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Abstract

Several algorithms build on the perfect phylogeny model to infer evolutionary trees.
This problem is particularly hard when evolutionary trees are inferred from the
fraction of genomes that have mutations in different positions, across different
samples. Existing algorithms might do extensive searches over the space of possible
trees. At the center of these algorithms is a projection problem that assigns a fitness
cost to phylogenetic trees. In order to perform a wide search over the space of
the trees, it is critical to solve this projection problem fast. In this paper, we use
Moreau’s decomposition for proximal operators, and a tree reduction scheme, to
develop a new algorithm to compute this projection. Our algorithm terminates with
an exact solution in a finite number of steps, and is extremely fast. In particular, it
can search over all evolutionary trees with fewer than 11 nodes, a size relevant for
several biological problems (more than 2 billion trees) in about 2 hours.

1 Introduction
The perfect phylogeny model (PPM) [1, 2] is used in biology to study evolving populations. It
assumes that the same position in the genome never mutates twice, hence mutations only accumulate.

Consider a population of organisms evolving under the PPM. The evolution process can be described
by a labeled rooted tree, T = (r,V, E), where r is the root, i.e., the common oldest ancestor, the
nodes V are the mutants, and the edges E are mutations acquired between older and younger mutants.
Since each position in the genome only mutates once, we can associate with each node v 6= r, a
unique mutated position, the mutation associated to the ancestral edge of v. By convention, let us
associate with the root r, a null mutation that is shared by all mutants in T . This allows us to refer
to each node v ∈ V as both a mutation in a position in the genome (the mutation associated to the
ancestral edge of v), and a mutant (the mutant with the fewest mutations that has a mutation v).
Hence, without loss of generality, V = {1, . . . , q}, E = {2, . . . , q}, where q is the length of the
genome, and r = 1 refers to both the oldest common ancestor and the null mutation shared by all.

One very important use of the PPM is to infer how mutants of a common ancestor evolve [3–8].
A common type of data used for this purpose is the frequency, with which different positions in
the genome mutate across multiple samples, obtained, e.g., from whole-genome or targeted deep
sequencing [9]. Consider a sample s, one of p samples, obtained at a given stage of the evolution
process. This sample has many mutants, some with the same genome, some with different genomes.
Let F ∈ Rq×p be such that Fv,s is the fraction of genomes in s with a mutation in position v in the
genome. Let M ∈ Rq×p be such that Mv,s is the fraction of mutant v in s. By definition, the columns
of M must sum to 1. Let U ∈ {0, 1}q×q be such that Uv,v′ = 1, if and only if mutant v is an ancestor
of mutant v′, or if v = v′. We denote the set of all possible U matrices, M matrices and labeled
rooted trees T , by U ,M and T , respectively. See Figure 1 for an illustration. The PPM implies

F = UM. (1)

Our work contributes to the problem of inferring clonal evolution from mutation-frequencies: How
do we infer M and U from F? Note that finding U is the same as finding T (see Lemma B.2).
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Figure 1: Black lines are genomes. Red circles indicate mutations. gi is the mutant with fewest mutations
with position i mutated. Mutation 1, the mutation in the null position, i = 1, is shared by all mutants. g1 is the
organism before mutant evolution starts. In sample s = 3, 2/10 of the mutants are type g2, hence M2,3 = 2/10,
and 3/10 of the mutations occur in position 7, hence F7,3 = 3/10. The tree shows the mutants’ evolution.
Although model (1) is simple, simultaneously inferring M and U from F can be hard [3]. One
popular inference approach is the following optimization problem over U , M and F ,

min
U∈U
C(U), (2)

C(U) = min
M,F∈Rq×p

‖F̂ − F‖ subject to F = UM,M ≥ 0,M>1 = 1, (3)

where ‖ · ‖ is the Frobenius norm, and F̂ ∈ Rq×p contains the measured fractions of mutations
per position in each sample, which are known and fixed. In a nutshell, we want to project our
measurement F̂ onto the space of valid PPM models.

Problem (2) is a hard mixed integer-continuous optimization problem. To approximately solve it,
we might find a finite subset {Ui} ⊂ U , that corresponds to a “heuristically good” subset of trees,
{Ti} ⊂ T , and, for each fixed matrix Ui, solve (3), which is a convex optimization problem. We can
then return Tx, where x ∈ arg mini C(Ui). Fortunately, in many biological applications, e.g., [3–8],
the reconstructed evolutionary tree involves a very small number of mutated positions, e.g., q ≤ 11.
In practice, a position v might be an effective position that is a cluster of multiple real positions in the
genome. For a small q, we can compute C(U) for many trees, and hence approximate M , U , and get
uncertainty measures for these estimates. This is important, since data is generally scarce and noisy.

Contributions: (i) we propose a new algorithm to compute C(U) exactly in O(q2p) steps, the first
non-iterative algorithm to compute C(U); (ii) we compare its performance against state-of-the-art
iterative algorithms, and observe a much faster convergence. In particular, our algorithm scales much
faster thanO(q2p) in practice; (iii) we implement our algorithm on a GPU, and show that it computes
the cost of all (more than 2 billion) trees with ≤ 11 nodes, in ≤ 2.5 hours.

2 Related work
A problem related to ours, but somewhat different, is that of inferring a phylogenetic tree from
single-cell whole-genome sequencing data. Given all the mutations in a set of mutants, the problem is
to arrange the mutants in a phylogenetic tree, [10, 11]. Mathematically, this corresponds to inferring
T from partial or corrupted observation of U . If the PPM is assumed, and all the mutations of all the
mutants are correctly observed, this problem can be solved in linear time, e.g., [12]. In general, this
problem is equivalent to finding a minimum cost Steiner tree on a hypercube, whose nodes and edges
represent mutants and mutations respectively, a problem known to be hard [13].

We mention a few works on clonality inference, based on the PPM, that try to infer both U and M
from F̂ . No previous work solves problem (2) exactly in general, even for trees of size q ≤ 11. Using
our fast projection algorithm, we can solve (2) exactly by searching over all trees, if q ≤ 11. Ref. [3]
(AncesTree) reduces the space of possible trees T to subtrees of a heuristically constructed DAG.
The authors use the element-wise 1-norm in (3) and, after introducing more variables to linearize the
product UM , reduce this search to solving a MILP, which they try to solve via branch and bound.
Ref. [6] (CITUP) searches the space of all unlabeled trees, and, for each unlabeled tree, tries to solve
an MIQP, again using branch and bound techniques, which finds a labeling for the unlabeled tree,
and simultaneously minimizes the distance ‖F̂ − F‖. Refs. [5] and [14] (PhyloSub/PhyloWGS), use
a stochastic model to sample trees that are likely to explain the data. Their model is based on [15],
which generates hierarchical clusterings of objects, and from which lineage trees can be formed. A
score is then computed for these trees, and the highest scoring trees are returned.

Procedure (2) can be justified as MLE if we assume the stochastic model F̂ = F + N (0, Iσ2),
where F , U and M satisfy the PPM model, and N (0, Iσ2) represents additive, component-wise,
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Gaussian measurement noise, with zero mean and covariance Iσ2. Alternative stochastic models can
be assumed, e.g., as M − U−1F̂ = N (0, Iσ2), where M is non-negative and its columns must sum
to one, andN (0, Iσ2) is as described before. For this model, and for each matrix U , the cost C(U) is
a projection of U−1F̂ onto the probability simplex M ≥ 0,M>1 = 1. Several fast algorithms are
known for this problem, e.g., [16–20] and references therein. In a pq-dimensional space, the exact
projection onto the simplex can be done in O(qp) steps.

Our algorithm is the first to solve (3) exactly in a finite number of steps. We can also use iterative
methods to solve (3). One advantage of our algorithm is that it has no tuning parameters, and requires
no effort to check for convergence for a given accuracy. Since iterative algorithms can converge
very fast, we numerically compare the speed of our algorithm with different implementations of the
Alternating Direction Method of Multipliers (ADMM) [21], which, if properly tuned, has the fastest
convergence rate among all first-order methods [22] under some convexity assumptions, and is known
to produce good solutions for several other kinds of problems, even for non-convex ones [23–29].

3 Main results
We now state our main results, and explain the ideas behind their proofs. Detailed proofs can be
found in the Appendix.

