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ABSTRACT
This paper reports on our analysis of the 2011 CAMRa Chal-
lenge dataset (Track 2) for context-aware movie recommen-
dation systems. The train dataset comprises 4 536 891 ra-
tings provided by 171 670 users on 23 974 movies, as well as
the household groupings of a subset of the users. The test
dataset comprises 5 450 ratings for which the user label is
missing, but the household label is provided. The challenge
required to identify the user labels for the ratings in the test
set.

Our main finding is that temporal information (time labels
of the ratings) is significantly more useful for achieving this
objective than the user preferences (the actual ratings). Us-
ing a model that leverages on this fact, we are able to identify
users within a known household with an accuracy of approx-
imately 96% (i.e. misclassification rate around 4%).

Categories and Subject Descriptors
G.3. [Probability and Statistics]: Correlation and re-
gression analysis; I.2.6 [Learning]: Parameter learning

General Terms
Algorithms, Performance

1. INTRODUCTION
The incorporation of contextual information is likely to play
an ever-increasing role in recommendation systems because
of the broad availability of such information, and the need
for more accurate systems. Among sources of contextual
information, the social structure of a given pool of users
is particularly interesting in view of the potential conver-
gence between online social networks and recommendation
systems.

In this paper we investigate the relation between social struc-
ture and users behavior within a recommendation system,
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Any size Size 2 Size 3 Size 4
Misclassification rate 0.0406 0.0413 0.0268 0.0463

Table 1: Best misclassification rates obtained for the
challenge data set (Track 2). We report the aver-
age misclassification rate over all households, aver-
age over all households of size 2, of size 3 and of size
4 respectively.

through the analysis of the CAMRa 2011 dataset (Track 2).
Our results are summarized in Table 1.

In the remainder of this section we describe the challenge
data set, we explain the performance metrics used, we give
an overview of the algorithms we propose and their corre-
sponding results, and finally we give a short overview of
related work.

1.1 Description of the data set
The training data consists of a collection of 4 536 891 ra-
tings. Each entry (rating) takes the form

(i, j,Mij , tij). (1)

Here i ∈ [m] (with m = 171 670) is a user ID, j ∈ [n] (with
n = 23 974) is a movie ID, Mij (with 0 ≤ Mij ≤ 100) is the
rating provided by user i on movie j, and tij is the time-
stamp of that rating. (Throughout this paper we denote by
[N ] = {1, . . . , N} the set of first N integers.) We denote
by E ⊆ [m]× [n] the subset of user-movie pairs for which a
rating is available.

The training data also includes information about the house-
hold structure of a subset of users. This provided in the form
of 290 household-composition tuples

(H, i1, . . . , ik) . (2)

Here H is a household ID, and i1, . . . , iL are the IDs of users
belonging to household H . The number L of users in the
same household varies between 2 and 4. We will write i ∈ H
to indicate that user i belongs to household H . For instance,
given the above tuple, we know that i1, . . . , iL ∈ H .

The test data comprises 5 450 tuples of the form

(H, j,MHj , tHj) , (3)

whereby H is an household ID, j is a movie ID, MHj is a
rating provided by one of the users in H for movie j, and



tHj is the corresponding time-stamp. The challenge Track 2
requires to infer the user i ∈ H that actually provided these
ratings.

In the following, we denote by Train the train set, and by
Test the test set.

1.2 Performance metrics
Of the 290 households, the vast majority, namely 272, is
formed by 2 users, while 14 include 3 users, and only 4
are formed by 4 users. As a consequence of this, a purely
random inference algorithm achieves an average misclassifi-
cation rate over all households that is slightly above 50%
(indeed, approximately 0.511). The same random inference
algorithm achieves an average misclassification rate of 50%
over households of size 2, of 66% over households of size 3
and 75% over households of size 4. This performance pro-
vides a baseline for the algorithms developed in this paper.

As a performance metric we will use standard ROC variables
(true positive rate and one minus false positive rate). More
precisely, given a household with two users i = 1 and i = 2,
we let T1 and T2 be the total number of entries in Test, that
correspond to user 1 and user 2 respectively while, TP1(Alg),
TP2(Alg) are the the number of those entries assigned by
algorithm Alg to 1 and 2. Then the corresponding true
positive rates are

TPR1(Alg) =
TP1(Alg)

T1
, TPR2(Alg) =

TP2(Alg)

T2
. (4)

Notice that TPR2(Alg) is equal to one minus the false pos-
itive rate in predicting 1, so these are the usual ROC vari-
ables. This definition is generalized in the obvious way in
the case of 3- and 4-user households.

