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Abstract—The framework of Integral Quadratic Constraints of
Lessard et al. (2014) reduces the computation of upper bounds
on the convergence rate of several optimization algorithms to
semi-definite programming (SDP). Followup work by Nishihara
et al. (2015) applies this technique to the entire family of over-
relaxed Alternating Direction Method of Multipliers (ADMM).
Unfortunately, they only provide an explicit error bound for
sufficiently large values of some of the parameters of the
problem, leaving the computation for the general case as a
numerical optimization problem. In this paper we provide an
exact analytical solution to this SDP and obtain a general and
explicit upper bound on the convergence rate of the entire family
of over-relaxed ADMM. Furthermore, we demonstrate that it is
not possible to extract from this SDP a general bound better
than ours. We end with a few numerical illustrations of our
result and a comparison between the convergence rate we obtain
for the ADMM with known convergence rates for the Gradient
Descent.

I. INTRODUCTION

Consider the optimization problem

minimize f(x) + g(z)

subject to Ax+Bz = c
(1)

where x ∈ Rp, z ∈ Rq , A ∈ Rr×p, B ∈ Rr×q , and c ∈ Rr
under the following additional assumption, which we assume
throughout the paper.

Assumption 1.
1) The functions f and g are convex, closed and proper;
2) Let Sd(m,L) be the set of functions h : Rd → R ∪
{+∞} such that

m‖x− y‖2 ≤ (∇h(x)−∇h(y))T (x− y) ≤ L‖x− y‖2

for all x, y ∈ Rd where 0 < m ≤ L < ∞; We assume
that f ∈ Sp(m,L), in other words, f is strongly convex
and ∇f is Lipschitz continuous; and that g ∈ Sq(0,∞);

3) A is invertible and B has full column rank.

In this paper we give an explicit convergence rate bound
for a family of optimization schemes known as over-relaxed
ADMM when applied to the optimization problem (1). This
family is parametrized by α > 0 and ρ > 0 and when applied
to (1) takes the form in Algorithm 1. A classical choice of
parameters is α = 1 and ρ = 1. Several works have computed
specific rate bounds for the ADMM under specific different
regimes but a recent work by [2] allowed [1] to reduce the
analysis of this entire family of solvers to finding solutions for

Algorithm 1 Family of Over-Relaxed ADMM schemes (pa-
rameters ρ, α)

1: Input: f , g, A, B, c;
2: Initialize x0, z0, u0
3: repeat
4: xt+1 = argminx f(x) +

ρ
2‖Ax+Bzt − c+ ut‖2

5: zt+1 = argminz g(z) +
ρ
2‖αAxt+1 − (1 − α)Bzt +

Bz − αc+ ut‖2
6: ut+1 = ut + αAxt+1 − (1− α)Bzt +Bzt+1 − αc
7: until stop criterion

a semi-definite programming problem. This SDP has multiple
solutions and different solutions give different bounds on the
convergence rate of the ADMM, some better than others. In
their paper, [1] analyze this SDP numerically and also give
one feasible solution to this SDP when κ = (L/m)κ2A is
sufficiently large, κA being the condition number of A. They
further show, via a lower bound, that it is not possible to
extract from this SDP a rate that is much better than the rate
associated with their solution for large κ.

An important problem remains open that we solve in this
paper. Can we find a general explicit expression for the best1

solution of this SDP? The answer is yes. As we explain later,
our finding has both theoretical and practical interest.

II. MAIN RESULTS

We start by recalling the main result of [1] which is the
starting point of our work. Based on the framework proposed
in [2], it was later shown [1] that the iterative scheme of
Algorithm 1 can be written as a dynamical system involving
the matrices

Â =

[
1 α− 1
0 0

]
, B̂ =

[
α −1
0 −1

]
,

Ĉ1 =

[
−1 −1
0 0

]
, Ĉ2 =

[
1 α− 1
0 0

]
,

D̂1 =

[
−1 0
1 0

]
, D̂2 =

[
α −1
0 1

]
,

(2)

and the constants

m̂ =
m

σ2
1(A)

, L̂ =
L

σ2
p(A)

, (3a)

ρ0 = ρ(m̂L̂)−1/2, κ = κfκ
2
A. (3b)

1“Best” in the sense that it gives the smallest rate bound.