Our algorithm computes C(U) and minimizers of (3), resp. M∗ and F ∗, by solving an equivalent
problem. Without loss of generality, we assume that p = 1, since, by squaring the objective in (3), it
decomposes into p independent problems. Sometimes we denote C(U) by C(T ), since given U , we
can specify T , and vice-versa. Let ī be the closest ancestor of i in T = (r,V, E). Let ∆i be the set of
all the ancestors of i in T , plus i. Let ∂i be the set of children of i in T .
Theorem 3.1 (Equivalent formulation). Problem (3) can be solved by solving

min
t∈R

t+ L(t), (4)
L(t) = min

Z∈Rq

1

2

∑

i∈V
(Zi − Zī)2 subject to Zi ≤ t−Ni ,∀i ∈ V, (5)

where Ni =
∑
j∈∆i F̂j , and, by convention, Zī = 0 for i = r. In particular, if t∗ minimizes (4), Z∗

minimizes (5) for t = t∗, and M∗, F ∗ minimize (3), then

M∗i = −Z∗i + Z∗ī +
∑

r∈∂i
(Z∗r − Z∗r̄ ) and F ∗i = −Z∗i + Z∗ī ,∀i ∈ V. (6)

Furthermore, t∗, M∗, F ∗ and Z∗ are unique.
Theorem 3.1 comes from a dual form of (3), which we build using Moreau’s decomposition [30].

3.1 Useful observations

Let Z∗(t) be the unique minimizer of (5) for some t. The main ideas behind our algorithm depend
on a few simple properties of the paths {Z∗(t)} and {L′(t)}, the derivative of L(t) with respect to t.
Note that L is also a function of N , as defined in Theorem 3.1, which depends on the input data F̂ .
Lemma 3.2. L(t) is a convex function of t and N . Furthermore, L(t) is continuous in t and N , and
L′(t) is non-decreasing with t.
Lemma 3.3. Z∗(t) is continuous as a function of t and N . Z∗(t∗) is continuous as a function of N .

Let B(t) = {i : Z∗(t)i = t−Ni}, i.e., the set of components of the solution at the boundary of (5).
Variables in B are called fixed, and we call other variables free. Free (resp. fixed) nodes are nodes
corresponding to free (resp. fixed) variables.
Lemma 3.4. B(t) is piecewise constant in t.

Consider dividing the tree T = (r,V, E) into subtrees, each with at least one free node, using B(t)
as separation points. See Figure 4 in Appendix A for an illustration. Each i ∈ B(t) belongs to at
most degree(i) different subtrees, where degree(i) is the degree of node i, and each i ∈ V\B(t)
belongs exactly to one subtree. Let T1, . . . , Tk be the set of resulting (rooted, labeled) trees. Let
Tw = (rw,Vw, Ew), where the root rw is the closest node in Tw to r. We call {Tw} the subtrees
induced by B(t). We define Bw(t) = B(t) ∩ Vw, and, when it does not create ambiguity, we drop the
index t in Bw(t). Note that different Bw(t)’s might have elements in common. Also note that, by
construction, if i ∈ Bw, then i must be a leaf of Tw, or the root of Tw.
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Definition 3.5. The (Tw,Bw)-problem is the optimization problem over |Vw\B(t)| variables

min
{Zj :j∈Vw\B(t)}

(1/2)
∑

j∈Vw
(Zj − Zj̄)2, (7)

where j̄ is the parent of j in Tw, Zj̄ = 0 if j = rw, and Zj = Z∗(t)j = t−Nj if j ∈ Bw(t).
Lemma 3.6. Problem (5) decomposes into k independent problems. In particular, the minimizers
{Z∗(t)j : j ∈ Vw\B(t)} are determined as the solution of the (Tw,Bw)-problem. If j ∈ Vw, then
Z∗(t)j = c1t+ c2 , where c1 and c2 depend on j but not on t, and 0 ≤ c1 ≤ 1.
Lemma 3.7. Z∗(t) and L′(t) are piecewise linear and continuous in t. Furthermore, Z∗(t) and
L′(t) change linear segments if and only if B(t) changes.
Lemma 3.8. If t ≤ t′, then B(t′) ⊆ B(t). In particular, B(t) changes at most q times with t.
Lemma 3.9. Z∗(t) and L′(t) have less than q + 1 different linear segments.

3.2 The Algorithm

In a nutshell, our algorithm computes the solution path {Z∗(t)}t∈R and the derivative {L′(t)}t∈R.
From these paths, it finds the unique t∗, at which

d(t+ L(t))/dt = 0|t=t∗ ⇔ L′(t∗) = −1. (8)
It then evaluates the path Z∗(t) at t = t∗, and uses this value, along with (6), to find M∗ and F ∗, the
unique minimizers of (3). Finally, we compute C(T ) = ‖F̂ − F ∗‖.
We know that {Z∗(t)} and {L′(t)} are continuous piecewise linear, with a finite number of different
linear segments (Lemmas 3.7, 3.8 and 3.9). Hence, to describe {Z∗(t)} and {L′(t)}, we only need
to evaluate them at the critical values, t1 > t2 > · · · > tk, at which Z∗(t) and L′(t) change linear
segments. We will later use Lemma 3.7 as a criteria to find the critical values. Namely, {ti} are
the values of t at which, as t decreases, new variables become fixed, and B(t) changes. Note that
variables never become free once fixed, by Lemma 3.8, which also implies that k ≤ q.

The values {Z∗(ti)} and {L′(ti)} are computed sequentially as follows. If t is very large, the
constraint in (5) is not active, and Z∗(t) = L(t) = L′(t) = 0. Lemma 3.7 tells us that, as we
decrease t, the first critical value is the largest t for which this constraint becomes active, and at which
B(t) changes for the first time. Hence, if i = 1, we have ti = maxs{Ns}, Z∗(ti) = L′(ti) = 0, and
B(ti) = arg maxs{Ns}. Once we have ti, we compute the rates Z ′∗(ti) and L′′(ti) from B(ti) and
T , as explained in Section 3.3. Since the paths are piecewise linear, derivatives are not defined at
critical points. Hence, here, and throughout this section, these derivatives are taken from the left, i.e.,
Z ′∗(ti) = limt↑ti(Z

∗(ti)− Z∗(t))/(ti − t) and L′′(ti) = limt↑ti(L′(ti)− L′(t))/(ti − t).

Since Z ′∗(t) and L′′(t) are constant for t ∈ (ti+1, ti], for t ∈ (ti+1, ti] we have
Z∗(t) = Z∗(ti) + (t− ti)Z ′∗(ti), L′(t) = L′(ti) + (t− ti)L′′(ti), (9)

and the next critical value, ti+1, is the largest t < ti, for which new variables become fixed, and B(t)
changes. The value ti+1 is found by solving for t < ti in

Z∗(t)r = Z∗(ti)r + (t− ti)Z ′∗(ti)r = t−Nr, (10)
and keeping the largest solution among all r /∈ B. Once ti+1 is computed, we update B with the new
variables that became fixed, and we obtain Z∗(ti+1) and L′(ti+1) from (9). The process then repeats.

By Lemma 3.2, L′ never increases. Hence, we stop this process (a) as soon as L′(ti) < −1, or (b)
when all the variables are in B, and thus there are no more critical values to compute. If (a), let tk
be the last critical value with L′(tk) > −1, and if (b), let tk be the last computed critical value. We
use tk and (9) to compute t∗, at which L′(t∗) = −1 and also Z∗(t∗). From Z∗(t∗) we then compute
M∗ and F ∗ and C(U) = ‖F̂ − F ∗‖.
The algorithm is shown compactly in Alg. 1. Its inputs are F̂ and T , represented, e.g., using a linked-
nodes data structure. Its outputs are minimizers to (3). It makes use of a procedure ComputeRates,
which we will explain later. This procedure terminates in O(q) steps and uses O(q) memory. Line 5
comes from solving (10) for t. In line 14, the symbols M∗(Z∗, T ) and F ∗(Z∗, T ) remind us that M∗
and F ∗ are computed from Z∗ and T using (6). The correctness of Alg. 1 follows from the Lemmas
in Section 3.1, and the explanation above. In particular, since there are at most q + 1 different linear
regimes, the bound q in the for-loop does not prevent us from finding any critical value. Its time
complexity is O(q2), since each line completes in O(q) steps, and is executed at most q times.
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Theorem 3.10 (Complexity). Algorithm 1 finishes in O(q2) steps, and requires O(q) memory.
Theorem 3.11 (Correctness). Algorithm 1 outputs the solution to (3).

Algorithm 1 Projection onto the PPM (input: T and F̂ ; output: M∗ and F ∗)

1: Ni =
∑
j∈∆i F̂j , for all i ∈ V . This takes O(q) steps using a DFS, see proof of Theorem 3.10

2: i = 1, ti = maxr{Nr}, B(ti) = arg maxr{Nr}, Z∗(ti) = 0, L′(ti) = 0. . Initialize
3: for i = 1 to q do
4: (Z ′∗(ti),L′′(ti)) = ComputeRates(B(ti), T ) . Update rates of change
5: P = {Pr : Pr = Nr+Z∗(ti)r−tiZ′∗(ti)r

1−Z′∗(ti)r if r /∈ B(ti), tr < ti, and Pr = −∞ otherwise}
6: ti+1 = maxr Pr . Update next critical value from (9)
7: B(ti+1) = B(ti) ∪ arg maxr Ps . Update list of fixed variables
8: Z∗(ti+1) = Z∗(ti) + (ti+1 − ti)Z ′∗(ti) . Update solution path
9: L′(ti+1) = L′(ti) + (ti+1 − ti)L′′(ti) . Update objective’s derivative

10: if L′(ti+1) < −1 then break . If already passed by t∗, then exit the for-loop
11: end for
12: t∗ = ti − 1+L′(ti)

L′′(ti) . Find solution to (8)
13: Z∗ = Z∗(ti) + (t∗ − ti)Z ′∗(ti) . Find minimizers of (5) for t = t∗

14: return M∗(Z∗, T ), F ∗(Z∗, T ) . Return solution to (3) using (6), which takes O(q) steps

3.3 Computing the rates
We now explain how the procedure ComputeRates works. Recall that it takes as input the tree T and
the set B(ti), and it outputs the derivatives Z ′∗(ti) and L′′(ti).