The total misclassification rate per householdH is defined as
follows in terms of the above quantities (always considering
2-user households but easily generalized)

P(Alg, H) ≡ 1− TP1(Alg) + TP2(Alg)

T1+ T2
. (5)

We define P to be the average of P(Alg,H) over all house-
holds. We also compute the average of P(Alg,H) over house-
holds of size 2 only, of size 3 only and size 4 only. We denote
these values by P2, P3 and P4 respectively.

In order to obtain a 2-dimensional ROC curve, we will plot
the true positive rate for -say- user 1 against the true positive
rate for the union of users 2 and 3.

1.3 Overview of algorithms and results
We will consider three classes of methods that incorporate
increasing amounts of contextual information:

1. Low-rank approximation, cf. Section 2, provides an ef-
fective tool to embed the collection of movies and users at
hand, within a low-dimensional latent space R

r, r ≪ m,n.
A high rating provided by user i on movie j corresponds to
latent space vectors with large inner product. We use the
latent vectors associated with users within the same house-
hold to infer which user rated a certain movie, by selecting
the latent vector whose inner product with the movie vector
best reproduces the observed rating. Generalizing [11], we

extend these models to include temporal variability, in both
users’ and movies’ latent vectors. If our temporal units are
the 12 months of the year, the resulting model achieves an
overall misclassification rate P ≈ 0.3735.

2. The second group of methods, cf. Section 3, makes a
crucial use of temporal patterns in the users rating behavior.
Indeed, our single most striking discovery is that different
users within the same household exhibit very well separated
viewing habits. These habits are clearly demonstrated by
comparing the distribution of ratings across the days of the
week for two users in the same household. For a large num-
ber of households, these distributions have almost disjoint
support. A simple algorithm that uniquely uses the day of
the week to infer the user identity, achieves a misclassifica-
tion rate P ≈ 0.1154. We also discuss a generative model
which incorporates both ratings (through low-rank approx-
imation) and temporal patterns, achieving P ≈ 0.0950.

3. Section 4 proposes a unified framework based on binary
classification to exploit latent space information as well as
temporal information, and additional contextual informa-
tion. The binary classification ‘module’ we use is regular-
ized logistic regression, but could be replaced by a number of
equivalent methods. By using composite feature vectors in-
cluding several types of information, we achieve P ≈ 0.0406.

1.4 Related work
Several aspects of our investigation confirm claims of earlier
work, such as the usefulness of low-rank approximation [3,
12] and the importance of accounting for temporal evolution
[12, 5]. At the same time, the present dataset allows us to
provide striking evidence of these two points. Furthermore,
the precise form of temporal patterns and their extraction in
the form of weekly and daily habits is novel and extremely
powerful.

The importance of the time of day as context for recommen-
dations has been noted in the past, e.g., in recommending
music tracks [1, 2]. Our most striking finding is that, in the
challenge dataset, users within a given household tend to
view and rate movies at different times of the day and dif-
ferent days of the week. Thus, time is an important factor
not only in recommendations but also in user identification.

2. LOW-RANK APPROXIMATION
This section consists of three parts, dealing respectively with
rating prediction from a training set, rating classification in
a test set, and evaluation of the misclassification rate on the
challenge data set. We first propose two collaborative filter-
ing methods, based on low-rank matrix completion, to pre-
dict the missing ratings in a training set. The first method
relies only on the ratings provided in the training set to
predict the missing ratings. The second method also fac-
tors in the context by taking into account the temporal in-
formation in the training set. We then turn our attention
to the test set, containing household ratings, and use the
aforementioned prediction models to identify which user in
a household provided a given rating in the test set. Finally,
we evaluate our methods on the challenge dataset, and pro-
vide empirical results in terms of misclassification rate and
ROC curve.



Algorithm 1 Low rank approximation
procedure Initialization

∀(i, j) ∈ [m] × [r], u
(0)
ij

∼
U[0,1]√

m

∀(i, j) ∈ [r]× [n], v
(0)
ij

∼
U[0,1]√

n

∀i ∈ [m], z
(0)
i

= 50

procedure Iterations(K)
for k = 1 . . .K do

for i = 1 . . .m do

u
(k)
i

= g
(

V
(k−1)
Ei

, MT
iEi

− 1|Ei|z
(k−1)
i

, λ
)

for j = 1 . . . n do

v
(k)
j

= g
(

U
(k)
Fj

T
, MFj j − z

(k−1)
Fj

, λ
)

for i = 1 . . .m do

z
(k)
i

= g
(

1T|Ei|, MT
iEi

− V
(k)
Ei

T
u
(k)
i

, 0
)

Return (U(K), V (K), Z(K))

Throughout this section, we denote by x ∼ U [a, b] a random
variable x uniformly distributed in [a, b]. For x, y ∈ R

n,
〈x, y〉 = xT y =

∑n

ℓ=1 xℓyℓ denotes the usual inner product,
and ‖x‖2 = 〈x, x〉. For M ∈ R

m×n, ‖M‖F is its Froebenius
norm. We let 1n = [1, . . . , 1]T , and In be the identity matrix
of size n.