Above, κf = L/m, σ1(A) (σp(A)) denotes the largest (small-
est) singular value of the matrix A and κA = σ1(A)/σp(A) is
the condition number of A; Throughout the paper, if M is a
matrix κM denotes the condition number of M . Unless stated
otherwise, throughout the paper we hold on to the definitions
in (3).

The stability of this dynamical system is then related to
the convergence rate of Algorithm 1 which in turn involves
numerically solving a 4× 4 semidefinite program as stated in
following theorem.

Theorem 2 (See [1]). Let the sequences {xt}, {zt}, and {ut}
evolve according to Algorithm 1 with step size ρ > 0 and
relaxation parameter α > 0. Let ϕt = [zt, ut]

T and ϕ∗ be a
fixed point of the algorithm. Fix 0 < τ < 1 and suppose there
is a 2× 2 matrix P � 0 and constants λ1, λ2 ≥ 0 such that[

ÂTPÂ− τ2P ÂTPB̂

B̂TPÂ B̂TPB̂

]
+[

Ĉ1 D̂1

Ĉ2 D̂2

]T [
λ1M1 0
0 λ2M2

] [
Ĉ1 D̂1

Ĉ2 D̂2

]
� 0 (4)

where

M1 =

[
−2ρ−20 ρ−10 (κ1/2 + κ−1/2)

ρ−10 (κ1/2 + κ−1/2) −2

]
, (5)

M2 =

[
0 1
1 0

]
. (6)

Then for all t ≥ 0 we have

‖ϕt − ϕ∗‖ ≤ κB
√
κP τ

t. (7)

Notice that since A is non-singular, by step 6 in Algorithm
1, the rate bound τ also bounds ‖[xt, zt, ut]− [x∗, z∗, u∗]‖.

As already pointed out in [1], the weakness of Theorem 2
is that τ is not explicitly given as a function of the parameters
involved in the problem, namely κ, ρ0, and α. The factor κP in
(7) is also not explicitly given. Therefore, for given values of
these parameters one must perform a numerical search to find
the minimal τ such that (4) is feasible. This in turn implies, for
example, that to optimally tune the ADMM using this bound
one might have perform this numerical search multiple times
scanning the parameter space (α, ρ0).

While from a practical point of view this may be enough for
many purposes, this procedure can certainly introduce delays
if, for example, (4) is used in an adaptive scheme where after
every few iterations we estimate a local value for κ and then
re-optimize α and ρ. Therefore, it is desirable to have an
explicit expression for the smallest τ that Theorem 2 can give,
from which the optimal values of the parameters follow. This
expression is also desirable from a theoretical point of view.
Our main goal in this paper is to complete the work initiated
in [1], thus providing an explicit formula for the rate bound
that the method of [2] can give for the over-relaxed ADMM.

Two of the most explicit bound rates that resemble the
bound we give in this section are the ones found in [7] and
[8]. The authors in [7] analyze the Douglas-Rachford splitting

method, a scheme different but related to the one we analyze
in this paper, for a problem similar to (1), and give a rate
bound of 1 − α

1+
√
κf

where α is a step size and κf = L/m

where L and m bound the curvature of the objective function
in the same sense as in Assumption 1. The authors in [8] apply
the ADMM with α = 1 and ρ0 = 1 to the same problem as
we do and give a rate bound of 1 − 1√

κ
+ O( 1κ ), where, we

recall, κ = κfκ
2
A.

We now state and prove our main results. Throughout the
paper we often make use of the function

χ(x) = max(x, x−1) ≥ 1 for x ∈ R > 0. (8)

Theorem 3. For 0 < α ≤ 2, κ > 1 and ρ0 > 0, the following
is an explicit feasible point of (4) with λ1, λ2 ≥ 0, P � 0 and
0 < τ < 1.

P =

(
1 ξ
ξ 1

)
, ξ = −1 + α(χ(ρ0)

√
κ− 1)

1− α+ χ(ρ0)
√
κ
, (9)

λ1 =
αρ0
√
κ (1− α+ χ(ρ0)

√
κ)

(κ− 1) (1 + χ(ρ0)
√
κ)

, (10)

λ2 = 1 + ξ, (11)

with
τ = 1− α

1 + χ(ρ0)
√
κ
. (12)

Proof. First notice that since κ > 1 and χ(ρ0) ≥ 1 we have
that λ1, λ2 ≥ 0 for the allowed range of parameters. Second,
notice that the eigenvalues of P are 1 + ξ and 1 − ξ and
since ξ > −1 we have that P � 0. Finally, consider the
full matrix in the left hand side of (4) and let Dn denote an
nth principal minor. We will show through direct computation
that (−1)nDn ≥ 0 for all principal minors, which proves our
claim.