A simple calculation shows that if we compute Z ′∗(ti), then computing L′′(ti) is easy.
Lemma 3.12. L′′(ti) can be computed from Z ′∗(ti) in O(q) steps and with O(1) memory as

L′′(ti) =
∑

j∈V
(Z ′∗(ti)j − Z ′∗(ti)j̄)2, (11)

where j̄ is the closest ancestor to j in T . We note that if j ∈ B(ti), then, by definition,
Z ′∗(ti)j = 1. Assume now that j ∈ V\B(ti). Lemma 3.6 implies we can find Z ′∗(ti)j by solving
the (Tw = (rw,Vw, Ew),Bw)-problem as a function of t, where w is such that j ∈ Vw. In a nutshell,
ComputeRates is a recursive procedure to solve all the (Tw,Bw)-problems as an explicit function of t.

It suffices to explain how ComputeRates solves one particular (Tw,Bw)-problem explicitly. To
simplify notation, in the rest of this section, we refer to Tw and Bw as T and B. Recall that, by the
definition of T = Tw and B = Bw, if i ∈ B, then i must be a leaf of T , or the root of T .
Definition 3.13. Consider a rooted tree T = (r,V, E), a set B ⊆ V , and variables {Zj : j ∈ V} such
that, if j ∈ B, then Zj = αjt+ βj for some α and β. We define the (T,B, α, β, γ)-problem as

min
{Zj :j∈V\B}

1

2

∑

j∈V
γj(Zj − Zj̄)2, (12)

where γ > 0, j̄ is the closest ancestor to j in T , and Zj̄ = 0 if j = r.

We refer to the solution of the (T,B, α, β, γ)-problem as {Z∗j : j ∈ V\B}, which uniquely minimizes
(12). Note that (12) is unconstrained and its solution, Z∗, is a linear function of t. Furthermore, the
(Tw,Bw)-problem is the same as the (Tw,Bw,1,−N,1)-problem, which is what we actually solve.

We now state three useful lemmas that help us solve any (T,B, α, β, γ)-problem efficiently.
Lemma 3.14 (Pruning). Consider the solution Z∗ of the (T,B, α, β, γ)-problem. Let j ∈ V\B be
a leaf. Then Z∗j = Z∗

j̄
. Furthermore, consider the (T̃,B, α, β, γ)-problem, where T̃ = (r̃, Ṽ, Ẽ) is

equal to T with node j pruned, and let its solution be Z̃∗. We have that Z∗i = Z̃∗i , for all i ∈ Ṽ .
Lemma 3.15 (Star problem). Let T be a star such that node 1 is the center node, node 2 is the
root, and nodes 3, . . . , r are leaves. Let B = {2, . . . , r}. Let Z∗1 ∈ R be the solution of the
(T,B, α, β, γ)-problem. Then,

Z∗1 =

(
γ1α2 +

∑r
i=3 γrαr

γ1 +
∑r
i=3 γr

)
t+

(
γ1β2 +

∑r
i=3 γrβr

γ1 +
∑r
i=3 γr

)
. (13)

In particular, to find the rate at which Z∗1 changes with t, we only need to know α and γ, not β.
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Lemma 3.16 (Reduction). Consider the (T,B, α, β, γ)-problem such that j, j̄ ∈ V\B, and such that
j has all its children 1, . . . , r ∈ B. Let Z∗ be its solution. Consider the (T̃, B̃, α̃, β̃, γ̃)− problem,
where T̃ = (r̃, Ṽ, Ẽ) is equal to T with nodes 1, . . . , r removed, and B̃ = (B\{1, . . . , r}) ∪ {j}. Let
Z̃∗ be its solution. If (α̃i, β̃i, γ̃i) = (αi, βi, γi) for all i ∈ B\{1, . . . , r}, and α̃j , β̃j and γ̃j satisfy

α̃j =

∑r
i=1 γiαi∑r
i=1 γi

, β̃j =

∑r
i=1 γiβi∑r
i=1 γi

, γ̃j =


(γj)

−1 +

(
r∑

i=1

γi

)−1


−1

, (14)

then Z∗i = Z̃∗i for all i ∈ V\{j}.
Lemma 3.15 and Lemma 3.16 allow us to recursively solve any (T,B, α, β, γ)-problem, and obtain
for it an explicit solution of the form Z∗(t) = c1t+ c2, where c1 and c2 do not depend on t.

Assume that we have already repeatedly pruned T , by repeatedly invoking Lemma 3.14, such that,
if i is a leaf, then i ∈ B. See Figure 2-(left). First, we find some node j ∈ V\B such that all of
its children are in B. If j̄ ∈ B, then j̄ must be the root, and the (T,B, α, β, γ)-problem must be
a star problem as in Lemma 3.15. We can use Lemma 3.15 to solve it explicitly. Alternatively, if
j̄ /∈ V\B, then we invoke Lemma 3.16, and reduce the (T,B, α, β, γ)-problem to a strictly smaller
(T̃, B̃, α̃, β̃, γ̃)-problem, which we solve recursively. Once the (T̃, B̃, α̃, β̃, γ̃)-problem is solved, we
have an explicit expression Z∗i (t) = c1it + c2i for all i ∈ V\{j}, and, in particular, we have an
explicit expression Z∗

j̄
(t) = c1 j̄t+ c2 j̄ . The only free variable of the (T,B, α, β, γ)-problem to be

determined is Z∗j (t). To compute Z∗j (t), we apply Lemma 3.15 to the (
≈
T ,

≈
B, ≈α,

≈
β,
≈
γ)-problem, where

≈
T is a star around j, ≈γ are the components of γ corresponding to nodes that are neighbors of j, ≈α
and

≈
β are such that Z∗i (t) =

≈
αit+

≈
βi for all i that are neighbors of j, and for which Z∗i (t) is already

known, and
≈
B are all the neighbors of j. See Figure 2-(right).

The algorithm is compactly described in Alg. 2. It is slightly different from the description above for
computational efficiency. Instead of computing Z∗(t) = c1t+ c2, we keep track only of c1, the rates,
and we do so only for the variables in V\B. The algorithm assumes that the input T has been pruned.
The inputs T , B, α, β and γ are passed by reference. They are modified inside the algorithm but, once
ComputeRatesRec finishes, they keep their initial values. Throughout the execution of the algorithm,
T = (r,V, E) encodes (1) a doubly-linked list where each node points to its children and its parent,
which we call T.a, and (b) a a doubly-linked list of all the nodes in V\B for which all the children
are in B, which we call T.b. In the proof of Theorem 3.17, we prove how this representation of T can
be kept updated with little computational effort. The input Y , also passed by reference, starts as an
uninitialized array of size q, where we will store the rates {Z ′∗i }. At the end, we read Z ′∗ from Y .

Algorithm 2 ComputeRatesRec (input: T = (r,V, E),B, α, β, γ, Y )
1: Let j be some node in V\B whose children are in B . We read j from T.b in O(1) steps
2: if j̄ ∈ B then
3: Set Yj using (13) in Lemma 3.15 . If j̄ ∈ B, then the (T,B, α, β, γ)-problem is star-shaped
4: else
5: Modify (T,B, α, β, γ) to match (T̃, B̃, α̃, β̃, γ̃) defined by Lemma 3.16 for j in line 1
6: ComputeRatesRec(T,B, α, β, γ, Y ) . Sets Yi = Z ′∗i for all i ∈ V\B; Yj is not yet defined
7: Restore (T,B, α, β, γ) to its original value before line 5 was executed
8: Compute Yj from (13), using for α, β, γ in (13) the values ≈α,

≈
β,
≈
γ, where ≈γ are the com-

ponents of γ corresponding to nodes that are neighbors of j in T , and ≈α and
≈
β are such that

Z∗i =
≈
αit+

≈
βi for all i that are neighbors of j in T , and for which Z∗i is already known

9: end if

Let q be the number of nodes of the tree T that is the input at the zeroth level of the recursion.
Theorem 3.17. Algorithm 2 correctly computes Z ′∗ for the (T,B, α, β, γ)-problem, and it can be
implemented to finish in O(q) steps, and to use O(q) memory.