2.1 Simple low-rank approximation

2.1.1 Model

A simple low rank model is obtained by approximating the
matrix of ratings M ∈ R

m×n by a low-rank matrix M̂ =
UV T +Z1Tn , where matrix U = [u1| · · · |um]T is of size m×r,
matrix V = [v1| · · · |vn]T is of size n × r, and the column
vector Z = [z1, . . . , zm]T is of length m. Each vector ui ∈ R

r

is associated with a user i ∈ [m], and each vector vj ∈ R
r

corresponds to a movie j ∈ [n]. The column vector Z models
the rating bias of each user. Matrices U , V and Z are found
by minimizing the following regularized empirical ℓ2 loss

C(U, V, Z) ≡1

2

∑

(i,j)∈E

(

Mij−〈ui, vj〉−zi
)2

+
λ

2
‖U‖2F +

λ

2
‖V ‖2F .

(6)

2.1.2 Alternate minimization

The cost function (6) is non convex, but several iterative
minimization methods have been developed with excellent
performances in practical settings [15, 14, 7, 13, 16]. Perfor-
mances guarantees for algorithms of this family were proved
in [8, 9], under suitable assumptions on the matrix M . Al-
ternative approaches based on convex relaxations have been
studied in [4, 6].

In this paper we adopt a simple alternate minimization al-
gorithm (see e.g. [11, 7] for very similar algorithms). Each
iteration of the algorithm consists of three steps: in the first
step, V and Z are fixed, and U is updated by minimizing
(6); then U and Z are fixed, and V is updated; finally, U and
V are fixed and Z updated. A pseudocode for the algorithm
is presented in Algorithm 1. The algorithm stops after K
iterations, and returns the triplet (U, V, Z).

Since the cost (6) is separately quadratic in each of U , V
and Z, each of the steps can be performed by matrix inver-
sion. In fact, the problem presents a convenient separable

structure. For instance, the problem of minimizing over U
is separable in u1, u2, . . . , um. Minimizing C(U, V, Z) over
a vector ui is equivalent to a Ridge regression in ui, whose
exact solution is given by

ui = (VEi
VEi

T + λIr)
−1VEi

(Mi Ei
− zi1

T
|Ei|

)T , (7)

where Ei = {j ∈ [n]|(i, j) ∈ E}, Mi Ei
= [mij ]j∈Ei

∈
R

1×|Ei|, and VEi
= [vj ]j∈Ei

∈ R
r×|Ei|. In order to con-

cisely represent this basic update, we define the function
g as follows. Given a matrix A ∈ R

r×n, a column vector
x ∈ R

n, and a real number α, β ∈ R, we let g(A,x,α) ≡
(AAT + αIr)

−1Ax. The above update then reads ui =
g(VEi

, MT
iEi

− 1|Ei|zi, λ). Define Fj = {i ∈ [n]|(i, j) ∈ E}.
proceeding analogously for the minimization over V and Z,
we obtain Algorithm 1.

2.2 Low rank approximation with

time-dependent factors
In this section, we extend the previous low-rank prediction
model to account for temporal information.

2.2.1 Model

In this model, we bin time into T bins of equal duration,
indexed by b ∈ {1, . . . , T}. Given that user i rates movie j
at time tij , we denote by b(tij) ∈ [T ] the unique bin index
for the observed rating of the pair (i, j).

Let M ∈ R
m×n×T be the three-dimensional rating tensor

whose entry Mij(b) represents the rating that user i ∈ [m]
would give to movie j ∈ [n] at a time in bin b ∈ [T ]. The
matrix M(b) ∈ R

m×n represents the rating matrix in bin b.
From a training set of observed ratings {Mij(b)|(i, j) ∈ E},
we predict the missing ratings by approximating each matrix
M(b), b ∈ [T ] by a low rank matrix M̂(b) = U(b)V (b)T +
Z(b)1Tn . This is a natural extension of the model in Sec-
tion 2.1. Matrices U(b) ∈ R

