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Abstract

We consider the problem of learning a coefficient vectorx0 ∈ R
N from noisy

linear observationy = Ax0 + w ∈ R
n. In many contexts (ranging from model

selection to image processing) it is desirable to constructa sparse estimator̂x.
In this case, a popular approach consists in solving anℓ1-penalized least squares
problem known as the LASSO or Basis Pursuit DeNoising (BPDN).
For sequences of matricesA of increasing dimensions, with independent gaus-
sian entries, we prove that the normalized risk of the LASSO converges to a limit,
and we obtain an explicit expression for this limit. Our result is the first rigor-
ous derivation of an explicit formula for the asymptotic mean square error of the
LASSO for random instances. The proof technique is based on the analysis of
AMP, a recently developed efficient algorithm, that is inspired from graphical
models ideas.
Through simulations on real data matrices (gene expressiondata and hospital med-
ical records) we observe that these results can be relevant in a broad array of prac-
tical applications.

1 Introduction

Let x0 ∈ R
N be an unknown vector, and assume that a vectory ∈ R

n of noisy linear measure-
ments ofx0 is available. The problem of reconstructingx0 from such measurements arises in a
number of disciplines, ranging from statistical learning to signal processing. In many contexts the
measurements are modeled by

y = Ax0 + w , (1.1)

whereA ∈ R
n×N is a known measurement matrix, andw is a noise vector.

The LASSO or Basis Pursuit Denoising (BPDN) is a method for reconstructing the unknown vector
x0 given y, A, and is particularly useful when one seeks sparse solutions. For givenA, y, one
considers the cost functionsCA,y : RN → R defined by

CA,y(x) =
1

2
‖y −Ax‖2 + λ‖x‖1 , (1.2)

with λ > 0. The original signal is estimated by

x̂(λ;A, y) = argminx CA,y(x) . (1.3)

In what follows we shall often omit the argumentsA, y (and occasionallyλ) from the above nota-
tions. We will also usêx(λ;N) to emphasize theN -dependence. Further‖v‖p ≡ (

∑m
i=1 v

p
i )

1/p

denotes theℓp-norm of a vectorv ∈ R
p (the subscriptp will often be omitted ifp = 2).

A large and rapidly growing literature is devoted to(i) Developing fast algorithms for solving the
optimization problem (1.3);(ii) Characterizing the performances and optimality of the estimatorx̂.
We refer to Section 1.3 for an unavoidably incomplete overview.
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Despite such substantial effort, and many remarkable achievements, our understanding of (1.3) is
not even comparable to the one we have of more classical topics in statistics and estimation theory.
For instance, the best bound on the mean square error (MSE) of the estimator (1.3), i.e. on the
quantityN−1‖x̂ − x0‖2, was proved by Candes, Romberg and Tao [CRT06] (who in fact did not
consider the LASSO but a related optimization problem). Their result estimates the mean square
error only up to an unknown numerical multiplicative factor. Work by Candes and Tao [CT07] on
the analogousDantzig selector, upper bounds the mean square error up to a factorC logN , under
somewhat different assumptions.

The objective of this paper is to complement this type of ‘rough but robust’ bounds by proving
asymptotically exactexpressions for the mean square error. Our asymptotic result holds almost
surely for sequences of random matricesA with fixed aspect ratio and independent gaussian entries.
While this setting is admittedly specific, the careful studyof such matrix ensembles has a long
tradition both in statistics and communications theory andhas spurred many insights [Joh06, Tel99].
Further, our main result provides asymptotically exact expressions for other operating characteristics
of the LASSO as well (e.g., False Positive Rate and True positive Rate). We carried out simulations
on real data matrices with continuous entries (gene expression data) and binary feature matrices
(hospital medical records). The results appear to be quite encouraging.