The correctness of Algorithm 2 follows from Lemmas 3.14-3.16, and the explanation above. Its
complexity is bounded by the total time spent on the two lines that actually compute rates during
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Figure 2: Red squares represent fixed nodes, and black circles free nodes. (Left) By repeatedly invoking Lemma
3.14, we can remove nodes 2, 3, and 4 from the original problem, since their associated optimal values are equal
to the optimal value for node 1. (Right) We can compute the rates for all the free nodes of a subtree recursively
by applying Lemma 3.16 and Lemma 3.15. We know the linear behavior of variables associated to red squares.

the whole recursion, lines 3 and 8. All the other lines only transform the input problem into a more
computable form. Lines 3 and 8 solve a star-shaped problem with at most degree(j) variables,
which, by inspecting (13), we know can be done inO(degree(j)) steps. Since, j never takes the same
value twice, the overall complexity is bounded by O(

∑
j∈V degree(j)) = O(|E|) = O(q). The O(q)

bound on memory is possible because all the variables that occupy significant memory are being
passed by reference, and are modified in place during the whole recursive procedure.

The following lemma shows how the recursive procedure to solve a (T,B, α, β, γ)-problem can
be used to compute the rates of change of Z∗(t) of a (T,B)-problem. Its proof follows from the
observation that the rate of change of the solution with t in (13) in Lemma 3.15 only depends on α
and β, and that the reduction equations (14) in Lemma 3.16 never make α′ or γ′ depend on β.

Lemma 3.18 (Rates only). Let Z∗(t) be the solution of the (T,B)-problem, and let Z̃∗(t) be the
solution of the (T,B,1, 0,1)-problem. Then, Z∗(t) = c1t+ c2, and Z̃∗(t) = c1t for some c1 and c2.

We finally present the full algorithm to compute Z ′∗(ti) and L′′ ∗ (ti) from T and B(ti).

Algorithm 3 ComputeRates (input: T and B(ti) output: Z ′∗(ti) and L′′(ti))
1: Z ′∗(ti)j = 1 for all j ∈ B(ti)
2: for each (Tw,Bw)-problem induced by B(ti) do
3: Set T̃w to be Tw pruned of all leaf nodes in Bw, by repeatedly evoking Lemma 3.14
4: ComputeRatesRec(T̃w, j,Bw,1,0,1, Z̃ ′∗)
5: Z ′∗(ti)j = Z̃ ′∗j for all j ∈ Vw\B
6: end for
7: Compute L′′(ti) from Z ′∗(ti) using Lemma 3.12
8: return Z ′∗(ti) and L′′(ti)

The following theorem follows almost directly from Theorem 3.17.
Theorem 3.19. Alg. 3 correctly computes Z ′∗(ti) and L′′(ti) in O(q) steps, and uses O(q) memory.

4 Reducing computation time in practice

Our numerical results are obtained for an improved version of Algorithm 1. We now explain the main
idea behind this algorithm.

The bulk of the complexity of Alg. 1 comes from line 4, i.e., computing the rates {Z ′∗(ti)j}j∈V\B(ti)

from B(ti) and T . For a fixed j ∈ V\B(ti), and by Lemma 3.6, the rate Z ′∗(ti)j , depends only on
one particular (Tw = (rw,Vw, Ew),Bw)-problem induced by B(ti). If exactly this same problem is
induced by both B(ti) and B(ti+1), which happens if the new nodes that become fixed in line 7 of
round i of Algorithm 1 are not in Vw\Bw, then we can save computation time in round i+ 1, by not
recomputing any rates for j ∈ Vw\Bw, and using for Z ′∗(ti+1)j the value Z ′∗(ti)j .

Furthermore, if only a few {Z ′∗j } change from round i to round i + 1, then we can also save
computation time in computing L′′ from Z ′∗ by subtracting from the sum in the right hand side of
equation (11) the terms that depend on the previous, now changed, rates, and adding new terms that
depend on the new rates.
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Finally, if the rate Z ′∗j does not change, then the value of t < ti at which Z∗j (t) might intersect t−Nj ,
and become fixed, given by Pj in line 5, also does not change. (Note that this is not obvious from
the formula for Pr in line 5). If not all {Pr} change from round i to round i+ 1, we can also save
computation time in computing the maximum, and maximizers, in line 7 by storing P in a maximum
binary heap, and executing lines 5 and 7 by extracting all the maximal values from the top of the
heap. Each time any Pr changes, the heap needs to be updated.
5 Numerical results
Our algorithm to solve (3) exactly in a finite number of steps is of interest in itself. Still, it is
interesting to compare it with other algorithms. In particular, we compare the convergence rate of our
algorithm with two popular methods that solve (3) iteratively: the Alternating Direction Method of
Multipliers (ADMM), and the Projected Gradient Descent (PGD) method. We apply the ADMM,
and the PGD, to both the primal formulation (3), and the dual formulation (4). We implemented all
the algorithms in C, and derived closed-form updates for ADMM and PG, see Appendix F. We ran
all algorithms on a single core of an Intel Core i5 2.5GHz processor.

Figure 5-(left) compares different algorithms for a random Galton–Watson input tree truncated to
have q = 1000 nodes, with the number of children of each node chosen uniformly within a fixed
range, and for a random input F̂ ∈ Rq, with entries chosen i.i.d. from a normal distribution. We
observe the same behavior for all random instances that was tested. We gave ADMM and PGD an
advantage by optimally tuning them for each individual problem-instance tested. In contrast, our
algorithm requires no tuning, which is a clear advantage. At each iteration, the error is measured
as maxj{|Mj −M∗j |}. Our algorithm is about 74× faster than its closest competitor (PGD-primal)
for 10−3 accuracy. In Figure 5-(right), we show the average run time of our algorithm versus the
problem size, for random inputs of the same form. The scaling of our algorithm is (almost) linear,
and much faster than our O(q2p), p = 1, theoretical bound.
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Figure 3: (Left) Time that the different algorithms take to solve our problem for trees of with 1000 nodes.
(Right) Average run time of our algorithm for problems of different sizes. For each size, each point is averaged
over 500 random problem instances.

Finally, we use our algorithm to exactly solve (2) by computing C(U) for all trees and a given input F̂ .
Exactly solving (2) is very important for biology, since several relevant phylogenetic tree inference
problems deal with trees of small sizes. We use an NVIDIA QUAD P5000 GPU to compute the cost
of all possible trees with q nodes in parallel, and return the tree with the smallest cost. Basically, we
assign to each GPU virtual thread a unique tree, using Prufer sequences [31], and then have each
thread compute the cost for its tree. For q = 10, we compute the cost of all 100 million trees in about
8 minutes, and for q = 11, we compute the cost of all 2.5 billion trees in slightly less than 2.5 hours.

Code to solve (3) using Alg. 1, with the improvements of Section 4, can be found in [32]. More
results using our algorithm can be found in Appendix G.

6 Conclusions and future work
We propose a new direct algorithm that, for a given tree, computes how close the matrix of frequency
of mutations per position is to satisfying the perfect phylogeny model. Our algorithm is faster than
the state-of-the-art iterative methods for the same problem, even if we optimally tune them. We use
the proposed algorithm to build a GPU-based phylogenetic tree inference engine for the trees of
relevant biological sizes. Unlike existing algorithms, which only heuristically search a small part of
the space of possible trees, our algorithm performs a complete search over all trees relatively fast. It
is an open problem to find direct algorithms that can provably solve our problem in linear time on
average, or even for a worst-case input.

Acknowledgement: This work was partially funded by NIH/1U01AI124302, NSF/IIS-1741129,
and a NVIDIA hardware grant.
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Appendix for “Efficient Projection onto the Perfect Phylogeny
Model”

A Further illustrations

1 

Tree, T 

T1 
4 

T2 T3 

T4 

Figure 4: Four subtrees of T induced by B(t), represented by the red squares. The root of T1, T2 and T4 is
node 1. The root of T3 is node 4. All subtrees must have nodes associated to free variables (free nodes). Any
subtree is uniquely identified by any free node in it. Within each subtree, any fixed node must be the root or a
leaf.

B Proof of Theorem 3.1 in Section 3

We prove Theorem 3.1, by first proving the following very similar theorem.
Theorem B.1. Problem (3) can be solved by solving

min
t
t+ L(t), (15)
L(t) = min

Z∈Rq

1

2
‖(U>)−1Z‖2 subject to Z +N ≤ t1, (16)

where N = U>F̂ . In particular, if t∗ minimizes (15), Z∗ minimizes (16) for t = t∗, and M∗, F ∗
minimize (3), then

M∗ = −U−1(U−1)>Z∗, F ∗ = −(U−1)>Z∗. (17)
Furthermore, t∗, M∗, F ∗ and Z∗ are unique.