m×r, V (b) ∈ R
n×r and Z(b) ∈

R
m×1 are stacked in the tensors U ∈ R

m×r×T , V ∈ R
r×n×T

and Z ∈ R
m×1×T respectively. We obtain the tensors (U, V, Z)

by minimizing the following regularized ℓ2 loss

C(U, V, Z) ≡ Rλ,ξu(U) +Rλ,ξv (V ) +R0,ξz (Z)+

1

2

∑

(i,j)∈E

(Mij(b(tij))−〈ui(b(tij)), vj(b(tij))〉−zi(b(tij)))
2, (8)

where the regularization terms are of the form

Rλ,ξ(U) =
λ

2

T
∑

b=1

‖U(b)‖2F +
ξ

2

T−1
∑

b=1

‖U(b + 1)−U(b)‖2F . (9)

Each regularization function consists of two terms: the first
term is an ℓ2 regularization for shrinkage, while the second
term promotes smooth time-variation. Note that by setting
the number of bins to T = 1, this model reduces to the
time-independent model described in Section 2.1. The same
happens by letting ξu, ξv, ξz → ∞.

2.2.2 Alternate minimization

In order to minimize the cost function (8), we generalize the
alternate minimization algorithm of Section 2.1.2. Namely
we cycle over the time bin index b and, for each b, we se-
quentially minimize over U(b), V (b) and Z(b), while keeping
U(b′), V (b′) and Z(b′), b′ 6= b fixed. As before, each of these



Algorithm 2 Time-dependent low rank approximation
procedure Initialization

∀(i, j, b) ∈ [m]× [r] × [T ], uij(b)
(0)

∼
U[0,1]√

m

∀(i, j, b) ∈ [r]× [n] × [T ], vij(b)
(0)

∼
U[0,1]√

n

∀(i, b) ∈ [m] × [T ], zi(b(t))
(0) = 50

procedure Iterations(K,T )
for k = 1 . . .K do

for b = 1 . . . T do
for i = 1 . . .m do

ui(b)
(k) = h

(

V
(k−1)

Ei(b)
, MT

iEi(b)
− 1|Ei(b)|zi(b)

(k−1), ui(b + 1)(k−1) + ui(b − 1)(k), λ + 2ξu, ξu

)

for j = 1 . . . n do

vj(b)
(k) = h

(

U
(k)

Fj(b)

T
, MFj(b) j − zFj

(b)(k), vj(b + 1)(k−1) + vj(b − 1)(k), λ + 2ξv , ξv

)

for i = 1 . . .m do

zi(b)
(k) = h

(

1T|Ei(b)| , Mi Ei(b)
T

− V
(k)

Ei(b)

T
ui(b)

(k), zi(b + 1)(k−1) + zi(b − 1)(k), 2ξz , ξz

)

Return (U(K), V (K), Z(K))

three minimization problems is quadratic and hence solvable
efficiently. Further, each of these quadratic problems is sep-
arable across user indices (for minimization over U and Z)
or movie indices (for minimization over V ). On the other
hand, it is not separable across time bins because of the sec-
ond term in the regularization function, cf. Eq. (9). As a
consequence, the update steps change somewhat. Consider
–to be definite– the minimization over U . A straightforward
calculation yields the following expression for the minimum
over ui(b), when all other variables are kept constant

ui(b) =
(

VEi(b)VEi(b)
T + (λ+ 2ξu)Ir

)−1

×
(

VEi(b)(Mi Ei(b) − zi(b)1
T
|Ei(b)|

)T + ξu (ui(b+ 1) + ui(b− 1))
)

where we assumed b ∈ {2, . . . , T − 1} (the boundary cases
b = 1, T yield slightly different expressions). Defining
h(A, x, y, α, β) = (AAT + αIr)

−1(Ax + βy), the above can
be written as ui(b) = h(VEi(b), M

T
iEi(b)

−1|Ei(b)|zi(b), ui(b+
1) + ui(b− 1), λ+ 2ξu, ξu).

Analogous expressions hold for minimization over zi(b) and
vj(b). A complete pseudocode is provided in Algorithm 2.

2.3 Household rating classification and results
For each entry in the test set, the goal is to identify which
user in the household provided the rating. In this sec-
tion, our approach uses the rating and the corresponding
time-stamp provided within the test set, and the low rank
model obtained from the training set. Given a rating MHj

within household H = {i1, . . . iL}, the simplest idea is to
attribute the rating to the user i ∈ H for which the pre-
dicted rating is closest to MHj . In other words, we return

argmini∈H |MHj − M̂ij(b(tHj))|.

