Ad Insertion in Automatically Composed Documents

Niranjan Damera-Venkata
Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304
damera@hpl.hp.com

ABSTRACT

We consider the problem of automatically inserting adver-
tisements (ads) into machine composed documents. We ex-
plicitly analyze the fundamental tradeoff between expected
revenue due to ad insertion and the quality of the corre-
sponding composed documents. We show that the opti-
mal tradeoff a publisher can expect may be expressed as
an efficient-frontier in the revenue-quality space. We de-
velop algorithms to compose documents that lie on this op-
timal tradeoff frontier. These algorithms can automatically
choose distributions of ad sizes and ad placement locations
to optimize revenue for a given quality or optimize quality
for given revenue. Such automation allows a market maker
to accept highly personalized content from publishers who
have no design or ad inventory management capability and
distribute formatted documents to end users with aesthetic
ad placement. The ad density/coverage may be controlled
by the publisher or the end user on a per document ba-
sis by simply sliding along the tradeoff frontier. Business
models where ad sales precede (ad-pull) or follow (ad-push)
document composition are analyzed from a document engi-
neering perspective.

Categories and Subject Descriptors

1.7.4 [Computing Methodologies]: Document and Text
Processing:Electronic Publishing

General Terms
Algorithms, Design

Keywords

automated publishing, advertisement insertion, document
composition, layout synthesis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DocEng’12, September 4-7, 2012, Paris, France.

Copyright 2012 ACM 978-1-4503-1116-8/12/09 ...$15.00.

José Bento
Stanford University
Dept. of Electrical Engineering

. Stanford, CA 94305
jbento@stanford.edu

1. INTRODUCTION

In traditional publishing every subscriber gets the same
copy of a newspaper/magazine, and design costs are amor-
tized over the subscriber base. While professional graphic
design works well for the traditional publishing industry
where a single high quality document may be distributed
to an audience of millions, it is not economically viable (due
to its high marginal cost) for the creation of highly person-
alized documents that change per subscriber and by device
form factor. Publishers want to deliver targeted personal-
ized content not only because it is much more engaging and
relevant to their subscribers but also because of the potential
advertisement (ad) revenue boost when content and adver-
tisements are accurately targeted.

Automated document composition attempts to transform
personalized content automatically (without per-copy man-
ual graphic design) into documents with high aesthetic value.
This has been a topic of much research [8] [6]. However, the
problem of automated advertisement insertion into machine
composed documents has not received attention from the
document engineering community. In this paper we ana-
lyze the problem of automated advertisement insertion into
machine composed documents from a document engineering
perspective.

A key insight is that if content is to be formatted for
a particular page count then the specific sizes of ads and
their placement affect the overall aesthetics of a document
composition. For example, consider the case where we are
trying to place a large ad in a single page document with a
lot of content. An automated document composition algo-
rithm may deal with this by shrinking images (ads cannot be
shrunk of course), reducing whitespace, reducing font sizes
or line spacing. These changes may have undesirable effects
on the quality of the resulting formatted document. On the
other hand an ad insertion may also have a beneficial impact
on document composition quality. Consider the case where
the inserted ad fills an undesirable whitespace or void in
the composition. The preceding examples illustrate that in
general there is a fundamental tradeoff between revenue due
to ad insertion and the quality of machine composed docu-
ments. The notion of quality could be expanded to include
relevance of the ads to the target audience. For example, in
internet advertising where pages are scrollable and ads are
not integrated into the content (but instead appear in their
own to one side in reserved area of the page) the tradeoff is
between revenue and the relevance of an ad measured by its
click-through-rate.

inefficient ad insertion
7 4
efficient ad insertion
6 ¢
5 4
> \
E 41 o _
< T~
=) o h
[on 3 4 o o \\
\
\
2 4+ o o o\
\
© \
1 1 Y
o
0 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7

revenue

Figure 1: The efficient-frontier. Each dot represents
a document composition of the given content with
advertisements. The number of ads, ad-size distri-
bution and the specific placement of ads is allowed to
vary across compositions. Efficient documents are
those for which we cannot find another document
with at least the same revenue and better quality,
or at least the same quality and better revenue. The
discrete set of efficient points (represented here with
the filled discs, connected with dashed lines) is called
the efficient-frontier. This frontier represents the
optimal tradeoff between revenue and quality when
advertisements are inserted.

Fig. 1 illustrates the tradeoff between revenue and quality
for a document with given content composed automatically
with different ad size distributions and placements. Each
point represents a document with a specific distribution of
ad sizes with the ads placed at specific locations within the
document. Note that many points (labeled inefficient) are
not sensible document compositions since we can find other
documents that have at least the same revenue and better
quality or that have at least the same quality and better
revenue. Note also that there are a set of points (labeled
efficient) that represent a valid tradeoff between revenue and
quality. There are no other documents that have at least the
same revenue and better quality or have at least the same
quality and better revenue. The set of efficient points is
called the efficient-frontier and represents an optimal way
to tradeoff revenue and document quality for ad insertion.
The dashed connecting line in Fig. 1 simply serves as a
visual aid to help judge the relative positions of points. The
efficient-frontier is a discrete set.