Proof of Theorem B.1. Problem (3) depends on the tree T through the matrix of the ancestors, U . To
see how Theorem B.1 implies Theorem 3.1, it is convenient to make this dependency more explicit.
Any tree in T , can be represented through a binary matrix T , where Tij = 1 if and only if node i is
the closest ancestor of node j. Henceforth, let T denote the set of all such binary matrices. We need
the following lemma, which we prove later in this section of the appendix.

Lemma B.2. Consider an evolutionary tree and its matrices T ∈ T and U ∈ U . We have
U = (I − T )−1. (18)

Eq. (18) implies that ((U−1)>Z)i = (Z − T>Z)i = Zi − Zī, and that U−1((U−1)>Z)i =
Zi−Zī−

∑
r∈∂i(Zr −Zr̄), where ∂i denotes the children of i in T , ī represents the closest ancestor

of i in T . We assume by convention that Zī = 0 when i = r is the root of T . Furthermore, the
definition of U implies that Ni = (U>F̂ )i =

∑
j∈∆i F̂j , where ∆i denotes the ancestors of j. Thus,

L(t) = min
Z∈Rq

1

2

∑

i∈V
(Zi − Zī)2 subject to (19)

Zi ≤ t−
∑

j∈∆i

F̂j ,∀i ∈ V,

M∗i = −Z∗i + Z∗ī +
∑

r∈∂i
(Z∗r − Z∗r̄ ) and (20)

F ∗i = −Z∗i + Z∗ī ,∀i ∈ V.
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Proof of Theorem 3.1. Our proof is based on Moreau’s decomposition [33]. Before we proceed with
the proof, let us introduce a few concepts.

Given a convex, closed and proper function g : Rq 7→ R, we define its proximal operator by the map
G : Rq 7→ Rq such that

G(n) = arg min
x∈Rq

g(x) +
1

2
‖x− n‖2, (21)

where in our case ‖ · ‖ is the Euclidean norm. We define the Fenchel dual of g as

g∗(x) = sup
s∈Rq

{x>s− g(s)}, (22)

and we denote the proximal operator of g∗ by G∗. Note that G∗ can be computed from definition
(21) by replacing g by g∗.

Moreau’s decomposition identity states that

G(n) +G∗(n) = n. (23)

We can now start the proof. Consider the following indicator function

g(M̃) =

{
0, if (U−1M̃) ≥ 0 and 1T(U−1M̃) = 1,

+∞, otherwise,
(24)

where M̃ ∈ Rq , and consider its associated proximal operator G. Solving problem (3), i.e., finding a
minimizer M∗, is equivalent to evaluating U−1G(F̂ ). Using Moreau’s decomposition, we have

M∗ = U−1G(F̂ ) = U−1F̂ − U−1G∗(F̂ ). (25)

We will show that G∗(F̂ ) = F̂ + (U−1)>Z∗, where Z∗ is a minimizer of (5), which proves (6) and
essentially completes the proof.

To compute G∗, we first need to compute

g∗(Y ) = sup
M̃

{Y >M̃ − g(M̃)} (26)

= max
M̃

Y >M̃ (27)

subject to U−1M̃ ≥ 0,1>(U−1M̃) = 1.

Making the change of variable M = U−1M̃ , the maximum in problem (27) can be re-written as

max
M

(U>Y )>M (28)

subject to M ≥ 0,1>M = 1.

It is immediate to see that the maximum in (28) is achieved if we set all components of M equal to
zero except the one corresponding to the largest component of the vector U>Y , which we should set
to one. Therefore, we have

g∗(Y ) = max
i

(U>Y )i. (29)

Now we can write

G∗(F̂ ) = arg min
Y ∈Rq

g∗(Y ) +
1

2
‖Y − F̂‖2 (30)

= arg min
Y ∈Rq,t∈R

t+
1

2
‖Y − F̂‖2 (31)

subject to U>Y ≤ t.
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Making the change of variable Z = U>(Y − F̂ ), we can write G∗(F̂ ) as

G∗(F̂ ) = F̂ + (U−1)>Z∗, where (32)

(Z∗, t∗) = arg min
Z∈Rq,t∈R

t+
1

2
‖(U−1)>Z‖2 (33)

subject to Z + U>F̂ ≤ t.

To see that M∗ and F ∗ are unique, notice that problem (3) is a projection onto a convex set polytope,
which always has a unique minimizer. Moureau’s decomposition implies that G∗(F̂ ) is unique, hence
the minimizer Y ∗ of (30) is unique. Thus, Z∗ = U>(Y ∗− F̂ ) and t∗ = g∗(Y ∗) are also unique.

Proof of Lemma B.2. We assume that the tree has q nodes. The matrix T is such that Tv,v′ = 1 if and
only if v is the closet ancestor of v′. Because of this, the vth column of T k has a one in row v′ if and
only if v′ is an ancestor v separated by k generations. Thus, the vth column of I+T+T 2+· · ·+T q−1,
contains a one in all the rows v′ such that v′ is an ancestor of v, or if v = v′. But this is the definition
of the matrix U associated to the tree T . Since no two mutants can be separated by more than q − 1
generations, T k = 0 for all k ≥ q. It follows that

U = I + T + T 2 + · · ·+ T q−1 =

∞∑

i=0

T i = (I − T )−1.

C Proof of useful observations in Section 3.1

Proof of Lemma 3.2. The proof follows from the following generic fact, which we prove first. Let
g(W ) = minZ∈Rq f(Z,W ). If f is convex in (Z,W ), then g is convex.

Indeed, let α ≥ 0 and α′ = 1 − α. We get αg(W1) + α′g(W2) = minZ1,Z2
αf(Z1,W1) +

α′f(Z2,W2) ≥ minZ1,Z2
f(αZ1 + α′Z2, αW1 + α′W2) = g(αW1 + α′W2).

To apply this result to our problem, let f1(Z) be the objective of (19) and let f2(Z, t,N) be a function
(on the extended reals) such that f2 = 0 if (Z, t,N) satisfy the constraints in (19) and +∞ otherwise.
Now notice that L(t) = minZ f1(Z) + f2(Z, t), where f1 + f2 is convex in (Z, t,N), since both f1

and f2 are convex in (Z, t,N). Convexity implies that L is continuous in N and t. It also implies
that L′(t) is non increasing in t.

Proof of Lemma 3.3. Continuity of Z∗(t): The objective function in (19) is convex as a function of
Z and has unique minimum at Zi = 0,∀i. Hence, it is strictly convex. Due to strict convexity, if the
objective takes values in a small interval, then Z must be inside some small ball.

Since we know, by the remark following Lemma 3.2, that L is continuous as a function of t, if t and
t′ are close, then L(t) and L(t′) must be close. Strict convexity then implies that Z∗(t) and Z∗(t′)
must be close. The same argument can be used to prove continuity with respect to N .

Continuity of Z∗(t∗): Recall that Z∗(t∗) = Z∗, the solution of (3). Z∗ is a continuous function of
M∗, which is the solution to (3), and thus is fully determined by U and F̂ . Since, F̂ = (U>)−1N ,
F̂ is a continuous function of N , and it suffices to prove that M∗ is continuous in F̂ . Problem (3)
finds the projection of F̂ onto a convex polytope. Let F ∗ be this projection. Since F ∗ changes
continuously with F̂ , M∗ = U−1F ∗ also changes continuously with F̂ .

Proof of Lemma 3.4. Since Z∗(t) is continuous, if Z∗(t)i 6= t−Ni then Z∗(t′)i 6= t′ −Ni for t′ in
some neighborhood of t.

Proof of Lemma 3.6. First note that, by definition of B(t), we know the value of all variables in B(t).
Hence, the unknowns in problem (19) are the variables in V\B(t), which can be partitioned into
disjoint sets {Vi\B(t)}ki=1.
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Second notice that for each term in the objective (19) that involves not known variables, there is some
subtree Ti that contains both of its variables. It follows that, given B(t), problem (19) breaks into
k independent problems, the ith problem having as unknowns only the variables in Vi\B(t) and all
terms in the objective where either j or j̄ are in Vi\B(t).

Obviously, if j ∈ Vw∩B(t), then, by definition, Z∗(t)j = c1t+c2, with c1 = 1. To find the behavior
of Z∗(t)j for j ∈ Vw\B(t), we need to solve 7. To solve (7), notice that the first-order optimality
conditions for problem (19) imply that, if j ∈ V\B(t), then

Zj =
1

|∂j|
∑

r∈∂j
Zr, (34)

where ∂j denotes the neighbors of node j. We can further write

Zj =
1

|∂j|
∑

r∈∂j∩B(t)

Zr +
1

|∂j|
∑

r∈∂j\B(t)

,

Zr =
1

|∂j|
∑

r∈∂j∩B(t)

(t−Nr) +
1

|∂j|
∑

r∈∂j\B(t)

Zr. (35)

It follows that Zj = c1t+ c2, for some c1 and c2 that depend on T , N and B. If we solve for Zj by
recursively applying (35), it is immediate to see that c1 ≥ 0.