In order to explore the tradeoff between precision and accu-
racy through an ROC curve, we slightly generalize this rule
by introducing a parameter α ≥ 0, and proceed as follows.

(a) First, for each user i ∈ H , we compute the difference:

|MHj − M̂ij(b(tHj))|.

(b) Consider the first user i1 ∈ H . If

α|MHj − M̂i1j(b(tHj))| < min
i∈H\i1

|MHj − M̂ij(b(tHj))|,

we conclude that user i1 provided the household rating
MHj . Otherwise, we conclude it was some other user
in the household.

2.3.1 Parameter selection and results

We will limit ourselves to discussing the results obtained
with time-dependent factorization, since this method leads
to more accurate predictions, and it subsumes the time-
independent approach as a special case.

We evaluated the accuracy through cross-validation for sev-
eral choices of the regularization parameters. Figure 1 shows
the average misclassification rate versus the number of itera-
tions for various values of parameters. The misclassification
rate is close to 37%, and seems to become stable after about
50 iterations. We thus fixedK = 50, and selected the follow-
ing values of parameters by minimizing the misclassification
rate: number of bins T = 12; rank r = 10; regularization
parameters λ = 1, ξu = 10, ξv = ξz = 40. Let us emphasize
that we did not perform an exhaustive search over all sets of
possible values, which could lead to further improvements.

The results in Figure 1 were obtained by random-subsampling
cross-validation. We averaged over 5 different splits of the
dataset into training set and test set. In each split, the test
set was selected by randomly hiding approximately 4% of
the data of each household. The curves obtained with the
original training and test sets provided in the challenge are
close to the ones in Figure 1. Our cross validation procedure
is more reliable from a statistical point of view. We will keep
to this procedure for the rest of the paper and only mention
eventual discrepancies with respect to the original split in
test and training set provided in the challenge.

Figure 2 shows the ROC curve achieved by the present clas-
sification method, for varying α. Each point of the curve cor-
responds to the average of the pair (TPR1(α),TPR2(α)) over
all households in a (Train,Test) pair and over all (Train,Test)
pairs (splits). Bars show the standard deviation from the
mean over different (Train,Test) splits.

3. TEMPORAL SIGNATURES
Although our matrix factorization model captures the evolu-
tion of user and movie profiles throughout the 12-month pe-
riod of the dataset, it does not make direct use of the rating
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
P
R
1

TPR2

Figure 2: TPR of user 1 in each household vs. TPR
of any other user.

time-stamp in order to classify ratings within a household.
The time-stamp is only used indirectly, namely to compute
the predicted ratings M̂ij .

On the other hand, temporal behavior —especially weekly
behavior— appears to be extremely useful in distinguish-
ing users within the same household. Household members
exhibit distinct temporal patterns in their viewing habits.
Rather than viewing movies together, in many households
users consistently rate movies at different days of the week.

As a result, the day of the week on which a movie is
rated provides a surprisingly good predictor of the user who
watched it. We exploit this finding below, and propose a
generative model that incorporates the day of the week as
well as the movie rating.

3.1 Temporal patterns in user behavior
Clear temporal patterns emerge when considering the day
of the week on which ratings are given. Most importantly,
the temporal patterns in the viewing behavior of members
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Figure 3: Histograms of rating events across days of
the week (day 1 is Sunday) for four households. The
first three households have two members, while the
fourth has three. For each day of the week, we plot
|H | histograms in different colors, each indicating the
number of viewing events of a household member.

of the same household turn out to be very well separated.

As an illustration, Figure 3 shows the frequencies with which
users view movies on different days of the week for four
households (labeled 1, 200, 203, and 266 in the training
set). We see that, in households 1, 203, and 266, house-
hold members tend to view and rate movies at very distinct
days of the week. For example, in household 1, one user
watches movies mostly on Sunday and Saturday, while the
other watches movies in the middle of the week.

This phenomenon is repeated in most of the households
in the training set. In order to quantify our observation,
let pi(d) denote the empirical probability distribution of
rating events associated with user i ∈ [m] over different
days d ∈ W = {Sun,Mon, . . . ,Sat} (normalized so that
∑

d∈W pi(d) = 1). We define the average total variation
of a household H as

δH =
1

|H |(|H | − 1)

∑

i,i′∈H

‖pi − pi′‖TV ,

where we recall that ‖p − q‖TV =
∑

d∈W
1
2
|p(d) − q(d)|.

By definition δH ∈ [0, 1], with δH = 1 corresponding to a
household in which no two users both rated a movie on the
same day of the week (possibly in different weeks).