In this paper we analyze algorithms that attempt to effi-
ciently compute documents that are points on the efficient-
frontier. The business model for ad-sales impacts problem
formulation and hence the specific algorithms we develop.
We consider two business models. In the ad-pull business
model, ad sales precede document composition. Advertiser

bidding creates a pool of ads (with associated bid-prices) for
each publication. The goal is to select or pull specific ads
from the pool and compose documents with ad placement
that represents documents on the efficient-frontier. In the
ad-push business model the ad sales come after the docu-
ment composition. Here, the algorithm uses expected rev-
enues of ads of particular sizes and automatically chooses
ad size distributions and placement to generate documents
with empty ad slots on an expected efficient-frontier. The
ad slots (a.k.a. ad inventory) are then pushed to the market
for sale. Note that with this model it is possible that an ad
slot may be unsold and so may need to be filled with filler
content. However, over time, the expected market value of
ads of particular sizes will be more accurately estimated by
the publisher. Adjusting his templates and/or ad reserve
prices accordingly, over time, the publisher is less likely to
have unsold ads slots in his documents.

The paper is organized as follows. Section 2 reviews re-
lated work. Section 3 reviews a structured probabilistic
model of document quality used in developing the algorithms
in this paper. Section 4 develops and analyzes algorithms
for determining the discrete efficient-frontier for both the
ad-pull and ad-push business models. Section 5 analyzes
inter-subscriber tradeoffs that naturally gives rise to the
concept of a continuous stochastic efficient-frontier that is
the convex-envelope of the discrete efficient-frontier. Algo-
rithms that allow us to produce documents on the stochastic
frontier are presented. Finally Section 6 concludes the pa-
per by summarizing the contributions and indicating future
directions. We also provide an Appendix of mathematical
complements.

2. RELATED WORK

The concept (and term) efficient-frontier (a.k.a. the Pareto
set) was first introduced in finance by Harry Markowitz [9]
in the context of selecting portfolios of securities that trade
off risk (portfolio variance) versus expected return (portfolio
mean). An investor seeks portfolios on the efficient-frontier
risk-return space. Efficient portfolios are those where addi-
tional expected return cannot be gained without increasing
the risk of the portfolio. This seminal work lead the 1990
Nobel prize in economics and forms the basis for modern
portfolio theory. The efficient-frontier has also found several
applications in pricing and revenue management [11] in the
tradeoff analysis of competing goals like revenue and profit,
short-term price discounting vs. lifetime customer value, op-
timization of airline booking classes etc. In the internet ad-
vertising space companies like Efficient Frontier! trade cost
of keywords vs. expected return on investment (ROI) to
manage their clients keyword marketing campaigns.

The computational task of determining the efficient-frontier
efficiently from a discrete set of candidate points has also
been studied in computer science [7, 4] where the problem is
called the maximal vector computation or Skyline algorithm.
However, in many cases (such as the problems discussed in
this paper) the number of possible candidate points could
be very large and each point itself corresponds to significant
computational effort. So the naive method of generating all
possible candidate points (documents in our case) and using
the Skyline algorithm to compute the frontier is not viable.

"http://www.efrontier.com

[—

)¢
©

Figure 2: PDM as a graphical model.

3. MODELING DOCUMENT QUALITY

In this section we review a structured model for docu-
ment aesthetics based on a probabilistic modeling of designer
choice in document design. This model will be used in de-
veloping efficient ad insertion algorithms. We represent the
given set of all the units of content to be composed (ex: im-
ages, units of text, sidebars etc.) by a finite set C. Text units
could be words, sentences, lines of text or whole paragraphs.
We denote by C’ a set comprising all sets of discrete content
allocation possibilities over one or more pages starting with
and including the first page. For example, if there are 3 lines
of text and 1 floating figure, C = {l1,l2,1s, f1} while C’ =
{{l1}7{lla l2}7{l17 l27 l3}7{f1}7{l17 fl}y{llv l27 fl}7{l17 l27 l37 fl}}
U{0}. Note that the specific order of elements within an al-
location set is not important since {l1,l2, f1} and {1, f1,l2}
refer to an allocation of the same content. However alloca-
tion {l1,13, f1} ¢ C’ since lines 1 and 3 cannot be in the same
allocation without including line 2. C’ includes the empty
set to allow the possibility of a null allocation.

In order to compose documents, one must make aesthetic
decisions on how to paginate content, how to arrange page
elements (text, images, graphics, sidebars etc.) on each
page, how much to crop/scale images, how to manage whites-
pace etc. These decision variables are mot mutually ex-
clusive, making the aesthetic graphic design of documents
a hard problem often requiring an expert design profes-
sional. The probabilistic document model (PDM) [2] explic-
itly models the dependency between key design choices in-
cluding pagination, choice of relative arrangements for page
elements, and page edits (including image re-targeting and
whitespace adjustment). The coupling between these design
variables is explicitly modeled as a Bayesian network shown
in Fig. 2. A probability distribution can be associated with
the network by multiplying the conditional probability dis-
tributions of each node conditioned only on its parents [10].

P(D,I) = 1:[]P’(CSACSl-,l,@i,Ti)P(®i|Ti)]P’(Ti) (1)

=0

Random variable T; represents choice of a relative arrange-
ment of page elements for the i** page from a library of
page templates representing different possible relative ar-
rangements of content. Random vector ®; encodes tem-
plate parameters representing possible edits to the chosen

Figure 3: PDM with ordered Ad Insertion.

template. Possible choices for variable template parameters
© include figure dimensions, whitespace between page ele-
ments, margins etc. Random set C<; represents choice of a
content allocation to the first i pages from the set of possible
allocations C’. Note that content allocation to the i*" page
(i.e. pagination) is computed as C; = C<; — C<;—1. In this
paper we treat the page count I as a given constant. More
generally we could treat page count as a random variable
also. See [2] for details.