Although our rigorous results are asymptotic in the problemdimensions, numerical simulations have
shown that they are accurate already on problems with a few hundreds of variables. Further, they
seem to enjoy a remarkableuniversalityproperty and to hold for a fairly broad family of matrices
[DMM10]. Both these phenomena are analogous to ones in random matrix theory, where delicate
asymptotic properties of gaussian ensembles were subsequently proved to hold for much broader
classes of random matrices. Also, asymptotic statements inrandom matrix theory have been re-
placed over time by concrete probability bounds in finite dimensions. Of course the optimization
problem (1.2) is not immediately related to spectral properties of the random matrixA. As a conse-
quence, universality and non-asymptotic results in randommatrix theory cannot be directly exported
to the present problem. Nevertheless, we expect such developments to be foreseeable.

Our proof is based on the analysis of an efficient iterative algorithm first proposed by [DMM09],
and called AMP, for approximate message passing. The algorithm is inspired by belief-propagation
on graphical models, although the resulting iteration is significantly simpler (and scales linearly
in the number of nodes). Extensive simulations [DMM10] showed that, in a number of settings,
AMP performances are statistically indistinguishable to the ones of LASSO, while its complexity is
essentially as low as the one of the simplest greedy algorithms.

The proof technique just described is new. Earlier literature analyzes the convex optimization prob-
lem (1.3) –or similar problems– by a clever construction of an approximate optimum, or of a dual
witness. Such constructions are largely explicit. Here instead we prove an asymptotically exact
characterization of a rather non-trivial iterative algorithm. The algorithm is then proved to converge
to the exact optimum. Due to limited space in this paper we only state the main steps of the proof.
More details are available in [BM10b]

1.1 Definitions

In order to define the AMP algorithm, we denote byη : R×R+ → R the soft thresholding function

η(x; θ) =

{
x− θ if x > θ,
0 if −θ ≤ x ≤ θ,
x+ θ otherwise.

(1.4)

The algorithm constructs a sequence of estimatesxt ∈ R
N , and residualszt ∈ R

n, according to the
iteration

xt+1 = η(A∗zt + xt; θt), (1.5)

zt = y −Axt +
‖xt‖0
n

zt−1 ,

initialized with x0 = 0. HereA∗ denotes the transpose of matrixA, and‖xt‖0 is number of non-
zero entries ofxt. Given a scalar functionf and a vectoru ∈ R

m, we letf(u) denote the vector
(f(u1), . . . , f(um)) ∈ R

m obtained by applyingf componentwise. Finally〈u〉 ≡ m−1
∑m

i=1 ui is
the average of the vectoru ∈ R

m.
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As already mentioned, we will consider sequences of instances of increasing sizes, along which the
LASSO behavior has a non-trivial limit.

Definition 1. The sequence of instances{x0(N), w(N), A(N)}N∈N indexed byN is said to be a
converging sequenceif x0(N) ∈ R

N , w(N) ∈ R
n, A(N) ∈ R

n×N with n = n(N) such that
n/N → δ ∈ (0,∞), and in addition the following conditions hold:

(a) The empirical1 distribution of the entries ofx0(N) converges weakly to a probability measure
pX0

onR with bounded second moment. FurtherN−1
∑N

i=1 x0,i(N)2 → EpX0
{X2

0}.

(b) The empirical distribution of the entries ofw(N) converges weakly to a probability measurepW
onR with bounded second moment. Furthern−1

∑n
i=1 wi(N)2 → EpW

{W 2}.

(c) If {ei}1≤i≤N , ei ∈ R
N denotes the standard basis, thenmaxi∈[N ] ‖A(N)ei‖2,

mini∈[N ] ‖A(N)ei‖2 → 1, asN → ∞ where[N ] ≡ {1, 2, . . . , N}.

For a converging sequence of instances, and an arbitrary sequence of thresholds{θt}t≥0 (indepen-
dent ofN ), the asymptotic behavior of the recursion (1.5) can be characterized as follows.