Figure 4 shows the empirical probability distribution of δH
across different households H . The distribution of δH is
well concentrated around 1, with more than 70% having
δH > 0.8. This is a quantitative measure of the phenomenon
suggested by Figure 3.

3.2 Viewer prediction based on time-stamps
In this section, we present three simple predictors of the
household member who watches a movie. Our third predic-



tor exploits the fact that the day of the week can serve as a
very good indicator of which member is watching a movie, as
suggested by Figure 4. Our predictors maximize the likeli-
hood a given member rated a movie; each predictor assumes
a different model of how movie ratings take place.

The simplest model assumes that each time a movie is
watched in household H , the user i ∈ H is chosen at random
with distribution qH(i) independent of everything else. This
probability can be estimated from the training set as follows
for household H (we suppress the household subscript since
this is fixed to H throughout):

q(i) =
|{(i′, j,Mi′j , ti′j) ∈ Train : i′ = i}|
|{i′, j,Mi′j , ti′j) ∈ Train : i′ ∈ H}| .

Given a time t at which a movie is viewed, recall that b(t) ∈
{1, . . . , T} denotes the time bin. As in the previous section,
we use T = 12 here (one bin per month). In the second
model, the probability that the rating was given by user i
depends only on the time bin b(t) in which it occurred, and
is independent from everything else, conditional on b(t):

q(i | b(t)) = |{(i′, j,Mi′j , ti′j)∈Train : i′= i ∧ b(ti′j)=b(t)}|
|{i′, j,Mi′j , ti′j)∈Train : i′∈H ∧ b(ti′j)=b(t)}| .

Finally, let d(t) ∈ W = {Sun,Mon, . . .Sat} be the day of
the week at which the viewing occurs. Our third model
assumes that the user who rated the movie is independent
from everything else, conditional on the day of the week:

q(i | d(t)) = |{(i′, j,Mi′j , ti′j)∈Train : i′= i ∧ d(ti′j)=d(t)}|
|{i′, j,Mi′j , ti′j)∈Train : i′∈H ∧ d(ti′j)=d(t)}| .

Given a tuple (H, j,MHj , tHj) ∈ Test, we can consider the
following three simple classification algorithms:

argmax
i∈H

q(i), argmax
i∈H

q(i | b(tHj)), argmax
i∈H

q(i | d(tHj)).

Note that the second and third algorithms make use of the
time at which a viewing event takes place. None of the three
uses the actual rating MHj given by the user. We present
an algorithm that does use the rating in the next section.

3.3 Generative model
In order to account for ratings given by the users in our
prediction, we introduce a generative model for how users
rate movies. Our model assumes that the rating given by
a user is normally distributed around the prediction made
by the low rank approximation algorithm of Section 2. In
particular, recall that the predicted rating of a user i ∈ [m]
viewing movie j ∈ [n] at time t is given by

M̂ij(b(t)) = zi(b(t)) + 〈ui(b(t)), vj(b(t))〉 (10)

where ui, vj ∈ R
r are the vectors associated with i and

j, respectively, and zi is the centering component. This
prediction depends on the time-stamp t only through the
bin b(t). Figure 5(a) shows the distribution of the residual
error

Mij − M̂i,j(b(tij))

across all user/movie pairs (i, j) in the training set. The
distribution seems to be well approximated by a normal dis-
tribution, Figure 5(b) shows the distribution of residuals for
a single user (user with ID 56094 in the training set). This
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Figure 4: Histogram of the average total variation
distance δH across the 290 households in the training
dataset. The majority of households have an aver-
age total variation close to 1, indicating that the
distributions of rating events by different household
members have almost disjoint supports.
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Figure 5: PDF of the residual error across (a) all
ratings in the training dataset and (b) all ratings
given by a single user. The distributions are well
approximated by normals.

still roughly agrees with a Gaussian distribution, although
not as closely as for the overall distribution.

This motivates modeling the rating given by a user i for a
movie j at time t by a normal distribution N(M̂ij(b(t)), σ),

where M̂ij(b(t)) is given by (10) and σ2 is the variance of
the residual error, as estimated from the training set. More
specifically, given that a user from household H views a
movie j at time tHj , we model the joint probability that (a)
user i ∈ H is the rater and (b) i gives a rating M as follows:

P(i,M) =
1

S
e
−
(M−M̂ij(b(tHj )))2

2σ2 q(i) . (11)

where S ≡
√
2πσ2. Alternative models are obtained if we

condition on the bin or the day of the rating, as discussed
in the previous section:

P(i,M | b(tHj)) =
1

S
e
−
(M−M̂ij (b(tHj )))2

2σ2 q(i | b(tHj)), (12)

P(i,M | d(tHj)) =
1

S
e
−
(M−M̂ij (b(tHj )))2

2σ2 q(i | d(tHj)). (13)



σ = ∞ σ = σall σ = σi

q(i) 0.3916±0.0081 0.3264±0.0102 0.3066±0.0112
q(i |b(tHj)) 0.3626±0.0080 0.2956±0.0065 0.2777±0.0084
q(i |d(tHj)) 0.1129±0.0066 0.1008±0.0066 0.0966±0.0072

Table 2: Misclassification rates P for algorithms of
Sections 3.2 and 3.3, with standard deviations de-
rived over five iterations of cross validation.