To see that c1 ≤ 1, we study how Zj , defined by (35), depends on t algebraically. To do so, we treat
t as a variable. The study of this algebraic dependency in the proof should not be confused with t
being fixed in the statement of the theorem.

Define ρ = |∂i ∪ B(t)|/|∂j|, and notice that

max
j
{Zj} ≤ ρt+ (1− ρ) max

j
{Zj}+ C, (36)

in which C is some constant. Recursively applying the above inequality we get

max
j
{Zj} ≤ t+ C ′, (37)

in which C ′ is some constant. This shows that no Zj can grow with t faster than 1 × t and hence
c1 ≤ 1.

Proof of Lemma 3.7. Lemma 3.6 implies that, for any j, Z∗j (t) depends linearly on t. The particular
linear dependency, depends on B(t), which is piecewise constant by Lemma 3.4. Therefore, Z∗j (t)
is a continuous piecewise linear function of t. This in turn implies that L′(t) is a continuous
piecewise linear function of t, since it is the derivative of the continuous piecewise quadratic L(t) =
(1/2)

∑
i∈V(Z∗(t)i − Z∗(t)ī)2. Finally, since the particular linear dependency of Z∗, depends on

B(t), it follows that Z∗(t) and L′(t) change linear segment if and only if B(t) changes.

Proof of Lemma 3.8. Let us assume that there exists t < t′ for which B(t) ⊂ B(t′). We can assume
without loss of generality that t is sufficiently close to t′ such that B(s) is constant for s ∈ [t, t′). Let
j be such that j ∈ B(t′) but j /∈ B(t). This means that Z∗j (s) < s−Nj for all s ∈ [t, t′) and that
Z∗j (t′) = t′ −Nj . Since by Lemma 3.6, Z∗j (s) = c1s+ c2, for some constants c1 and c2, the only
way that Z∗j (s) can intersect s−Nj at s = t′ is for c1 > 1, which is a contradiction.

If B(t) decreases as t increase, and given that the largest that B(t) can be is {1, . . . , q}, it follows that
B(t) can only take q+ 1 different configurations. One configuration per size of B(t), from q to 0.

Proof of Lemma 3.9. Lemma 3.8 implies that B(t) changes at most q + 1 times. Lemma 3.7 then
implies that Z∗(t) and L′(t) have less than q + 1 different linear segments.

D Proofs of the properties of the algorithm in Section 3.2

Proof of Theorem 3.10. Run-time: Recall that Z∗, Z ′∗ ∈ Rq and that L′ ∈ R. Line 1 is done in
O(q) steps by doing a DFS on T . Here, we assume that T is represented as a linked list. Specifically,
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starting from the root, we keep a variable x where we accumulate the values of F̂j visited from the
root to the current node being explored in T as we move down the tree. As we move up the tree, we
subtract values of the nodes F̂j from x. Then, at each node i visited by the DFS, we can read from x
the value Ni. Line 2 takes O(q) steps to finish. The procedure ComputeRates takes O(q) steps to
finish, which we prove in Theorem 3.19. All of the other lines inside the for-loop are manipulations
that take at most O(q) steps. Lines 13 and 12 take O(q) steps. From (6), the complexity to compute
F ∗ is O(q), and the complexity to compute M∗ is O(

∑
i∈V |∂i|) = O(|E|) = O(q).

Memory: The DFS in line 1 only requires O(q) memory. Throughout the algorithm, we only need
to keep the two most recent values of ti, B(ti), Z∗(ti), Z ′∗(ti), L′(ti) and L′′(ti). This takes O(q)
memory. The procedure ComputeRates takes O(q) memory, which we prove in Theorem 3.19.

Proof of Theorem 3.11. The proof of Theorem 3.11 amounts to checking that, at every step of
Algorithm 1, the quantities computed, e.g., the paths {Z∗(t)} and {L′(t)}, are correct.

Lemmas 3.7 and 3.9 prove that Z∗(t) and L′(t) are piecewise linear and continuous with at most q
changes in linear segment. Hence, the paths {Z∗(t)} and {L′(t)} are fully specified by their value at
{ti}ki=1, and k ≤ q.

Lemma 3.7 proves that these critical values are determined as the instants, at which B(t) changes.
Furthermore, Lemma 3.8 proves that, as t decreases, variables are only added to B(t). Hence, to find
{ti} and {B(ti)}, we only need to find the times and components at which, as t decreases, Z∗(t)r
goes from Z∗(t)r < t − Nr to Z∗(t)r = t − Nr. Also, since B can have at most q variables, the
for-loop in line 3 being bounded to the range 1-q, does not prevent the algorithm from finding any
critical value.

Theorem 3.19 tells us that we can compute Z ′∗(ti) from B(ti) and T . Since we have already proved
that the path {Z∗(t)} is piecewise linear and continuous, we can compute ti+1, and the variables that
become fixed, by solving (10) for t for each r /∈ B(ti), and choosing for ti+1 the largest such t, and
choosing for the new fixed variables, i.e., B(ti+1)− B(ti), the components r for which the solution
of (10) is ti+1.

Since we have already proved that that Z∗(t) and L′(t) are piecewise linear and constant, we can
compute Z∗(ti+1) and L′(ti+1) from Z∗(ti), L′(ti), Z ′∗(ti) and L′′(ti) using (9).

Lemma 3.2 proves that L′(t) decreases with t, and Theorem 3.1 proves that t∗ is unique. Hence,
as t decreases, there is a single t at which L′(t) goes from > −1 to < −1. Since we have already
proved that we correctly, and sequentially, compute L′(ti), L′′(ti), and that L′(t) is piecewise
linear and constant, we can stop computing critical values whenever we can determine that L′(t) =
L′(tk) + (t− tk)L′′(tk) will cross the value −1, where tk is the latest computed critical value. This
is the case when L′(tk) > −1 and L′(tk+1) < −1, or when L′(tk) > −1 and tk is the last possible
critical value, which happens when |B(ti)| = q. From this last critical value, tk, we can then find t∗
and Z∗ by solving −1 = L′(tk) + (t∗ − tk)L′′(tk) and Z∗ = Z∗(tk) + (t∗ − tk)Z ′∗(tk). Finally,
once we have Z∗, we can use (6) in Theorem 3.1 to find M∗ and F ∗.

E Proofs for computing the rates in Section 3.3

Proof of Lemma 3.12. Let t ∈ (ti+1, ti). We have,

L′(t) =
d

dt

1

2

∑

j∈V
(Z∗(t)j − Z∗(t)j̄)2 =

∑

i∈V
(Z∗(t)j − Z∗(t)j̄)(Z∗′(t)j − Z∗′(t)j̄). (38)

Taking another derivative, and recalling that Z ′′∗(t) = 0 for t ∈ (ti+1, ti), we get

L′′(t) =
∑

j∈V
(Z∗′(t)j − Z∗′(t)j̄)2, (39)

and the lemma follows by taking the limit t ↑ ti.
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Proof of Lemma 3.14. The (T,B, α, β, γ)-problem is unconstrained and convex, hence we can solve
it by taking derivatives of the objective with respect to the free variables, and setting them to zero.
Let us call the objective function F (Z). If j ∈ V\B is a leaf, then dF

dZj
= 0 implies that Z∗j = Z∗

j̄
.

We now prove the second part of the lemma. Let F̃ (Z) be the objective of the modified problem.
Clearly, dF

dZi
= dF̃

dZi
for all i ∈ T̃\j̄. Let C be the children of j̄ in T and C̃ be the children of j̄ in T̃ .

We have C̃ = C\j. Furthermore, dF̃
dZj

= 0 is equivalent to γj(Zj − Zj̄) +
∑
s∈C̃ γs(Zj − Zs) = 0,

and dF
dZj

= 0 is equivalent to γj(Zj − Zj̄) +
∑
s∈C γs(Zj − Zs) = 0. However, we have already

proved that the optimal solution for the original problem has Z∗j = Z∗
j̄

. Hence, this condition can
be replaced in dF

dZj
, which becomes γj(Zj − Zj̄) +

∑
s∈C̃ γs(Zj − Zs) = 0. Therefore, the two

problems have the same optimality conditions, which implies that Z∗i = Z̃∗i , for all i ∈ Ṽ .

Proof of Lemma 3.15. The proof follows directly from the first order optimality conditions, a linear
equation that we solve for Z∗1 .