Replacing (9)–(12) we have the matrix shown in equation
(13). Note that it has vanishing determinant D0 = 0. Let J ⊆
{1, 2, 3, 4} and denote DJ

n the nth principal minor obtained by
deleting the rows and columns with indexes in J .

We consider the case ρ0 ≥ 1 first. The only nonvanishing
principal minors are shown in equation (14). We obviously
have (14a), (14b) ≥ 0 for the allowed range of parameters. For
(14c) and (14d) we need to show that, for the allowed range of
parameters, the concave 2nd order polynomial w(κ̃) = 2(α −
1)κ̃+(α−2)(1+κ̃2)ρ0−2ρ20κ̃ is non-positive for κ̃ ≡

√
κ > 1.

To do this, it suffices to show that the function and its first
derivative are non-positive for κ̃ > 1. We have ∂κ̃w(1) =
w(1) = 2(1+ρ0)(α−1−ρ0) ≤ 0. Therefore w(κ̃) ≤ 0 for κ̃ >
1 implying that (14c), (14d) ≤ 0, as required. Analogously,
for (14e) we only need to show that, for the allowed range of
parameters, the 3rd order degree polynomial in κ̃ ≡

√
κ,

w(κ̃) = 2(α− 1) + ρ0

{
2(α− 2)κ̃+ ρ0

{
2 + 2α(κ̃2 − 1)

− 4κ̃2 + (α− 2)(κ̃2 − 1)ρ0κ̃
}}
, (15)

which is the numerator in the fraction (14e), is non-positive
for κ̃ > 1. To do this, it suffices to show that the zeroth,
first and second derivatives are non-positive. We have w(1) =





1− τ2 − 2λ1
ρ20

α− 1− ξτ2 − 2λ1
ρ20

α− 2
√
κ+ ρ0(1 + κ)

ρ20
√
κ

λ1 0

α− 1− ξτ2 − 2λ1
ρ20

(α− 1)2 − τ2 − 2λ1
ρ20

α(α− 1)− 2
√
κ+ ρ0(1 + κ)

ρ20
√
κ

λ1 0

α− 2
√
κ+ ρ0(1 + κ)

ρ20
√
κ

λ1 α(α− 1)− 2
√
κ+ ρ0(1 + κ)

ρ20
√
κ

λ1 α2 − 2ρ20
√
κ+ 2

√
κ+ 2ρ0(1 + κ)

ρ20
√
κ

λ1 0

0 0 0 0


(13)

D
{4,3}
2 =

2α2(2− α)(ρ20 − 1)
√
κ(1− α+ ρ0

√
κ)

(κ− 1)ρ0(1 + ρ0
√
κ)3

(14a)

D
{4,1}
2 = D

(4,3)
2 · (1 + ρ0

√
κ)2 (14b)

D
{4,3,2}
1 = α · 2(α− 1)

√
κ+ (α− 2)(1 + κ)ρ0 − 2ρ20

√
κ

(κ− 1)ρ0(1 + ρ0
√
κ)2

(14c)

D
{4,2,1}
1 = D

{4,3,2}
1 · (1 + ρ0

√
κ)2 (14d)

D
{4,3,1}
1 = α

√
κ ·

2(α− 1) + ρ0
{
2(α− 2)

√
κ+ ρ0

(
2 + 2α(κ− 1)− 4κ+ (α− 2)(κ− 1)ρ0

√
κ
)}

(κ− 1)ρ0(1 + ρ0
√
κ)2

(14e)

2(α−1−ρ0)(1+ρ0) ≤ 0, ∂κ̃w(1) = 2(α−2)ρ0(1+ρ0)2 ≤ 0,
and ∂2κ̃w(1) = 2(α− 2)ρ20(2 + 3ρ0) ≤ 0. This implies that
w(κ̃) ≤ 0 for κ̃ > 1 and consequently (14e) ≤ 0. This
concludes the proof for ρ0 ≥ 1.

For ρ0 < 1 the analogous expressions to (14) are slightly
different but the previous argument holds in exactly the same
manner, thus we omit the details.

In the following corollary, we allow κ = 1 but 0 < α < 2.
It gives an explicit bound on the convergence rate of the over
relaxed ADMM.