Given a tuple (H, j,MHj , tHj) ∈ Test, the posterior proba-
bility that i ∈ H is the movie viewer under the above three
generative models can be written as:

P(i | MHj , · ) = P(i,MHj | · )/
∑

i′∈H

P(i′,MHj | · ).

As a result, the following rule can be used as a classifier of
tuples (H, j,MHj , tHj) ∈ Test:

argmax
i∈H

P(i,MHj | · )

where P(i,MHj | · ) is given for each of the three generative
models by (11), (12) an (13), respectively.

3.4 Empirical results
We evaluated the classification algorithms of Sections 3.2
and 3.3 by cross validation on the training and test sets,
as described in Section 2.3.1. For classifiers based on the
generative models of Section 3.3, the low-rank model was
selected to be the same as in Section 2.3.1 (in particular we
used T = 12, r = 10, λ = 1, ξu = 10, ξv = ξz = 40).

The results are summarized in Table 2 in terms of the mis-
classification rate. The first column of the table (σ = ∞)
corresponds to the classifiers of Section 3.2 (not using the
ratings). The second and third columns correspond to the
classifiers outlined in Section 3.3. In the second column, the
variance σ used in the normal distribution is estimated by
the empirical variance of the residual errors over all ratings
in the training set. In the third column, we used a user-
dependent variance σi for each i ∈ [m]. This is estimated
by the variance of the residual errors of ratings given by i.
Finally, each row corresponds to a different assumption on
the posterior probability q, with the second and third rows
corresponding to the use of bin and weekday information,
respectively (c.f. Eq. (12) and (13)).

We observe that, in all cases, using the bin information helps
compared to using the unconditional probability q(i), but
only marginally so. The largest improvement comes from
conditioning on the day of the week. This decreases the mis-
classification rate by a factor between 3 and 4 compared to
using the unconditional probability q(i). Incorporating the
generative model also decreases the misclassification rate:
classification using the generative model conditioned on the
day of the week, along with individual variances σi, outper-
forms all other methods, with P ≈ 0.0966.

As mentioned above, these are misclassification rates esti-
mated through five-fold cross-validation. We report these in
detail because they provide a metric that is statistically more
robust. When using the original split in train and test sets
provided in the challenge, we achieve (for the third column,
σ = σi) respectively P ≈ 0.3028 (model q(i)), 0.2765 (model

q(i|b(tHj))), 0.0950 (model q(i|d(tHj))). For this same split,
and for the model q(i|d(tHj)), the values for P2, P3 and P4

are 0.0940, 0.1051 and 0.1315 respectively.

Finally, these results remain excellent if evaluated in terms of
ROC curves, and Area Under the Curve (AUC). We compute
AUC as follows. Consider a household H , a user i, and the
corresponding probabilities pj = P(i | MHj , · ). Let a be the
number of unordered pairs (j, j′) such that pj > pj′ and j′

was indeed rated by i, while j was not. Let b be the product
between the number of entries in the test set that were rated
by user i and the number of entries that were not. Define
AUCi,H = 1−a/b. AUCi,H is the area under the ROC curve
for user i versus any other user in household H . We estimate
AUC by averaging the above quantity over i andH in the test
set for which b 6= 0. Using the original split in test and train
set provided with the challenge dataset, we obtain (again for
the third column, σ = σi) respectively AUC ≈ 0.6170 (model
q(i)), 0.6619 (model q(i|b(tHj))), 0.8947 (model q(i|d(tHj))).

4. A UNIFIED FRAMEWORK
While the generative models studied in the previous section
yield excellent results, it is possible to improve upon them
by including further contextual information. As an example,
the rating time-stamp also provides us information on the
time of the day at which the rating was entered. In many
households, the separation of temporal patterns discussed
in Section 3.1 becomes more acute when including the time
of the day. This raises the need of developing a systematic
scalable way of incorporating such information.