PDM is in fact a micro model for document quality that
associates a probability (or quality score) with each condi-
tional design choice made on each page. The overall proba-
bility of a document is the product of these micro probabil-
ity scores. A document D of I pages is defined by a triplet
D= {{C<i}/ 20, {®:} 2}, {T;}/=;} of random variables rep-
resenting the various design choices made in the document
creation process. The overall quality P(D, I) of a document
D of I pages is the product of the conditional probabilities of
all design choices made. PDM contrasts with macro models
for document quality [1, 5] that attempt to quantify abstract
aesthetic notions such as harmony, balance, regularity etc.

In equation (1) probability distribution IP(7;) governs rel-
ative preference of template T; from a set () of possible tem-
plates. The conditional multi-variate probability distribu-
tion P(®;|T;) may be regarded as a prior probability distri-
bution that determines the prior preference (before seeing
content) for template parameters. Finally the probability
distribution P(C<;|C<;i—1,®;, T;) reflects how well the con-
tent allocated to the current page fits template T; when tem-
plate parameters are set to ®;.

Once the probability distributions in equation (1) are de-
fined we can simply calculate P(D, I) as a measure of docu-
ment quality. We may also use L(D, I) = logP(D,I) as the
quality measure in practice, since taking the logarithm con-
verts products to summations that are often easier to work
with. A logarithmic transformation (in fact any monotonic
function) of the quality axis does not change the efficient-
frontier set.

In this paper, we choose P(7;) to be the uniform over all
templates in the template library, indicating no a priori pref-
erence for a particular template. Human design knowledge
regarding parameter preferences may be used in specifying
P(©;|T;) (ex: by designer input of mean, variance, min and
max of the parameter values) [2]. P(C<;|C<i—1,0;,T;) is
simply a goodness of fit function and is calculated based on

a specific parameterization of a template as a graph intro-
duced in [2]. Fit is assessed by how well content fills the page
along all paths in the graph from top to bottom and left to
right. Please see [2] for more details on these probabilistic
template parameterizations.

4. EFFICIENT-FRONTIER COMPUTATION

This section analyzes algorithms for the automated com-
position of documents with optimal ad insertion. Section
4.1 analyzes the case when ad sales precede document com-
position (ad-pull) while Section 4.2 analyzes the case when
document composition precedes ad sales (ad-push).

4.1 Ad-Pull

In the ad-pull scenario advertisers bid on ad placements
in documents based on several factors that may include de-
mographics of the target audience, ad-size, ad-position etc.
Business logic then creates an ad-pool for each document
that selects candidate ads that are good matches for the
documents target audience. Since more than one advertiser
may bid on a particular size of ad, each bid is treated as a
different ad-placement opportunity. The ad-pool thus has
a specific distribution of ad-sizes and associated bid prices.
The goal is to derive the efficient-frontier tradeoff over all
subsets that meet certain constraints (ex: At least one ad
per page must be inserted). The revenue of a subset is de-
fined as the sum of all bid prices of ads in that subset.

For an ad-pool with M ads, there are ZQ/[:O (A,f) ways
of choosing a subset of ads to be composed. For each of
the subsets of size k there are k! possible orderings of the
ads. Thus, in general there are at least nyzo (Mﬂik) possible
ad insertions to be considered. Of course, a particular ad
order may still correspond to several different possible ad-
insertion points and hence ad positions within a document.
So composing all possible documents and then using the
skyline algorithm [7, 4] (see Appendix for pseudocode) to
compute the efficient-frontier is not feasible.

While there is no optimal way (one may always resort to
sub-optimal heuristics in practice) to simplify the subset se-
lection and ad ordering problems, we may develop efficient
algorithms to compose a document that is optimal given a
particular ordering of ads to be inserted. To do this we ex-
tend the ad-free PDM model for document quality to include
ads. The Bayesian network representation of this extended
model is given in Figure 3. The resulting document proba-
bility becomes:

I—1
P(D,I) = [[P(C<i|C<i—1,©;, T)P(O4|T:) - - @)
i=0
P(V<i[V<io1, T))P(T3)

where the newly introduced random set V<; refers to an
allocation of ads to the first i pages of the document from
the set V' of all possible ad allocations. The probability
P(V<;|V<i—1,T;) is defined as

1 V<; — V<;—1 matches T;
0 else

®3)

This filters cases where template T; does not have ad slots

that match the allocation V<; — V<;_1 of ads to page .
The optimal document D* is defined by the quadruple

sequence D* = {{C%;}{55, {V&:}i @} 0 AT}

P(V<i|V<io1, i) = {

that maximizes equation (2). The maximization (optimal
document inference) algorithm is very similar to the dy-
namic programming algorithm derived in some detail in[2]
for the maximization of equation (1) and is succinctly sum-
marized in Algorithms 1 and 2 below.