Corollary 4. Consider the sequences {xt}, {zt}, and {ut},
updated according to Algorithm 1 with step size ρ > 0,
relaxation parameter 0 < α < 2 and for a problem with
κ ≥ 1. Let ϕt = [zt, ut]

T and ϕ∗ be a fixed point. Then
the convergence rate of the over-relaxed ADMM obeys the
following upper bound:

‖ϕt − ϕ∗‖ ≤ κB
√
χ(η) τ t (16)

with τ explicitly given by the formula (12) and

η =
α

2− α
· χ(ρ0)

√
κ− 1

χ(ρ0)
√
κ+ 1

. (17)

Proof. The proof for κ > 1 follows directly from Theorem 2
and Theorem 3. Indeed, all that we need to do is to compute
κP in (7) for P as in Theorem 3. The two eigenvalues of P
are 1− ξ and 1+ ξ and the ratio of the largest to the smallest
is precisely χ(η) where η is given in equation (17).

For κ = 1 the proof follows by continuity. First no-
tice that, from one iteration to the next in Algorithm 1,
(xt+1, zt+1, ut+1) is a continuous function of (xt, zt, ut, A)
in a neighborhood of an invertible A if we assume everything
else fixed (this can be derived from the properties of proximal
operators, c.f. [5]). Therefore by the continuity of the composi-
tion of continuous functions, and assuming only A is free and

everything else is fixed, ‖ϕt−ϕ∗‖ = F (A) for some function
that is continuous around a neighborhood of an invertible A.
Now, add a small perturbation δA to A such that κA > 1. This
perturbation makes κ > 1 and by the first part of this proof
we can write that F (A + δA) ≤ κB

√
χ(η + δη)(τ + δτ)t,

where δη and δτ are themselves continuous functions of δA
since both η and τ depend continuously on κ which in turn
depends continuously on δA, around an invertible A. The
theorem follows by letting δA → 0 and using the fact that
limδA→0

κA>1
F (A+ δA) = F (A).

The next result complements Theorem 3 by showing that
the rate bound in equation (12) is the smallest one can get
from the feasibility problem in Theorem 2.

Theorem 5. If 0 < α < 2, ρ0 > 0 and κ ≥ 1, then the
smallest τ for which one can find a feasible point of (4) is
given by (12).

Proof. The proof will follow by contradiction. Our counterex-
ample follows [1] and [3]. Assume that for some 0 < α < 2,
ρ0 > 0 and κ ≥ 1 it is possible to find a feasible solution
with τ < ν = 1 − α

1+χ(ρ0)
√
κ

. Then, if we use the ADMM

with this α and a ρ = ρ0
√
m̂L̂ to solve any optimization

problem with this same value of κ and satisfying Assumption
1 we have by Theorem 2 that ‖ϕt − ϕ∗‖ ≤ Cτ t, where
τ < ν and C > 0 is some constant. In particular, if ρ0 ≥ 1,
this bound on the error rate must hold if we try to solve
a problem where f(x) = 1

2x
TQx and g(z) = 0, with

Q = diag([m,L]) ∈ R2×2, A = I , B = −I , and c = 0.
Note that for this problem κA = 1, κ = κf = L/m, m̂ = m
and L̂ = L.

Applying Algorithm 1 to this problem yields

zt+1 =
(
I − α(Q+ Iρ)−1Q

)
zt. (18)



If zt=0 is in the direction of the smallest eigenvalue of Q, the
error rate for zt is,

1− α

1 + ρm−1
= 1− α

1 + ρ0
√
κ
, (19)

where in the second equality we replaced (3). But this means
that the error rate for ‖ϕt−ϕ∗‖ cannot be bounded by τ < ν
for ρ0 ≥ 1, which contradicts our original assumption.

The proof when ρ0 < 1 is similar. We apply ADMM to
the same problem as above but now with A = ρ0I and the
rest the same. Note that for this modified problem κA = 1,
κ = κf = L/m, m̂ = m/ρ20, L̂ = Lρ20 and the ρ we choose
for the ADMM is now ρ =

√
Lm/ρ0 (while before it was

ρ = ρ0
√
Lm).

Now we compare the rate bound of the ADMM with the rate
bound of the gradient descent (GD) when we solve problem
(1) with B = I . In what follows we use τADMM and τGD when
talking about rates of convergence for the ADMM and the GD
respectively.