Define the sequence{τ2t }t≥0 by settingτ20 = σ2 + E{X2
0}/δ (for X0 ∼ pX0

andσ2 ≡ E{W 2},
W ∼ pW ) and letting, for allt ≥ 0: τ2t+1 = F(τ2t , θt) with

F(τ2, θ) ≡ σ2 +
1

δ
E{ [η(X0 + τZ; θ) −X0]

2} ,

whereZ ∼ N(0, 1) is independent ofX0. Notice that the functionF depends on the lawpX0
.

We say a functionψ : R2 → R is pseudo-Lipschitzif there exist a constantL > 0 such that for all
x, y ∈ R

2: |ψ(x)− ψ(y)| ≤ L(1 + ‖x‖2 + ‖y‖2)‖x− y‖2. (This is a special case of the definition
used in [BM10a] where such a function is called pseudo-Lipschitz of order 2.)

Our next proposition that was conjectured in [DMM09] and proved in [BM10a]. It shows that the
behavior of AMP can be tracked by the above one dimensional recursion. We often refer to this
prediction bystate evolution.

Theorem 1([BM10a]). Let{x0(N), w(N), A(N)}N∈N be a converging sequence of instances with
the entries ofA(N) iid normal with mean0 and variance1/n and letψ : R×R → R be a pseudo-
Lipschitz function. Then, almost surely

lim
N→∞

1

N

N∑

i=1

ψ
(
xt+1
i , x0,i

)
= E

{
ψ
(
η(X0 + τtZ; θt), X0

)}
, (1.6)

whereZ ∼ N(0, 1) is independent ofX0 ∼ pX0
.

In order to establish the connection with the LASSO, a specific policy has to be chosen for the
thresholds{θt}t≥0. Throughout this paper we will takeθt = ατt with α is fixed. In other words,
the sequence{τt}t≥0 is given by the recursionτ2t+1 = F(τ2t , ατt). This choice enjoys several
convenient properties [DMM09].

1.2 Main result

Before stating our results, we have to describe acalibration mapping betweenα andλ that was
introduced in [DMM10] (Propositions 2, 3 and Corollary 4). Their proofs are presented in [BM10b].

Let us start by stating some convenient properties of the state evolution recursion.

Proposition 2([DMM09]) . Letαmin = αmin(δ) be the unique non-negative solution of the equation
(1 + α2)Φ(−α) − αφ(α) = δ

2 , with φ(z) ≡ e−z2/2/
√
2π the standard gaussian density and

Φ(z) ≡
∫ z

−∞
φ(x) dx.

For anyσ2 > 0, α > αmin(δ), the fixed point equationτ2 = F(τ2, ατ) admits a unique solution.
Denoting byτ∗ = τ∗(α) this solution, we havelimt→∞ τt = τ∗(α). Further the convergence takes
place for any initial condition and is monotone. Finally

∣∣ dF
dτ2 (τ

2, ατ)
∣∣ < 1 at τ = τ∗.

1The probability distribution that puts a point mass1/N at each of theN entries of the vector.
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We then define the functionα 7→ λ(α) on (αmin(δ),∞), by λ(α) ≡ ατ∗[1 − 1
δP{|X0 + τ∗Z| ≥

ατ∗}].
This function defines a correspondence (calibration) between the sequence of thresholds{θt}t≥0

and the regularization parameterλ. It should be intuitively clear that largerλ corresponds to larger
thresholds and hence largerα since both cases yield smaller estimates ofx0.

In the following we will need to invert this function. We thusdefineα : (0,∞) → (αmin,∞) in
such a way thatα(λ) ∈

{
a ∈ (αmin,∞) : λ(a) = λ

}
.

The next result implies that the set on the right-hand side isnon-empty and therefore the function
λ 7→ α(λ) is well defined.

Proposition 3 ([DMM10]) . The functionα 7→ λ(α) is continuous on the interval(αmin,∞) with
λ(αmin+) = −∞ andlimα→∞ λ(α) = ∞.