Algorithm 1 Pull-based ad insertion: Forward pass
1: (A, B, T) = mgxIP’(AC, |B.,®, T)P(®|T)

s (A, Be, Aa, Ba) = max U(Ae, Be, T)P(Aa|Ba, T)P(T)
T

2
3: O(Ac7-Aa) — CI)(-Ac»@wAav@)
4: 1i(Ac, Ag) = max ®(Ac, Be, Aa, Ba)Tiz1(Be, Ba),i > 1

ciPa

Algorithm 2 Pull-based ad insertion: Backward pass
i—I1—-—1,A.—C,Ag <V
while ¢ > 0 do
C%i — AC,V;- — A,

B:, B = argmax ®(A, Be, Ao, Ba)Ti—1(Be, Ba)
Be,Ba
T = argmax U(CZ,, B, T)P(VZ, B, T)P(T)
TeQ = =
8'): = arg maXP(Cgh |BZ7 87 T:)P(@‘T:)
<)

Ae B2, Aa — B;
i—1i—1
end while

The algorithm consists of two passes. In the forward
pass we successively eliminate each variable by first grouping
terms in equation (2) involving the variable and then find-
ing the maxima of these terms with respect to that variable.
This gives us functions of the remaining variables. These
functions (dynamic programming tables) are then propa-
gated to the next maximization step for further grouping
and variable elimination. A. refers to an allocation of con-
tent to all pages upto the current page. A, refers to an allo-
cation of ads to all pages upto the current page. B, refers to
an allocation of content to all previous pages. B, refers to an
allocation of ads to all previous pages. Table entries are com-
puted for all valid content allocation sets A, B. € C’ with
A. D B. and advertisement allocations A., B, € V' with
A, D B.?. The continuous variable maximization in Step 1
of algorithm 1 may be performed efficiently as a quadratic
programming problem with bound constraints for appropri-
ate probability parameterization [2].

In the backward pass we traverse the tables backward
starting from the term 7;-1(C,V) that equals the global
maximum of equation (2) over all the content and ads. The
backward pass successively infers the allocations of content
and ads to the previous pages along with templates and tem-
plate parameters that are on the path to achieving the global
maximum.

4.1.1 Example

Table 1 illustrates an example ad-pool of four ads to be
inserted into a given sample two-page Lorem Ipsum content
with two figures.

2This embedding of previous page allocations inside the cur-
rent allocation ensures that the ad order is never violated

Cur iustitia
laudatur?

Si enim ad
populum me
vocas eum

A HP (ABS

Sienim ad
populum me
vocas eum

Atque his de
rebus et
splendida

(b) (r,loggq) = (11.0, —0.27)

HP LABS

Atque his de
rebus et
splendida
o)

Cur justitia
1 ?

- rebuset
splendida
oratio

Cur iustitia
laudatur?

Si enim ad

(¢) (r,logq) = (5.5,—0.33)

(d) (r,logq) = (11.0,—1.47)

Figure 4: ad-pull example results obtained using algorithms 1 and 2 on sample content with ad-pool given
in Table 1. (a) and (b) are efficient-frontier document compositions representing a sensible tradeoff between
revenue and quality. (c) and (d) show examples of inefficient document compositions since they are dominated
by a frontier-composition which has at least the same revenue and better quality or at least the same quality
and better revenue. The red areas indicate ad placement slots.

| Sample ad-pool for ad-pull Insertion |

Vi Va V3 Vi
ads | (2,1/6) | (1, 1/6) | (1, 1/6) | (3,1/4)
Bids | 2 35 5 6

Table 1: Example ad-pool. The first index in ad
category (-,-) refers to the column span while the
second index refers to approximate fractional page
area covered.

The template library used for document composition con-
sisted of 16 templates including ads of various sizes placed
at different positions. All templates had exactly one ad-slot.
Each ad slot is characterized by columns spanned and ad-
area. For example (1,1/6) refers to an ad that spans one
column and has an area of roughly a sixth of the page. Note
that the ad-pool has two ads of the same size with different
bid prices (ads V2 and V3). We further require that all doc-
ument compositions have exactly two ads and take up two
pages. There are 12 possible ad orderings of 2 ads selected
from the pool of 4 ads.

a
.Y o)
o(c) o o © oTTTT
§—0.5 +
=
=
o
50—1.0 -+
(d)
O
-15 % % % —— ¢
5 6 7 8 9 10 11

revenue

Figure 5: efficient-frontier for ad-pull example. The
labeled points correspond to document compositions
shown in Figure 4.

Figures 4(a)-(b) show the frontier compositions while Fig-
ures 4(c)-(d) show some examples of inefficient compositions.
Figure 5 shows the revenue-quality points and the corre-
sponding computed efficient-frontier. Note that as we move

along the frontier from left to right, revenue increases while
quality drops. Figure 4(c) is inefficient because it has lower
revenue and quality (notice column mis-alignment on page
2) than Figure 4(a). Figure 4(d) is inefficient because al-
though it has the same revenue as Figure 4(b) it has lower
quality (both images have more distortion).

Notice also that the points at (5.5, —.20) and (7.0, —.20)
have the same quality but the one with higher revenue is on
the frontier. In fact these are exactly the same composition
with the same ad slot sizes. This is because there are 2 bids
for the same size of ad in the ad pool (ads V2 and V3). The ad
with the higher bid (V3) is used in the frontier composition.
There are two compositions at point (8.5, —0.3). Both use
ads Vo and V3 but in different order. This results in two
compositions with the exact same revenue and quality.

4.1.2 Complexity

We may analyze asymptotic complexity of this algorithm
in a similar manner to the analysis presented in [2]. For
a given set of ads with a specific order the complexity of
document composition with ad-insertion is thus O(|C||V||€2])
assuming linear content ordering, bounded page capacity
and bounded number of ads on a page. This is still sig-
nificantly better than the naive approach of considering all
possible document compositions (document compositions for
all {{C<i}od, {{V=i} o0, {©} 10 {T:}10}) and choosing
the best scoring document. The efficiency stems from the
fact that possibilities are eliminated in the maximizations at
a given step do not propagate to the successive steps in al-
gorithm 1. This feature is a direct consequence of the struc-
tured probabilistic model in which direct dependencies be-
tween variables are limited (so conditional probability terms
can be grouped without having to maximize over all vari-
ables at once). However, if we consider the overall problem
of efficient-frontier computation, the complexity grows com-
binatorially in terms of the size of the ad-pool. Hence this
is a viable method only for small ad-pools.

