'.)

Further, our result is asymptotic, while and one might wartdev accurate it is for instances of
moderate dimensions.

Numerical simulations were carried out in [DMM10] and susigibat the result is robust and rel-
evant already fofV of the order of a few hundreds. As an illustration, we pregerftigures 1-3
the outcome of such simulations for four types of real dathrandom matrices. We generated the
signal vector randomly with entries {a+-1, 0, —1} andP(zq ; = +1) = P(xo,; = —1) = 0.05. The
noise vectow was generated by using i.i.tl(0, 0.2) entries.

We obtained the optimum estimatorusingOALQN andl 1_I s, packages for solving large-scale
I1-regularized regressions [KKi07], [AJO7]. We used!0 values of\ between05 and2 and N

equal to500, 1000, and2000. For each case, the poifik, MSE) was plotted and the results are
shown in the figures. Continuous lines corresponds to thepttic prediction by Theorem 2 for

¥(a,b) = (a — b)?, namelyMSE = limy_,oc N7!|Z — 20||? = E{ [n(Xo + 7.Z;0.) — XO]Q} =
5(12 — o?).

*

The agreement is remarkably good alreadyXon of the order of a few hundreds, and deviations
are consistent with statistical fluctuations.

The four figures correspond to measurement matrices

Figure 1(a): Data consist o253 measurements of expression level7f77 genes (this data is
provided to us by Broad Institute). From this matrix we took-snatricesA of aspect ratio for
eachN. The entries were continuous variables. We standardizedlalmns of A to have mean 0
and variance 1.

Figure 1(b): From a data set of932 patient records we extracté@33 binary features describing
demographic information, medical history, lab resultsdioations etc. Thé-1 matrix was sparse
(with only 3.1% non-zero entries). Similar to genes data, for ed¢lthe sub-matriced with aspect
ratio 5 were selected and standardized.

Figure 2(a): Random+1 matrices with aspect ratid Each entry is independently equakd /\/n
or —1/+/n with equal probability.

Figure 2(b): Random gaussian matrices with aspect r&éémd iidN(0, 1/n) entries (as in Theorem
2).

Notice the behavior appears to be essentially indistitgike. Also the asymptotic prediction has
a minimum as a function of. The location of this minimum can be used to select the regalton
parameter. Further empirical analysis is presented in [RBM

For the second data set —patient records— we repeated thiagon 20 times (each time with fresh
2o andw) and obtained the average and standard error for MSE, Fatseve Rate (FPR) and True
Positive Rate (TPR). The results with error bars are shoviaigare 3. The length of each error bar
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Figure 1: Mean square error (MSE) as a function of the regaalion parametek compared to the
asymptotic prediction fof = .5 ando? = .2. In plot (a) the measurement matrikis a real valued
(standardized) matrix of gene expression data and in pJot {b a (standardized) 0-1 feature matrix
of hospital records. Each point in these plots is generagdihding the LASSO predictof using

a measurement vectgr= Axq + w for an independent signal vecteg and an independent noise
vectorw.

0.4r

(a) £1 matrices

0.4r

(b) Gaussian matrices

o N=500 o N=500
o N=1000 o N=1000
0.35- + N=2000 0.35- *+ N=2000
— Predictior — Predictior
0.3 0.3
0.25 0.25
w w
%] %]
= =

0.2
0.15-

01}

0.08

Figure 2: As in Figure 1, but the measurement mattikas iid entries that are equal #o1 /\/n
with equal probabilities in plot (a), and has K0, 1/n) entries in plot (b). Additionally, each paint
in these plots uses an independent matkrix

is equal to twice the standard error (in each direction). BRRTPR are calculated using

N
rpR= izt Mooz 00} 2.1)
= ~ , .
i=1 ]1{11:,0:0} i=1 H{wi,oﬂ}
wherelsy = 1 if statementS holds andl;sy; = 0 otherwise. The predictions for FPR and TPR

are obtained by applying Theorem 249, (a, b) = I{,203l{p—0) aNdipr(a,b) = Laz03lipz0}
which yields

FPR=

)

N
Zi:l ]I{i#O}]I{M,o:O}
N

lim FPR=2®(—a), &mlTPquw—a+-5y+¢@u—~l) 2.2)
— 00

N—00 Tx Tx

where® is defined in Proposition 2. Note that functiong,, (a, b) andy,, (a, b) are not pseudo-
Lipschitz but the limits (2.2) follow from Theorem 2 via stéard weak-convergence arguments.

3 A structural property and proof of the main theorem

We will prove the following theorem which implies our mairstdt, Theorem 2.

Theorem 3. Assume the hypotheses of Theorem 2. DenofefyV) }:>( the sequence of estimates
produced byAMP. Thenlim; o, limy 00 N71||2H(N) — Z(X; N)||3 = 0, almost surely.
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Figure 3: Average of MSE, FPR and TPR versusr medical data, using 20 samples peandN.
All parameters are similar to Figure 1(b). Error bars areéthe standard errors (in each direction).