Therefore the functionλ 7→ α(λ) satisfyingα(λ) ∈
{
a ∈ (αmin,∞) : λ(a) = λ

}
exists.

We will denote byA = α((0,∞)) the image of the functionα. Notice that the definition ofα is a
priori not unique. We will see that uniqueness follows from our maintheorem.

Examples of the mappingsτ2 7→ F(τ2, ατ), α 7→ τ∗(α) andα 7→ λ(α) are presented in [BM10b].

We can now state our main result.

Theorem 2. Let{x0(N), w(N), A(N)}N∈N be a converging sequence of instances with the entries
of A(N) iid normal with mean0 and variance1/n. Denote bŷx(λ;N) the LASSO estimator
for instance(x0(N), w(N), A(N)), with σ2, λ > 0, P{X0 6= 0} and letψ : R × R → R be a
pseudo-Lipschitz function. Then, almost surely

lim
N→∞

1

N

N∑

i=1

ψ
(
x̂i, x0,i

)
= E

{
ψ
(
η(X0 + τ∗Z; θ∗), X0

)}
, (1.7)

whereZ ∼ N(0, 1) is independent ofX0 ∼ pX0
, τ∗ = τ∗(α(λ)) andθ∗ = α(λ)τ∗(α(λ)).

As a corollary, the functionλ 7→ α(λ) is indeed uniquely defined.

Corollary 4. For anyλ, σ2 > 0 there exists a uniqueα > αmin such thatλ(α) = λ (with the
functionα→ λ(α) defined byλ(α) = ατ∗[1− 1

δP{|X0 + τ∗Z| ≥ ατ∗}].
Hence the functionλ 7→ α(λ) is continuous non-decreasing withα((0,∞)) ≡ A = (α0,∞).

The assumption of a converging problem-sequence is important for the result to hold, while the
hypothesis of gaussian measurement matricesA(N) is necessary for the proof technique to be cor-
rect. On the other hand, the restrictionsλ, σ2 > 0, andP{X0 6= 0} > 0 (whenceτ∗ 6= 0 using
λ(α) = ατ∗[1 − 1

δP{|X0 + τ∗Z| ≥ ατ∗}]) are made in order to avoid technical complications due
to degenerate cases. Such cases can be resolved by continuity arguments.

1.3 Related work

The LASSO was introduced in [Tib96, CD95]. Several papers provide performance guarantees for
the LASSO or similar convex optimization methods [CRT06, CT07], by proving upper bounds on
the resulting mean square error. These works assume an appropriate ‘isometry’ condition to hold for
A. While such condition hold with high probability for some random matrices, it is often difficult to
verify them explicitly. Further, it is only applicable to very sparse vectorsx0. These restrictions are
intrinsic to the worst-case point of view developed in [CRT06, CT07].

Guarantees have been proved for correct support recovery in[ZY06], under an appropriate ‘irrepre-
sentibility’ assumption onA. While support recovery is an interesting conceptualization for some
applications (e.g. model selection), the metric considered in the present paper (mean square error)
provides complementary information and is quite standard in many different fields.

Closer to the spirit of this paper [RFG09] derived expressions for the mean square error under
the same model considered here. Similar results were presented recently in [KWT09, GBS09].
These papers argue that a sharp asymptotic characterization of the LASSO risk can provide valuable
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guidance in practical applications. For instance, it can beused to evaluate competing optimization
methods on large scale applications, or to tune the regularization parameterλ.

Unfortunately, these results were non-rigorous and were obtained through the famously powerful
‘replica method’ from statistical physics [MM09].

Let us emphasize that the present paper offers two advantages over these recent developments:(i)
It is completelyrigorous, thus putting on a firmer basis this line of research;(ii) It is algorithmicin
that the LASSO mean square error is shown to be equivalent to the one achieved by a low-complexity
message passing algorithm.