4.2 Ad-Push

In the ad-push scenario document composition takes place
before ad sales and the inserted ad-slots in a document are
pushed to the market for sale. Unsold ad inventory is often
replaced by filler content. Since the ads are not yet bid on
at the time of composition, the publisher must estimate the
price of each ad size. Over time, the expected market value
of ads of particular sizes will be more accurately estimated
by the publisher. Adjusting his templates and/or ad reserve
prices accordingly, over time, the publisher is less likely to
have unsold ads slots in his documents. The publisher has
an ad-matrix of ad-sizes and corresponding expected prices.
Since there are no specific ads to be inserted the algorithm
is free to determine the size, distribution and placement of
advertising in the document.

The ad-free model of document quality introduced in sec-
tion 3 of document quality can be used in this case without
any explicit treatment of ad allocations to pages, with the
additional understanding that the templates in the library
already have designed ad-slots. The revenue of a template
is simply the sum of the ad prices of all ad-slots in the tem-
plate. Thus, when content is allocated to a template, each
template may be associated with a revenue and a quality.
The algorithm although similar in spirit to ad-free PDM
inference algorithm developed in [2] operates directly on

efficient-frontiers in the revenue-quality space. Algorithms
3 and 4 summarize the method for efficiently computing the
efficient-frontier document compositions.

Algorithm 3 Push-based ad insertion: Forward pass
1: W(A,B,T) = mgxIP(A, |B,®,T)P(®|T)

2: F(AB) = eff @ log(¥(A, B, T)P(T))

r(T) U(A,B,T)=logq(A,B,T)

3: To(A) — F(A,0)
4: Ti(A) = eff [eff {F(A, B) © Ti1(B)}] i > 1

Algorithm 4 Push-based ad insertion: Backward pass
l:i«—IT-1,A<C

2: select (r*,1") € T1_1(C)

3: while i > 0 do

4: Ci,— A

¥ T, B =T,B: (r* —r(T),I* —1(A,B,T)) € T—1(B)

6 9: = arg ma‘XP(C;iv |B*7 ®aTl*)P(®‘TZ*)
)

7 r =t —r(T9), 1" <" —l(C;i,B*,Ti*))

8: A — B*

9: t—1—1

10: end while

The forward pass algorithm 3 computes dynamic program-
ming tables as before, but table entries are now sets instead
of scalar values. A refers to an allocation of content to all
pages upto the current page while B refers to an allocation
of content to all previous pages. Table entries are computed
for all valid content allocation sets A,B € C’ with A D B.
Note that we have dropped the subscript in A. that explic-
itly indicates a content allocation vs. an ad allocation, since
we do not need to deal with ad allocations.

Step 1 is unchanged from PDM inference and essentially
computes and stores a table of scores of how well content in
the set A — B is suited for template 7. This step may be
performed efficiently as a quadratic programming problem
with bound constraints for appropriate template probability
parameterization [2]. Table entries for the case when A —
B does not match template T'" may be set to zero without
requiring any further computation.

Step 2 loops over templates in the library (only tem-
plates matching content in the set A — B need be con-
sidered) and computes a revenue r(7") and a log quality
I(A,B,T) = logq(A,B,T) score for each template. Then
an efficient-frontier F (A, B) for the allocation A, B with re-
spect to the template library is computed using the sky-
line algorithm on all candidate revenue-quality points. This
efficient-frontier is propagated for consideration in future
steps.

Step 4 sets up a recursion to successively compute the
efficient-frontiers 7;(A) for the allocation of content A to
the first ¢ pages of the document. First the intermediate
efficient-frontier F(A, B) from the previous step is summed
with the efficient-frontier T;—1 (B) for an allocation B to the
previous pages. By sum we mean the Minkowski sum [3]
of two sets in Euclidean space represented by the operator
@ which is essentially the set formed by adding every ele-
ment of the first set to every element of the second set. The
pseudocode for this operation is given in algorithm 8 in the

Cur iustitia
laudatur?

Si enim ad
populum me
vocas eum

A HP (ABS

Si enim ad
populum me
vocas eum

Atque his de
rebus et
splendida

(13.5,—0.57)

L HP (ABS

Cur justitia
?

oratio

populum me
m

Atque his de
rebus et
splendida
oratio

populum me
um

(c) (r,1logq) = (14.0,—1.68)

(d) (r,logq) = (15.0,—10.82)

Figure 6: ad-push frontier compositions obtained using algorithms 3 and 4 with ad-matrix given in Table 2.
The red areas indicate ad placement slots. Note how quality degrades along the efficient-frontier as revenue
is increased from (a)-(d). Fig. 7 shows the corresponding frontier.

Appendix. An efficient-frontier is computed over the points
in the Minkowski sum and over all possible previous alloca-
tions B to obtain the efficient-frontier 7;(A). Step 3 seeds
the recursion with initial values.