Before we state our result let us discuss how the GD behaves
when we use it to solve this problem. To solve problem (1)
using the GD with B = I we reduce the problem to an
unconstrained formulation by applying the GD to the function
F (z) = f̃(z) + g(z) where f̃(z) = f(A−1(c − z)). We now
assume that F ∈ Sp(mF , LF ) for some 0 < mF ≤ LF <∞.
The work of [6] gives an optimally tuned rate bound for the
GD when applied to any objective function in Sp(mF , LF ).
This rate is 1 − 2

1+κF
where κF = LF /mF . It is easy to

see that, among all general bounds that only depend on κF ,
it is not possible to get a function smaller than this. Indeed,
if the objective function is xT diag([mF , LF ])x then the rate
of convergence of the GD with step size β is given by the
spectral radius of the matrix I − βdiag({mF , LF }) which is
max{|1−βLF |, |1−βmF |} and which in turn has minimum
value 1− 2

1+κF
for β = 2/(LF +mF ). If P(κF ) is the family

of this unconstrained formulation of problem (1) with B = I
and LF /mF = κF , then we can summarize what we describe
above as

inf
β

sup
P(κF )

τGD = 1− 2

1 + κF
. (20)

In a similar way, if P(κ) is the family of problems of the
form (1) with B = I , to be solved using Algorithm 1 under
Assumption 1, where f ∈ Sp(m,L) and κ = L/m, then
Corollary 4 and the counterexample in the proof of Theorem
5 give us that

inf
α,ρ0

sup
P(κ)

τADMM ≤ inf
α>2,ρ0

sup
P(κ)

τADMM = 1− 2

1 +
√
κ
, (21)

where the last equality is obtained by setting α = 2 and
ρ0 = 1 in equation (12).

The next theorem shows that the optimally tuned ADMM
for worse-case problems has faster convergence rate than the
optimally tunned GD for worse-case problems.

Theorem 6. Let P(κF , κ) be the family of problems (1) with
B = I and under Assumption 1 such that f ∈ Sp(m,L) with
L/m = κ and F ∈ Sp(mF , LF ) with LF /mF = κF , then

τ∗ADMM ≡ inf
α,ρ0

sup
P(κF ,κ)

τADMM ≤ τ∗GD ≡ inf
β

sup
P(κF ,κ)

τGD. (22)

More specifically,

τ∗GD ≥
2τ?ADMM

1 + (τ?ADMM )2
. (23)

Proof. First notice that (20) still holds if P(κF ) is replaced
by P(κF , κ) since the objective function used in the example
given above (20) is also in P(κF , κ).

Second notice that, since f ∈ Sp(m,L) and A is non-
singular, we have that f̃ ∈ Sp(mf̃ , Lf̃ ) for some 0 < mf̃ ≤
Lf̃ <∞. Thus, since F = f̃+g ∈ Sp(mF , LF ), we have that
g ∈ Sp(mg, Lg) for some 0 ≤ mg ≤ Lg < ∞ (it might be
that mg = 0, i.e., g might not be strictly convex). Notice in
addition that, without loss of generality, we can assume that
LF ≥ Lf̃ +mg , mF ≤ mf̃ +mg , Lf̃ = (σ1(A

−1))2Lf and
mf̃ = (σp(A

−1))2mf . Therefore, if F ∈ Sp(mF , LF ) and
f ∈ Sp(m,L), then without loss of generality

κF =
LF
mK

≥
Lf̃ +mg

mf̃ +mg
≥
Lf̃
mf̃

=
Lf (σ1(A

−1))2

mf (σp(A−1))2

= κf (κA−1)2 = κf (κA)
2 = κ. (24)

Finally, using the fact κF ≥ κ and equations (20) and (21)
we can write

inf
α,ρ0

sup
P(κF ,κ)

τADMM ≤ inf
α,ρ0

sup
P(κ)

τADMM ≤ 1− 2

1 +
√
κ

≤ 1− 2

1 + κ
≤ 1− 2

1 + κF
= inf

β
sup
P(κF ,κ)

τGD. (25)

Equation (23) follows from the fact that κF ≥ κ and the fact
that 1− 2

1+
√
κ
≤ 1− 2

1+κF
.