2 Numerical illustrations

Theorem 2 assumes that the entries of matrixA are iid gaussians. We expect however that our
predictions to be robust and hold for much larger family of matrices. Rigorous evidence in this
direction is presented in [KM10] where the normalized costC(x̂)/N is shown to have a limit as
N → ∞ which is universal with respect to random matricesA with iid entries. (More precisely, it
is universal ifE{Aij} = 0, E{A2

ij} = 1/n andE{A6
ij} ≤ C/n3 for a uniform constantC.)

Further, our result is asymptotic, while and one might wonder how accurate it is for instances of
moderate dimensions.

Numerical simulations were carried out in [DMM10] and suggest that the result is robust and rel-
evant already forN of the order of a few hundreds. As an illustration, we presentin Figures 1-3
the outcome of such simulations for four types of real data and random matrices. We generated the
signal vector randomly with entries in{+1, 0,−1} andP(x0,i = +1) = P(x0,i = −1) = 0.05. The
noise vectorw was generated by using i.i.d.N(0, 0.2) entries.

We obtained the optimum estimatorx̂ usingOWLQN andl1 ls, packages for solving large-scale
l1-regularized regressions [KKL+07], [AJ07]. We used40 values ofλ between.05 and2 andN
equal to500, 1000, and2000. For each case, the point(λ,MSE) was plotted and the results are
shown in the figures. Continuous lines corresponds to the asymptotic prediction by Theorem 2 for
ψ(a, b) = (a− b)2, namelyMSE = limN→∞N−1‖x̂− x0‖2 = E

{[
η(X0 + τ∗Z; θ∗)−X0

]2}
=

δ(τ2∗ − σ2).

The agreement is remarkably good already forN,n of the order of a few hundreds, and deviations
are consistent with statistical fluctuations.

The four figures correspond to measurement matricesA:

Figure 1(a): Data consist of2253 measurements of expression level of7077 genes (this data is
provided to us by Broad Institute). From this matrix we took sub-matricesA of aspect ratioδ for
eachN . The entries were continuous variables. We standardized all columns ofA to have mean 0
and variance 1.

Figure 1(b): From a data set of1932 patient records we extracted4833 binary features describing
demographic information, medical history, lab results, medications etc. The0-1 matrix was sparse
(with only3.1% non-zero entries). Similar to genes data, for eachN , the sub-matricesAwith aspect
ratio δ were selected and standardized.

Figure 2(a):Random±1 matrices with aspect ratioδ. Each entry is independently equal to+1/
√
n

or−1/
√
n with equal probability.

Figure 2(b):Random gaussian matrices with aspect ratioδ and iidN(0, 1/n) entries (as in Theorem
2).

Notice the behavior appears to be essentially indistinguishable. Also the asymptotic prediction has
a minimum as a function ofλ. The location of this minimum can be used to select the regularization
parameter. Further empirical analysis is presented in [BBM10].

For the second data set –patient records– we repeated the simulation 20 times (each time with fresh
x0 andw) and obtained the average and standard error for MSE, False Positive Rate (FPR) and True
Positive Rate (TPR). The results with error bars are shown inFigure 3. The length of each error bar
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Figure 1: Mean square error (MSE) as a function of the regularization parameterλ compared to the
asymptotic prediction forδ = .5 andσ2 = .2. In plot (a) the measurement matrixA is a real valued
(standardized) matrix of gene expression data and in plot (b)A is a (standardized) 0-1 feature matrix
of hospital records. Each point in these plots is generated by finding the LASSO predictor̂x using
a measurement vectory = Ax0 + w for an independent signal vectorx0 and an independent noise
vectorw.
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Figure 2: As in Figure 1, but the measurement matrixA has iid entries that are equal to±1/
√
n

with equal probabilities in plot (a), and has iidN(0, 1/n) entries in plot (b). Additionally, each point
in these plots uses an independent matrixA.

is equal to twice the standard error (in each direction). FPRand TPR are calculated using