The rest of the paper is devoted to the proof of this theoreznti@h 3.1 proves a structural property
that is the key tool in this proof. Section 3.2 uses this prgpegether with a few lemmas to prove
Theorem 3. Proofs of lemmas and more details can be foundvii (B].

The proof of Theorem 2 follows immediately. Since whers Lipschitz there is a constaBtwhere
1L SN (@t ao,) — & 0N (i, w0,4)| < BJlat! — |2, We then obtain

N N
S = _ 1 N 41 _ )
Jim = Z} (@i, w0,) = lim Jim Z} Y2 wo,0) = E{e(n(Xo + 7.2;6), Xo)}

where we used Theorem 1 and Proposition 2. The case of pdapsichitz is a straightforward
generalization.

Some notations. For any non-empty subsgtof [m] and anyk x m matrix M we refer byM ¢ to
thek by |S| sub-matrix ofM that contains only the columns 8f corresponding t&. Also define
the scalar productu,v) = L Y™ u;v; for u,v € R™. Finally, the subgradient of a convex
function f : R™ — R at pointz € R™ is denoted byof(x). In particular, remember that the
subgradient of thé, norm,z — ||z||; is given by

d|lz|r = {v € R™ such thatv;| < 1Viandz; # 0 = v; = sign(z;)} . (3.2)

3.1 Astructural property of the LASSO cost function

One main challenge in the proof of Theorem 2 lies in the faat the functionz — C4 ,(z) is not
—in general- strictly convex. Hence there can be, in priecipectorse of cost very close to the
optimum and nevertheless far from the optimum. The follgrhiemma provides conditions under
which this does not happen.

Lemma 1. There exists a functiog(c, c1, . . ., ¢5) such that the following happens. af r € RY
satisfy the following conditions:



@) lIrllz < etV N; () Clz+r) <C(=);

(3) There exists a subgradiest(C, z) € 9C(x) with ||sg(C, z)||2 < VN ¢;

(4) Letv = (1/N)[A*(y — Az) +s0(C,x)] € O||z||1, andS(cz) = {i € [N] : |vi| > 1 — c2}.
Then, for anys’” C [N], |S'| < c3N, we haveryin(Ag(c,)usr) > ¢

(5) The maximum and minimum non-zero singular vf'zllueélo&';\tisfycg1 < omin(4)? <
O'max(*A)2 S Cs.
Then||r|ls < VN &(e, ¢, ..., cs). Further for anyey, ..., c5 > 0,£(g,c1, ..., c5) — 0ase — 0.

Further, ifker(A) = {0}, the same conclusion holds under conditions 1, 2, 3, and 5.

3.2 Proof of Theorem 3

The proofis based on a series of Lemmas that are used to direeksumptions of Lemma 1
The next lemma implies that submatricesAftonstructed using the firstiterations of the AMP
algorithm are non-singular (more precisely, have singuddwes bounded away frof).

Lemma 2. Let S C [N] be measurable on the-algebra&; generated by{z°, ..., 2!} and
{20 + A0 ... at~1 + A*2171} and assuméS| < N(§ — c¢) for somec > 0. Then there exists
a1 = ai(c) > 0 (independent of) andaz = az(c,t) > 0 (depending ort and ¢) such that
ming {omin(Asus’) : S C [N],|S’| < a1 N} > az, with probability converging td as N — .

We will apply this lemma to a specific choice of the setNamely, defining

D 1 (71 4+ A% — oty (3.2)
i1
our last lemma shows convergence of a particular sequersstoprovided by?.
Lemma 3. Fix v € (0,1) and let the sequencgS;(v)}:>o be defined bys(v) = {i € [N] :
i > 1 — 'y}. For any¢ > 0 there exists,. = t.(£,7) < oo such that, for allte > t1 > t.:

lim o P{[S0, (1) \ St ()] > NE} = 0.

The last two lemmas imply the following.

Proposition 5. There exist constantg € (0,1), 2, 73 > 0 andt,, < oo such that, for any
t > tmin, Min {Omin(Asg, (y1yus) © S C [N], |8’ < 72N} > ~3 with probability converging to
lasN — oo.

Proof of Theorem 3We apply Lemma 1 ta = =, the AMP estimate and = 7 — z? the distance
from the LASSO optimum. The thesis follows by checking conditions 1-5. anwe need to
show that there exists constamts...,cs > 0 and, for eacte > 0 somet = t(¢) such that 1-5
hold with probability going td asN — oc.

Condition 1holds sincéimy_, o (Z, Z) andlimy _, . (xt, 2t) for all ¢ are finite.
Condition 2is immediate since + r = Z minimizesC( - ).

Conditions 3-4.Takev = v* as defined in Eg. (3.2). Using the definition (1.5), it is easgheck
thatv! € d|z||;. Further it can be shown that = (1/\)[A*(y — Az') 4+ sg(C, z')], with sg(C, x*)

a subgradient satisfyingm;_, . limy_- N ~!||sg(C, 2")||> = 0. This proves condition 3 and
condition 4 holds by Proposition 5.

Condition 5follows from standard limit theorems on the singular valoEgishart matrices. O
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