III. NUMERICAL RESULTS

We now compare numerical solutions to the SDP in Theo-
rem 2 with the exact formulas from Theorem 3. The numerical
procedure was implemented in MATLAB using CVX and a
binary search to find the minimal τ such that (4) is feasible.
This is exactly the same procedure described in [1] and it
works because the maximum eigenvalue of (4) decrease mono-
tonically with τ . Figure 1 shows the rate bound τ against κ for
several choices of parameters (α, ρ0). The dots correspond to
the numerical solutions and the solid lines correspond to the
exact formula (12). Figure 2 compare the numerical values of
λ1 (circles) and λ2 (squares) with the formulas (10) and (11)
(solid lines). There is a perfect agreement between (9)–(12)
and the numerical results, which strongly support Theorem 3
and Theorem 5.

The range 0 < α < 1 give worse convergence rates com-
pared to 1 ≤ α < 2. The best rate bound is attained with
ρ0 = 1, or equivalently ρ =

√
m̂L̂, and α = 2. This is also

evident from (12). Note, however, that (17) diverges when
α→ 2 so although the optimal rate bound, in the asymptotical
sense, is 1− 2

1+χ(ρ0)
√
κ

, bound (16) suggests that in a practical
setting with a maximum number of iterations it might be better
to choose α < 2.
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Fig. 1. Plot of τ versus κ for different values of parameters (α, ρ0), as
indicated in the legend. The dots correspond to the numerical solution to
(4) while the solid curves are the exact formula (12). The best choice of
parameters are ρ0 = 1 and α = 2. The convergence rate is improved with
the choice 1 ≤ α < 2 compared to 0 < α < 1.
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Fig. 2. We show λ1 (circles) and λ2 (squares) verus κ for some of the
choices of parameters (α, ρ0) in Figure 1. Note the exact match of numerical
results with formulas (10) and (11) (solid lines).

Corollary 4 is valid only for 0 < α < 2 (for α > 2, (12)
can assume negative values). However, Theorem 2 does not
impose any restriction on α and holds even for α > 2 [1]. To
explore the range α > 2 we numerically solve (4) as shown
in Figure 3. The dots correspond to the numerical solutions.
The dashed blue line corresponds to (12) with α = 2, and it
is the boundary of the shaded region in which (12) can have
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Fig. 3. Plot of τ versus κ for some values of (α, ρ0) with α > 2 and
ρ0 = 1. The dashed blue line corresponds to α = 2 in formula (12). The
shaded region contains curves given by (12) for values of α not allowed in
Theorem 3. These numerical solutions with α > 2 had to be restricted to
a range 1 < κ . 11. Moreover, notice that α > 2 does not produce better
convergence rates than 1 ≤ α < 2 through (12), which is valid for any κ > 1.

negative values and is no longer valid. Although Theorem 3
does not hold for α > 2, we deliberately included the solid
lines representing (12) inside this region. Obviously, these
curves do not match the numerical results.

The first important remark is that, for a given α > 2, we
were unable to numerically find solutions for arbitrary κ ≥ 1.
For instance, for α = 2.6 we can only stay roughly on the
interval 1 < κ . 11. The same behavior occurs for any α > 2,
and the range of κ becomes narrower as α increases. From
the picture one can notice that τ = 1 is actually attained with
finite κ, while for (12) this never happens; it rather approaches
τ → 1− as κ→∞. Therefore, although it is feasible to solve
(4) with α > 2, the solutions will be constrained to a small
range of κ. The next question would be if Theorem 2 for
α > 2 could possibly give a better rate bound than Corollary
4 with 1 ≤ α < 2. We can see from the picture that this is
probably not the case. We conclude that, as far as solutions
to (4) are considered, there is no advantage in considering
α > 2 compared to (12) with 1 ≤ α < 2, and which holds for
arbitrary κ > 1. It is an interesting problem to determine if
proof techniques other than [2] can lead to good rate bounds
for α > 2.

IV. CONCLUSION

We introduced a new explicit rate bound for the entire
family of over-relaxed ADMM. Our bound is the first of its
kind and improves on [1] and [8]. In particular, the only
explicit bound in [1] is a special case of our general explicit
formula when κ is large. We also show that our bound is
the best one can extract from the integral quadratic constrains
framework of [2]. In [9] we find that 1− 2/(1 +

√
κ) bounds

the convergence rate of any first order method on S(m,L),
κ = m/L, so we have also shown that the ADMM with α→ 2
is close to being optimal on S(m,L).

Although our analysis assumes that f is strongly convex, we
can use a very-slightly modified ADMM algorithm to solve
problem 1 when f is weakly convex using an idea of Elad
Hazan explained in [2] Section 5.4.
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