FPR≡
∑N

i=1 I{x̂i 6=0}I{xi,0=0}∑N
i=1 I{xi,0=0}

, TPR≡
∑N

i=1 I{x̂i 6=0}I{xi,0 6=0}∑N
i=1 I{xi,0 6=0}

, (2.1)

whereI{S} = 1 if statementS holds andI{S} = 0 otherwise. The predictions for FPR and TPR
are obtained by applying Theorem 2 toψfpr(a, b) ≡ I{a 6=0}I{b=0} andψtpr(a, b) = I{a 6=0}I{b6=0},
which yields

lim
N→∞

FPR= 2Φ(−α), lim
N→∞

TPR= Φ(−α+
1

τ∗
) + Φ(−α− 1

τ∗
) (2.2)

whereΦ is defined in Proposition 2. Note that functionsψfpr(a, b) andψtpr(a, b) are not pseudo-
Lipschitz but the limits (2.2) follow from Theorem 2 via standard weak-convergence arguments.

3 A structural property and proof of the main theorem

We will prove the following theorem which implies our main result, Theorem 2.

Theorem 3. Assume the hypotheses of Theorem 2. Denote by{xt(N)}t≥0 the sequence of estimates
produced byAMP. Thenlimt→∞ limN→∞N−1‖xt(N)− x̂(λ;N)‖22 = 0, almost surely.
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Figure 3: Average of MSE, FPR and TPR versusλ for medical data, using 20 samples perλ andN .
All parameters are similar to Figure 1(b). Error bars are twice the standard errors (in each direction).

The rest of the paper is devoted to the proof of this theorem. Section 3.1 proves a structural property
that is the key tool in this proof. Section 3.2 uses this property together with a few lemmas to prove
Theorem 3. Proofs of lemmas and more details can be found in [BM10b].

The proof of Theorem 2 follows immediately. Since whenψ is Lipschitz there is a constantB where
| 1N

∑N
i=1 ψ(x

t+1
i , x0,i)− 1

N

∑N
i=1 ψ(x̂i, x0,i)| ≤ B‖xt+1 − x̂‖2. We then obtain

lim
N→∞

1

N

N∑

i=1

ψ(x̂i, x0,i) = lim
t→∞

lim
N→∞

1

N

N∑

i=1

ψ
(
xt+1
i , x0,i

)
= E{ψ(η(X0 + τ∗Z; θ∗), X0)} ,

where we used Theorem 1 and Proposition 2. The case of pseudo-Lipschitzψ is a straightforward
generalization.

Some notations. For any non-empty subsetS of [m] and anyk×m matrixM we refer byMS to
thek by |S| sub-matrix ofM that contains only the columns ofM corresponding toS. Also define
the scalar product〈u, v〉 ≡ 1

m

∑m
i=1 ui vi for u, v ∈ R

m. Finally, the subgradient of a convex
function f : Rm → R at pointx ∈ R

m is denoted by∂f(x). In particular, remember that the
subgradient of theℓ1 norm,x 7→ ‖x‖1 is given by

∂‖x‖1 =
{
v ∈ R

m such that|vi| ≤ 1 ∀i andxi 6= 0 ⇒ vi = sign(xi)
}
. (3.1)

3.1 A structural property of the LASSO cost function

One main challenge in the proof of Theorem 2 lies in the fact that the functionx 7→ CA,y(x) is not
–in general– strictly convex. Hence there can be, in principle, vectorsx of cost very close to the
optimum and nevertheless far from the optimum. The following Lemma provides conditions under
which this does not happen.