The recursion terminates when we have the final efficient-
frontier T;—1(C) which may be regarded as the efficient-
frontier for the whole document when all content C has been
allocated. A publisher must choose an operating point on
this frontier set to actually produce a document with a cer-
tain revenue and log quality. Once a point (r*,1*) is chosen
the backward pass algorithm 4 traverses the dynamic pro-
gramming tables built during the forward pass to compute
the optimal document that achieves the desired tradeoff.
Note that instead of explicitly choosing a point the pub-
lisher may simply indicate a revenue or quality target. In
the case of a quality target the maximal revenue frontier
point whose quality is greater than or equal to the qual-
ity target is automatically chosen. In the case of a revenue
target the maximal quality frontier point whose revenue is
greater than or equal to the revenue target is automatically
chosen.

Step 5 searches over previous page frontiers for a par-
tial document with revenue r* — r(7T") and log quality I* —
I(A,B,T)). The template T;" and previous allocation B*
that resulted in the desired partial document are identified

as the optimal template for the current page and the best
previous allocation of content to previous pages. From these
optimal values the best template parameters ®; to compose
the current page are computed. This process recurses from
the last page to the first to sequentially compose all pages
of the optimal document.

4.2.1 Example

Expected Revenue Matrix for ad-push Insertion
1 column | 2 column | 3 column
Twelfth of a page 1 - -
Sixth of a page 3.5 3.5 3
Quarter of a page 4.5 5 4

Table 2: ad-matrix for ad-push example

Table 2 shows an example ad-matrix for ad-push insertion.
It lists ads of various sizes and their expected revenue poten-
tial. We also assume (to make the example more interesting)
that first page ads are expected to receive twice the expected
revenues shown. The goal is to compute the efficient-frontier
document compositions when ads are inserted into the same
two page content as in the ad-pull example in Section 4.1.1.

Figure 6 shows the efficient-frontier document composi-
tions computed by our algorithm. Figure 7 shows the corre-

R o
"~el0)
_9 4 e (C
2 \
\
ﬁ? -4 + \
= \
—_6 \
5 6 \
\
P s 1 \
— \
—10 4+ \
»(d)
-12 +———————+——
10.511.011.512.012.513.013.514.014.515.0
revenue

Figure 7: efficient-frontier for ad-push example. The
labeled points correspond to document compositions
shown in Figure 6.

sponding efficient-frontier. A publisher may choose to pub-
lish document 6(b) or 6(c) since quality only drops mod-
erately for substantial increase in revenue. Note however
that just because a document composition is on the efficient-
frontier it does not imply that it is a good quality compo-
sition. For example the composition 6(d) corresponds to a
significant drop in quality that is clearly visible and also
reflected in the graph of Figure 7.

In general a publisher may set a quality threshold and
seek to publish at a point on the frontier that maximizes
revenue, subject to this threshold. Alternatively, a publisher
(or end user) can have a slider that increases revenue (or ad
coverage) by sliding along the efficient-frontier. This may
also allow new business models where each user may sub-
stitute increased ad coverage (subject to publisher quality
thresholds) for lower subscription cost according to his/her
preference.

4.2.2 Complexity

Asymptotic complexity of ad-push algorithm for efficient-
frontier computation is O(|C||€2|) assuming linear content
ordering, bounded page capacity [2]. This is the same as
asymptotic complexity of ad-free document composition us-
ing PDM inference [2]. It is important to note that unlike
the ad-pull case, asymptotic complexity does not grow with
the number of ads to be inserted. Although efficient-frontier
computations involve more work than simple maxima com-
putations, they do not grow with the number of ads inserted.
The algorithms efficiency stems from the fact that possibil-
ities that are eliminated in the efficient-frontier computa-
tions at a given step do not propagate to successive frontiers
in algorithm 3.

5. INTER-SUBSCRIBER TRADEOFFS

The efficient-frontier is a discrete set representing trade-
offs for a single document for a single subscriber. This means
that we must choose one of the frontier points to compose
a single document. However, a publisher armed with auto-
mated composition technology may produce different docu-
ment compositions for different subscribers using the exact
same content (ex: by demographic group). The publisher
may choose for example, to produce a first fraction of the
documents for part of the subscriber base at one frontier
point and a second fraction of documents for another part of
the subscriber base at a different frontier point. We call this

10

stochastic efficient-frontier

71 /
6 inefficient ad insertion
b
54 o o
ey
T4+
=
o3l 5
2 + o
1 €1
0 —t—t—1— 1

O

1
01 2 3 4 5 6 7
revenue

Figure 8: The stochastic efficient-frontier. This fron-
tier allows the notion of a continuous tradeoff be-
tween revenue and quality by stochastically varying
the documents over subscribers and considering av-
erage revenue and quality. Since any point between
two frontier points is also on the frontier, this fron-
tier is in fact the convex-envelope of the discrete
efficient-frontier developed earlier.

stochastic document composition. If the notion of revenue
and quality of a document could be extended to the notion
of average revenue and average quality of a document col-
lection, then all points on the dashed lines between frontier
points now become possible continuous tradeoff possibilities.

We see from Figure 1 that the set of points connecting ad-
jacent discrete efficient-frontier points may be non-convex.
However, since we now consider the set of all points connect-
ing any two discrete efficient-frontier points, we see that this
set is convex. This is illustrated by the bold line in Figure 8
which shows the effect of considering stochastic compositions
between any two discrete frontier compositions of Figure 1.
In fact, the stochastic efficient-frontier is exactly the convez-
envelope of the discrete efficient-frontier. Note from Figure
8 that there may now be points on the discrete frontier that
are not on its convex-envelope and are hence inefficient from
a stochastic document composition perspective. We call the
points on both the discrete and continuous (stochastic) fron-
tiers as key points. Any revenue-quality combination on the
stochastic frontier may be realized by stochastically compos-
ing key point documents.