Proof of Lemma 3.16. The first order optimality conditions for both problems are a system of linear
equations, one equation per free node in each problem. All the equations associated to the ancestral
nodes of j are the same for both problems. The equation associated to variable j in the (T,B, α, β, γ)-
problem is

γj(Zj̄ − Zj) +

r∑

i=1

γi(Zi − Zj) = 0, (40)

which implies that

Zj =
γjZj̄ +

∑r
i=1 γiZi

γj +
∑r
i=1 γi

. (41)

The equation associated to the variable j̄ in the (T,B, α, β, γ)-problem is

F (Z,α, β, γ) + γj(Zj − Zj̄) = 0, (42)

where F (Z) is a linear function of Z determined by the tree structure and parameters associated to
the ancestral edges and nodes of j̄. The equation associated to the variable j̄ in the (T̃, B̃, α̃, β̃, γ̃)-
problem is

F (Z̃, α̃, β̃, γ̃) + γ̃j(α̃jt+ β̃j − Z̃j̄) = 0, (43)

for the same function F as in (42). Note that the components of α̃, β̃ and γ̃ associated to the ancestral
edges and nodes of j̄ are the same as in α, β and γ. Hence, F (Z̃, α̃, β̃, γ̃) = F (Z̃, α, β, γ).

By replacing (41) into (42), one can easily check the following. Equations (42) and (43), as linear
equations on Z and Z̃ respectively, have the same coefficients if (14) holds. Hence, if (14) holds, the
solution to the linear system associated to the optimality conditions in both problem gives the same
optimal value for all variables ancestral to j̄ and including j̄.

Proof of Theorem 3.17. Although T changes during the execution of the algorithm, in the proof we
let T = (r,V, E) be the tree, passed to the algorithm at the zeroth level of the recursion. Recall that
|V| = q and E = q − 1.

Correctness: The correctness of the algorithm follows directly from Lemmas 3.14, 3.15, and 3.16
and the explanation following these lemmas.

Run-time: It is convenient to think of the complexity of the algorithm by assuming that it is running
on a machine with a single instruction pointer that jumps from line to line in Algorithm 2. With this
in mind, for example, the recursive call in line 6 simply makes the instruction pointer jump from line
6 to line 1. The run-time of the algorithm is bounded by the sum of the time spent in each line in
Algorithm 2, throughout its entire execution. Each basic step costs one unit of time. Each node in V
is only chosen as j at most once, throughout the entire execution of the algorithm. Hence, line 1 is
executed at most q times, and thus any line is executed at most q times, at most once for each possible
choice for j.
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Assuming that we have T.b updated, j in line 1 can be executed in O(1) time, by reading the first
element of the linked list T.b. Lines 2 and 6 also take O(1) time. Here, we are thinking of the cost of
line 6 as simply the cost to make the instruction pointer jump from line 1 to line 6, not the cost to fully
completing the call to ComputeRatesRec on the modified problem. The modification made to the
(T,B, α, β, γ)-problem by lines 5 and 7, is related to the addition, or removal, of at most degree(j)
nodes, where degree(j) is the degree of j in T . Hence, they can be executed in O(degree(j)) steps.
Finally, lines 3 and 8 require solving a star-shaped problem with O(degree(j)) variables, and thus
take O(degreej), which can be observed by inspecting (13).

Therefore, the run-time of the algorithm is bounded by O(
∑
j degree(j)) = O(q).

To see that it is not expensive to keep T updated, notice that, if T changes, then either T.b loses j
(line 5) or has j reinserted (line 7), both of which can be done in O(1) steps. Hence, we can keep T.b
updated with only O(1) effort each time we run line 5 and line 7. Throughout the execution of the
algorithm, the tree T either shrinks by loosing nodes that are children of the same parent (line 5),
or T grows by regaining nodes that are all siblings (line 7). Hence, the linked list T.a can be kept
updated with only O(1) effort each time we run line 5 and line 7. Across the whole execution of the
algorithm, T.a and T.b can be kept updated with O(

∑
j degree(j)) = O(q) effort.

Memory: All the variables with a size that depend on q are passed by reference in each call of
ComputeRatesRec, namely, Y , T , B, α, β and γ. Hence, we only need to allocate memory for them
once, at the zeroth level of the recursion. All these variables take O(q) memory to store.

Proof of Lemma 3.18. From Definition 3.13, we know that the (T,B,1,−N,1)-problem and the
(T,B)-problem are the same. Hence, it is enough to prove that the solutions of (i) any (T,B, α, β, γ)-
problem and of (ii) the (T,B, α, 0, γ)-problem change at the same rate as a function of t.

We have already seen that the (T,B, α, β, γ)-problem can be solved by recursively invoking Lemma
3.16 until we arrive at problems that are small enough to be solved via Lemma 3.15.

We now make two observations. First, while recursing, Lemma 3.16 always transform a
(T̃, B̃, α̃, β̃, γ̃)-problem into a smaller problem ( ˜̃T, ˜̃B, ˜̃α,

˜̃
β, ˜̃γ)-problem where, by (14), ˜̃γ and ˜̃α

only depend on α̃ and γ̃ but not on β̃.

Second, while recursing, and each time Lemma 3.15 is invoked to compute an explicit value for some
component of the solution via solving some star-shaped ( ˜̃T, ˜̃B, ˜̃α,

˜̃
β, ˜̃γ)-problem, the rate of change

of this component with t, is a function of ˜̃α and ˜̃γ only. We can see this from (13).

Hence, the rate of change with t of the solution of the (T,B, α, β, γ)-problem does not depend on β.
So we can assume β = 0.

Proof of Theorem 3.19. Correctness: The correctness of Algorithm 3 follows from the correctness
of Algorithm 2.

Run-time and memory: We can prune each Tw in O(|Tw|) steps and O(1) memory using DFS. In
particular, once we reach a leaf of Tw that is free, i.e., not in Bw, and as DFS travels back up the
tree, we can prune from Tw all the nodes that are free. By Theorem 3.17, the number of steps and
memory needed to completely finish line 4 is O(|Tw|). The same is true to complete line 5. Hence,
the number of steps and memory required to execute the for-loop is O(

∑
w |Tw|) = O(|T |) = O(q).

Finally, by Theorem 3.12, L′′ can be computed from Z ′∗ in O(q) steps using O(1) memory.

F Details of the ADMM and the PGD algorithms in Section 5

Here we explain the details of our implementations of the Alternating Direction Method of Multipliers
(ADMM) and the Projected Gradient Descent (PGD) methods, applied to our problem.
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F.1 ADMM

F.1.1 ADMM for the primal problem

We start by putting our initial optimization problem (3) into the following equivalent form:

min
M∈Rq

{f(M) =
1

2
‖F − UM‖2}+ g(M), (44)

where g(M) is the indicator function imposing the constraints on M :

g(M) :=

{
0, M ≥ 0,M>1 = 1,

+∞, otherwise.
(45)

In this formulation, our target function is a sum of two terms. We now proceed with the standard
ADMM procedure, utilizing the splitting f , g. Our ADMM scheme iterates on the following variables
M,M1,M2, u1, u2,∈ Rq. M1 and M2 are primal variables, M is a consensus variable, and u1 and
u2 are dual variables. It has tunning parameters α, ρ ∈ R.

First, we evaluate the proximal map associated with the first term

M1 ← arg min
S∈Rq

1

2
‖F − US‖2 +

ρ

2
‖S −M + u1‖2, (46)

where S is a dummy variable. This map can be evaluated in closed form,

M1 = (ρI + U>U)−1(ρM − ρu1 + U>F ). (47)

Second, we evaluate the proximal map associated with the second term

M2 ← arg min
S∈Rq

g(S) +
ρ

2
‖S −M + u2‖2, (48)

where S is again a dummy variable. This map is precisely the projection onto the simplex, which
has been extensively studied in the literature; there are many fast algorithms that solve this problem
exactly. We implemented the algorithm proposed in [16].

Lastly, we perform the rest of the standard ADMM updates:

M ← 1

2
(M1 + u1 +M2 + u2),

u1 ← u1 + α(M1 −M),

u2 ← u2 + α(M2 −M).

(49)

We repeat the above steps until a satisfactory precision is reached, and read off the final solution from
the variable M .

F.1.2 ADMM for the dual problem

We now apply ADMM to the dual problem (4). We start by incorporating the constraints into the
target function to rewrite (4) as

min
Z,t
{f(t) = t}+ {h(Z) =

1

2
‖(U>)−1Z‖2}+ g(t, Z), (50)

where

g(t, Z) :=

{
0, t1− Z ≥ N,
+∞, otherwise,

(51)

is the indicator function imposing the constraints on t, Z. ADMM now splits the problem into three
parts, each associated to one of the functions f, g and h.