Lemma 1. There exists a functionξ(ε, c1, . . . , c5) such that the following happens. Ifx, r ∈ R
N

satisfy the following conditions:
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(1) ‖r‖2 ≤ c1
√
N ; (2) C(x+ r) ≤ C(x);

(3) There exists a subgradientsg(C, x) ∈ ∂C(x) with ‖sg(C, x)‖2 ≤
√
N ε;

(4) Letv ≡ (1/λ)[A∗(y − Ax) + sg(C, x)] ∈ ∂‖x‖1, andS(c2) ≡ {i ∈ [N ] : |vi| ≥ 1 − c2}.
Then, for anyS′ ⊆ [N ], |S′| ≤ c3N , we haveσmin(AS(c2)∪S′) ≥ c4

(5) The maximum and minimum non-zero singular value ofA satisfy c−1
5 ≤ σmin(A)

2 ≤
σmax(A)

2 ≤ c5.

Then‖r‖2 ≤
√
N ξ(ε, c1, . . . , c5). Further for anyc1, . . . , c5 > 0, ξ(ε, c1, . . . , c5) → 0 asε→ 0.

Further, ifker(A) = {0}, the same conclusion holds under conditions 1, 2, 3, and 5.

3.2 Proof of Theorem 3

The proof is based on a series of Lemmas that are used to check the assumptions of Lemma 1

The next lemma implies that submatrices ofA constructed using the firstt iterations of the AMP
algorithm are non-singular (more precisely, have singularvalues bounded away from0).

Lemma 2. Let S ⊆ [N ] be measurable on theσ-algebraSt generated by{z0, . . . , zt−1} and
{x0 + A∗z0, . . . , xt−1 + A∗zt−1} and assume|S| ≤ N(δ − c) for somec > 0. Then there exists
a1 = a1(c) > 0 (independent oft) and a2 = a2(c, t) > 0 (depending ont and c) such that
minS′{σmin(AS∪S′) : S′ ⊆ [N ], |S′| ≤ a1N} ≥ a2, with probability converging to1 asN → ∞.

We will apply this lemma to a specific choice of the setS. Namely, defining

vt ≡ 1

θt−1
(xt−1 +A∗zt−1 − xt) , (3.2)

our last lemma shows convergence of a particular sequence ofsets provided byvt.

Lemma 3. Fix γ ∈ (0, 1) and let the sequence{St(γ)}t≥0 be defined bySt(γ) ≡
{
i ∈ [N ] :

|vti | ≥ 1 − γ
}

. For anyξ > 0 there existst∗ = t∗(ξ, γ) < ∞ such that, for allt2 ≥ t1 ≥ t∗:
limN→∞ P

{
|St2(γ) \ St1(γ)| ≥ Nξ

}
= 0.

The last two lemmas imply the following.

Proposition 5. There exist constantsγ1 ∈ (0, 1), γ2, γ3 > 0 and tmin < ∞ such that, for any
t ≥ tmin, min

{
σmin(ASt(γ1)∪S′) : S′ ⊆ [N ] , |S′| ≤ γ2N

}
≥ γ3 with probability converging to

1 asN → ∞.

Proof of Theorem 3.We apply Lemma 1 tox = xt, the AMP estimate andr = x̂− xt the distance
from theLASSO optimum. The thesis follows by checking conditions 1–5. Namely we need to
show that there exists constantsc1, . . . , c5 > 0 and, for eachε > 0 somet = t(ε) such that 1–5
hold with probability going to1 asN → ∞.

Condition 1holds sincelimN→∞〈x̂, x̂〉 andlimN→∞〈xt, xt〉 for all t are finite.

Condition 2is immediate sincex+ r = x̂ minimizesC( · ).
Conditions 3-4.Takev = vt as defined in Eq. (3.2). Using the definition (1.5), it is easy to check
thatvt ∈ ∂‖x‖1. Further it can be shown thatvt = (1/λ)[A∗(y−Axt) + sg(C, xt)], with sg(C, xt)
a subgradient satisfyinglimt→∞ limN→∞N−1‖sg(C, xt)‖2 = 0. This proves condition 3 and
condition 4 holds by Proposition 5.

Condition 5follows from standard limit theorems on the singular valuesof Wishart matrices.
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