The notion of a stochastic frontier must be used with care.
When two frontier points are far apart in quality, the aver-
age quality may not be a good indicator of quality since a
publisher would definitely not want to send a bad quality
document to a fraction of his subscriber base. This case
may be mitigated by pruning discrete frontier points below
a quality threshold before the convex envelope is calculated.
Note also that a stochastic frontier exists strictly only in the
revenue-quality space and not in the revenue-log(quality)
space since averaging log(quality) is not meaningful. How-
ever, the revenue-log(quality) space may still be used to lo-
cate key points.

In the case of ad-pull insertion the computation of the key
points on the stochastic frontier simply amounts to com-
puting the discrete efficient-frontier and deleting vertices
that are dominated by line segments connecting any two

other points. A point (r9,qo) is said to be dominated by
a line segment between points (r1,q1) and (rz,q2) if any
point (ar; + (1 — a)rz,aq1 + (1 — a)g2), @ € [0,1] on the
line segment has a greater revenue for the same quality or a
greater quality for the same revenue. This translates to the
following two conditions respectively.

fo "2y f DDy, o gy, BB o) (4)
q1 — q2 q1 — Q2 q1 — Qg2
T — T T — T T — T
02 L > q, —— €[0,1] (5)
1 —T2 1 — T2 1L —T2

In the case of ad-push insertion one may derive an al-
gorithm that directly optimizes the parametric convex en-
velope. A key-point document D, that is on the convex
envelope must be a solution to the problem:

Do =argmaxar(D,I)+ (1 —a) logQ(D,I) (6)
D
where Q(D, I) is given by equation (1). We can easily mod-
ify the ad-free PDM algorithm [2] to the task of computing
D, for a given o € [0,1]. Algorithms 5 and 6 summarize
this approach. Note that other than Step 2 of the forward
pass algorithm 5 and the taking of logarithms (converting
products into sums), this approach is identical to the ad-free
PDM algorithm?®.

Algorithm 5 Computing Document D,: Forward pass
1: W(A,B,T) = mgxP(.A, |B,®, T)P(®|T)

U (ABT)=ar(T)+ (1 —a)log¥(A,B,T)

: @A, B) = max (Va (A, B,T) + log P(T))

2 10(A) «— D(A,0)
7i(A)) = max (®(A,B) +1:i-1(B)),i>1

TURS W N

Algorithm 6 Computing Document D,: Backward pass
i1—I—-1,AC
while ¢ > 0 do
Ci,— A
B* = argmax (®(A, B) + 1,-1(B))
B
T = argmax (Vo (CZ;, B*, T) + log P(T))
TeqQ
O] = argmaxP(CZ;, |B*,0,T;)P(O|T})
<)

A — B*
i—1i—1
end while

To compute the key-points of the stochastic efficient-frontier
we sweep « through its range [0, 1] and store the resulting
compositions (ignoring duplicate compositions). While this
approach requires minimal modifications to the ad-free PDM
algorithm and may be massively parallelized (documents for
different « values may be computed independently) it is not
an efficient way to compute the key points of the stochastic
frontier. However, we have included it for completeness.

A much better approach for computing key points of the
stochastic efficient-frontier is to modify the efficient algo-
rithm for ad-push insertion given in Section 4.2 that oper-
ates directly on frontiers. In fact all we need to do is to use
the key-points of the convex-envelope of the efficient fron-
tiers computed in the intermediate steps 2 and 4 of the for-

3where templates are assumed to have pre-designed ad-slots

11

ro=T2 T1=To
<,.17r2 Q@+t =, qz,m)
q0—4q2 4140
T T
<q1—42 1t q1—q2 Q’qo)

Figure 9: Constructing the convex envelope of a dis-
crete efficient-frontier. We prune points on the dis-
crete frontier that are dominated by line segments
between any two other frontier points when one of
the conditions in equations (4) or (5) is met.

ward pass algorithm 3. The convex-envelope of an efficient-
frontier is obtained as outlined earlier by applying conditions
(4) and (5) to prune points that will be inefficient when we
consider the stochastic efficient-frontier. Figure 9 illustrates
the pruning criteria graphically.

In fact another aspect of algorithm 3 is benefited by the
forced convexity of the efficient frontiers. The Minkowski
sums @ computed in step 4 of the forward pass become
O(m+n) instead of O(mn) where m and n denote the num-
ber of points in the two summed frontiers respectively. This
is because we may treat each frontier as a convex polygon
(by linking the first and last points). It is well known that
the Minkowski sum of two convex polygons of m and n ver-
tices can be performed as an O(m + n) operation [3]. See
Appendix for pseudocode.