Our approach is to formulate the problem as a supervised
multinomial classification problem. The challenge of con-
structing a classifier can then be decoupled in two separate
two sub-tasks: (i) Constructing a generic multinomial clas-
sifier (or choosing one from the vast literature on this topic);
(ii) constructing a suitable set of features.

In order to illustrate this approach, we describe it for a de-
liberately simple classifier: ℓ1-regularized logistic regression.
Furthermore, we reduce the classification problem to a bi-
nary one. Fix a household H , and a user i ∈ H (omitting
hereafter reference to i and H whenever possible). Each rat-
ing event within household H is then characterized by the
pair (y,O). Here y is a binary variable, equal to 1 if and
only if the rating was provided by i, and O denotes collec-
tively the other available information about the event. We
then assume a logit model

P(y = 1|O) =
e〈θ,x(O)〉

1 + e〈θ,x(O)〉
, (14)

whereby x(O) ∈ R
p is a feature vector constructed from

the available information, and θ = θi,H ∈ R
p is a vector

of parameters to be fitted from the data. Assuming the
parameters are known, a rating will be attributed to user i
if this maximizes the probability (14) among all the users in
the same household.

In order to learn the parameters θ = θi,H , we consider
the training rating events within household H , and index
them by s ∈ {1, . . . , NH}. Denoting the s-th such event by



(ys,Os), we consider the regularized likelihood

L(θ) ≡ −
NH
∑

s=1

{

ys〈θ, x(Os)〉 − log
(

1 + e〈θ,x(Os)〉
)

+ λ1‖θ‖1 .

Once again we emphasize that regularized logistic regression
is not necessarily the best classification method, and our
approach accommodates alternative algorithms.

We implemented this procedure using l1logreg, a software
that minimizes L(θ) based on an interior point method de-
scribed in [10]. All the data was standardized before being
introduced into the solver. The algorithm was tested for dif-
ferent feature vectors constructed by including at most the
following:

(a) The day of the week of the rating (i.e. d(tij)) imple-
mented as a length-7 binary indicator vector.

(b) The hour of the day of the vector, implemented as a
length-24 binary indicator vector.

(c) The movie feature vector1 vj(b(tij)) ∈ R
r, learned from

the low-rank model of Section 2.2.

(d) The time bin b(tHj) implemented as a length-12 binary
indicator vector.

(e) The actual rating Mij ∈ {0, ..., 100} scaled and shifted
so that 0 corresponds to 1 and 100 to 5.

Table 3 shows how we reach our best values for P as we
include more and more features in the feature vector. Al-
though when doing cross validation including more feature
seems to help, for the challenge test set, not including the
rating produces best results. We note however that the way
we are using the regularized logistic regression can be eas-
ily improved by assigning different regularization weights to
different components of the feature vector (right now we are
using the same weight, λ1). This might explain why includ-
ing certain features is not improving the results.

With this choice of x(O), and λ1 = 0.01, we achieved mis-
classification rate P = 0.0419 ± 0.0026 and area under the
curve AUC = 0.9689±0.0027, as estimated through the sub-
sampling procedure described above. On the challenge test
set, and not including the ratings in x(O), the same perfor-
mance metrics evaluated to P = 0.0406 and AUC = 0.9611.

For the challenge test set the values of P2, P3 and P4 are
0.0413, 0.0268 and 0.0463 respectively. We note that the
misclassification rate is smaller for households with 3 users.

1The misclassification rate P ≈ 0.37 obtained using the low-
rank model in Section 2.3.1 can be lowered to 0.30 by binning
the time-stamps into 7 different bins, one per day of the
week. This suggests adopting a 7-bin model of vectors on
a per week-day (rather than per month) basis. However,
adopting a 7-bin model did not improve the performance of
the other classification algorithms introduced in the paper,
which rely on and outperform the low-rank model. This
is also the case when, in the unified framework described in
this section, we include in x(O) the vector vj(d(tHj)) instead
of vj(b(tHj)).

5 fold cross validation Challenge test set
(a) 0.1137 ± 0.0077 0.1142

(a), (b) 0.0483 ± 0.0039 0.0570
(a), (b), (c) 0.0468 ± 0.0032 0.0463
(a), ..., (d) 0.0423 ± 0.0020 0.0406

(a), ..., (e) 0.0419 ± 0.0026 0.0412

Table 3: Misclassification rates P using the regular-
ized logistic regression for λ1 = 0.01 and sequentially
including more features into the feature vector. The
performance of our best predictor on the challenge
test set is noted in bold.

This is contrary to the natural intuition that the more people
belong to a household the harder it should be to distinguish
between them.
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