6. CONCLUSIONS

In this paper we showed that a fundamental tradeoff exists
between revenue and document composition quality. The
optimal tradeoff can be represented in terms of a set of
efficient points called the efficient-frontier. We developed
algorithms that can compute the frontier compositions, au-
tomatically determining how many ads of each size to place
and how to best arrange them on the page. The user or
the publisher may control ad density and the algorithms
will produce compositions that slide along the frontier while
avoiding in-efficient compositions. Our complexity analysis
of ad-insertion business models in Section 4.1.2 and Section
4.2.2 reveals that both ad-pull and ad-push business mod-
els scale linearly with content size for a given ad-set size
or ad-density (in the best case). However, for a given con-
tent size, as the ad-set size is increased, the optimal ad-pull
algorithm grows combinatorially with ad-set size while the
ad-push algorithm is not influenced by ad-density (the typ-
ical complexity of the skyline algorithm is dependent only
on the expected number of efficient points [4]). Thus from a
document composition perspective it is much more efficient
to compose documents with ad-slots (ad-push) and then sell
the resulting ad inventory than to first conduct ad sales and
then compose documents that consider the bid prices of par-
ticular ads ((ad-pull). The downside of the ad-push model is

that the demand for ad-slots must be forecast in advance and
there is the possibility of unsold inventory. Finally, we con-
sidered inter-subscriber tradeoffs and introduced the concept
of a continuous and convex stochastic efficient-frontier and
developed ad-insertion algorithms that exploited convexity.

While the complexity of optimal ad-pull insertion may
be prohibitive, heuristic algorithms that work well in prac-
tice may exist. Also, we may expand the notion of quality
to include keyword relevance enabling dynamic ad-insertion
based on keyword proximity. This would allow advertisers
to bid on keywords used in a document much like they do
today for internet advertising. These are topics we intend
to pursue in future work.

7. ACKNOWLEDGMENTS

The authors would like to thank Eamonn O’Brien-Strain,
Jerry Liu and Qian Lin at HP Labs Palo Alto for their
support of this research. Jose Bento was supported by the
AFOSR grant FA9550-10-1-0360.

8. REFERENCES

[1] H. Y. Balinsky, A. J. Wiley, and M. C. Roberts.
Aesthetic measure of alignment and regularity. In
DocEng ’09: Proceedings of the 9th ACM symposium
on Document engineering, pages 5665, New York,
NY, USA, 2009. ACM.

[2] N. Damera-Venkata, J. Bento, and E. O’Brien-Strain.
Probabilistic document model for automated
document composition. In Proceedings of the 11th
ACM symposium on Document engineering, DocEng
'11, pages 3—12, New York, NY, USA, 2011. ACM.

[3] M. de Berg, O. Cheong, and M. van Kreveld,

Marc. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag,
Berlin/Heidelberg, 2010.

[4] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and
analyses for maximal vector computation. The VLDB
Journal, 16(1):5-28, jan 2007.

[5] S. J. Harrington, J. F. Naveda, R. P. Jones,

P. Roetling, and N. Thakkar. Aesthetic measures for
automated document layout. In DocEng 04:
Proceedings of the 2004 ACM symposium on
Document engineering, pages 109-111, New York, NY,
USA, 2004. ACM.

[6] N. Hurst, W. Li, and K. Marriott. Review of
automatic document formatting. In DocEng ’09:
Proceedings of the 9th ACM symposium on Document
engineering, pages 99-108, New York, NY, USA, 2009.
ACM.

[7] H. T. Kung, F. Luccio, and F. P. Preparata. On
finding the maxima of a set of vectors. J. ACM,
22(4):469-476, oct 1975.

[8] S. Lok and S. Feiner. A survey of automated layout
techniques for information presentations. In
SmartGraphics '01: Proceedings of SmartGraphics
Symposium 01, pages 61-68, New York, NY, USA,
2001. ACM.

[9] H. Markowitz. Portfolio selection. Journal of Finance,

7(1):77-91, March 1952.

J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988.

[10]

12

[11] R. Phillips. Efficient frontiers in revenue management.
Journal of Revenue and Pricing Management, pages
1-15, September 2011.

APPENDIX

Algorithm 7 Skyline algorithm [4] F = eff S.

1:S:{plap27"'apN}

2: function eff(S)

3 F—0

4 while (S is not empty) do

5: p <« shift(S) // Get the first.
6: for allq € Sdo // Find a max.
7 if (p > q)* then

8 remove q from S

9 else if q > p then

remove q from S
11: P—q
12: end if
13: end for
14: F—FUp
15: for allq € Sdo // Clean up.
16: if (p > q) then
17: remove q from S
18: end if
19: end for
20: end while

21: end function

Algorithm 8 General Minkowski sum F3 = F1 @ F2

1: Flz{P1,p2a-~~aPAf}
2: ‘7_—2:{(117(:127"‘7(:11\[}
3: function ®&(F1,F2)

4: Fz—10

5: for i = 1,M do

6: for j = 1,N do
7 zZ=D;+q;
8: .7'-5 — .7‘—3 U z
9: end for

10: end for

11: end function

Algorithm 9 F3 = F; @ Fa, F1,F2 are convex polygons.

1: F1 = {p1,P2,-..,Pm}, ordered clockwise
2: F2 ={q1,9z,...,qn} ordered clockwise
3: function &(F1,F2)

4. Fz3+—0

5: Locate extreme p; and q; in -Y direction.

6: z1 =pi+q;, 5 —FUzn

7 Make parallel lines at p;,q; so Fi1,F2 lie to the right.

8: for k = 2, M+N do

9: Determine angles 6; and ¢; at p; and q;

pi+1+q; 0; < @;

10: Zp = pi +qj+1 0 > ¢ // i,j circular.
Pit1 +qj+1 b = ¢;

11: Fs — FsJzw

12: Rotate parallel lines to get next p; and qj.

13: end for

14: end function

q?lTagdrI;e(f;r)lsz(g(é)))z q(1) and p(2) > q(2)) or (p(1) >