Our ADMM scheme will iterate on the following variables Z,XZ , XgZ , uZ , ugZ ∈ Rq, and
t,Xt, Xgt, ut, ugt ∈ R. The variables XZ , XgZ , Xt, Xgt are primal variables, t, Z are consensus
variables, and uZ , ugZ , ut, ugt are dual variables. It has tunning parameters α, ρ ∈ R.
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First, we evaluate the proximal map for the first term

XZ ← arg min
S∈Rq

1

2
‖(U>)−1S‖2 +

ρ

2
‖S − Z + uZ‖2, (52)

where S is a dummy variable. This map can be evaluated using an closed form formula:

XZ = (ρI + U−1(U−1)>)−1ρ(Z − uZ). (53)

Next, we evaluate the proximal map for the second term

Xt ← arg min
S∈R

S +
ρ

2
(S − t+ ut)

2, (54)

where S is a dummy variable. Again, this can be solved straightforwardly:

Xt =
ρt− ρut − 1

ρ
. (55)

We then evaluate the proximal map for the third term, which involves the constraints

(XgZ , Xgt)← arg min
S∈Rq,St∈R

g(S, St) +
ρ

2
‖(S, St)

− (Z − ugZ , t− ugt)‖2, (56)
where S, St are dummy variables. This problem is a projection onto the polyhedron defined by the
constraints, t1− Z ≥ N , in Rq+1. We developed an algorithm that solves this problem exactly in
O(q log q) steps. This is discussed in Section F.3.

What is left to be done is the following part of the ADMM:

Z ← 1

2
(XZ + uZ +XgZ + ugZ),

uZ ← uZ + α(XZ − Z),

ugZ ← ugZ + α(XgZ − Z),

t← 1

2
(Xt + ut +Xgt + ugt),

ut ← ut + α(Xt − t),
ugt ← ugt + α(Xgt − t).

(57)

We repeat the above steps until a satisfactory precision is reached, and read off the final solution from
the variables t and Z.

F.2 PGD

F.2.1 PGD for the primal problem

Implementing PGD is rather straightforward. For the initial problem (3), we simply do the following
update:

M ← Proj-onto-Simplex(M + αU>(F − UM)), (58)
where Proj-onto-Simplex() refers to projection onto the simplex, for which we implemented the
algorithm proposed in [16]. α ∈ R is the step size, a tuning parameter. We perform this update
repeatedly until a satisfactory precision is reached.

F.2.2 PGD for the dual problem

For the dual problem (4) , the updates we need are

Z ← Z − αU−1(U−1)>Z,

t← t− α,
(Z, t)← Proj-onto-Polyhedron((Z, t)),

(59)

where Proj-onto-Polyhedron() refers to projection onto the polyhedron defined by t1− Z ≥ N in
Rq+1, while α ∈ R is the step size. This is explicitly explained in F.3. Again, we perform these
updates repeatedly until a satisfactory precision is reached, and tune the parameters to achieve the
best possible performance.
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F.3 Projection onto the polyhedron t1− Z ≥ N

We would like to solve the following optimization problem:

arg min
Z∈Rq,t∈R

1

2
‖(Z, t)− (A,B)‖2, (60)

subject to t1− Z ≥ N, (61)

which is the problem of projection onto the polyhedron t1− Z ≥ N in Rq+1. The Lagrangian of
this optimization problem is

L =
1

2
‖(Z, t)− (A,B)‖2 + λ>(Z +N − t1), (62)

where λ ∈ Rq is the Lagrange multiplier. We solve problem (60) by solving the dual problem
maxλ≥0 minZ,t L.

We first solve the minimization over variables Z and t. It is straightforward to find the closed form
solutions:

Z∗ = A− λ, t∗ = B + 1>λ. (63)
Using these expressions, we can rewrite the Lagrangian as

L = −1

2
λ>(I + 11>)λ+R>λ, (64)

where R = A+N −B1.

Now our goal becomes solving the following optimization problem:

arg min
1

2
λ>(I + 11>)λ−R>λ, (65)

subject to λ ≥ 0. (66)

The KKT conditions for (65) are

λi + 1>λ−Ri − si = 0, λi ≥ 0, si ≥ 0, λisi = 0, i = 1, .., q, (67)

where si are Lagrange multipliers associated with the constraint λ ≥ 0.

We proceed with sorting the vector R first, and maintain a map f : {1, 2, ..., q} → {1, 2, ..., q} that
maps the sorted indices back to the unsorted indices of R. Let us call the sorted R by R̃. Then, from
the above KKT conditions, it is straightforward to derive the following expression for λi:

λi =

{
R̃i − 1>λ, i ≥ τ,
0, i < τ,

i = 1, 2, ..., q (68)

where
τ = min{i | R̃i − 1>λ ≥ 0}. (69)

Then it follows that

1>λ =

q∑

i=τ

(R̃i − 1>λ) =
1

2 + q − τ

q∑

i=τ

R̃i, (70)

and hence we have that

c(τ) := R̃τ − 1>λ = R̃τ −
1

2 + q − i

q∑

j=τ

R̃j . (71)

According to (69), to find τ , we only need to find the smallest value of i that makes c(i) non negative.
That is, τ = min{i | c(i) ≥ 0}.
Therefore, by sorting the components ofR from small to large, and checking c(i) for each component,
from large i to small i, we can obtain the desired index τ . Combining equations (68) and (70) with
τ , we find a solution that equals λ∗, the solution to problem (65), apart from a permutation of its
components. We then use our index map f to undo the sorting of the components introduced by
sorting R.

Finally, by plugging λ∗ back into equation (63), we obtain the desired solution to our problem (60).
The whole projection procedure can be done in O(q log q), the slowest step being the sorting of R.
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G More results using our algorithm

In this section, we use our fast projection algorithm to infer phylogenetic trees from frequency of
mutation data.

The idea is simple. We scan all possible trees, and, for each tree T , we project F̂ into a PPM for this
T using our fast projection algorithm. This gives us a projected F and M such that F = UM , the
columns of M are in the probability simplex, and ‖F̂ − F‖ is small. Then, we return the tree whose
projection yields the smallest ‖F̂ − F‖. Since all of these projections can be done in parallel, we
assign the projection for different subsets of the set of all possible trees to different GPU cores. Since
we are performing an exhaustive search over all possible trees, we can only infer small trees. As
such, when dealing with real-size data, similar to several existing tools, we first cluster the rows of F̂ ,
and produce an “effective” F̂ with a small number of rows. We infer a tree on this reduced input.
Each node in our tree is thus associated with multiple mutated positions in the genome, and multiple
mutants, depending on the clustering. We cluster the rows of F̂ using k-means, just like in [6]. We
decide on the numbers of clusters, and hence tree size, based on the same BIC procedure as in [6]. It
is possible that other pre-clustering, and tree-size-selection strategies, yield better results. We call the
resulting tool EXACT.

We note that it is not our goal to show that the PPM is adequate to extract phylogenetic trees from
data. This adequacy, and its limits, are well documented in well-cited biology papers. Indeed, several
papers provide open-source tools based on the PPM, and show their tools’ good performance on data
containing the frequencies of mutation per position in different samples, F̂ in our paper. A few tools
are PhyloSub [5], AncesTree [3], CITUP [6], PhyloWGS [14], Canopy [34], SPRUCE [35], rec-BTP
[36], and LICHeE [7]. These papers also discuss the limitations of the PPM regarding inferring
evolutionary trees, and others propose extensions to the PPM to capture more complex phenomena,
see e.g., [37].

It is important to further distinguish the focus of our paper from the focus of the papers cited in the
paragraph above. In this paper, we start from the fact that the PPM is already being used to infer
trees from F̂ , and with substantiated success. However, all of the existing methods are heuristics,
leaving room for improvement. We identify one subproblem that, if solved very fast, allows us to do
exact PPM-based tree inference for problems of relevant biological sizes. It is this subproblem, a
projection problem in Eq. (3), that is our focus. We introduce the first non-iterative algorithm to
solve this projection problem, and show that it is 74× faster than different optimally-tuned iterative
methods. We are also the first to show that a full-exact-enumeration approach to inferring U and M
from F̂ is possible, in our case, using a GPU and our algorithm to compute and compare the cost of
all the possible trees that might explain the data F̂ . EXACT often outperforms the above tools, none
of which does exact inference. Our paper is not about EXACT, whose development challenges and
significance for biology go beyond solving our projection problem, and which is the focus of our
future work.

Despite this difference in purpose, in this section we compare the performance of inferring trees from
a full exact search over the space of all possible PPM models with the performance of a few existing
algorithms. In Figure 5, we compare EXACT, PhyloWGS, CITUP and AncesTree on recovering the
correct ancestry relations on biological datasets also used by [3]. A total of 30 different datasets [38],
i.e., F̂ , were tested. We use the default parameters in all of the algorithms tested.
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x-axis: fraction of misidentified ancestral relations for our method v.s. others: a random guess would give a value of 0.75  

EXACT (our method) 
Mean: 0.13 
Std: 0.11 
Mean runtime: 0.89s 

PhyloWGS 
Mean: 0.15 
Std: 0.10 
Mean runtime: 1.71h 

Ancestree 
Mean: 0.34 
Std: 0.12 
Mean runtime: 2.95s 

CITUP 
Mean: 0.54 
Std: 0.17 
Mean runtime: 2.0h 

Figure 5: Comparison of different phylogenetic tree inference algorithms.
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In each test, and for every pair of mutations i and j, we use the tree output by each tool to determine
if (a) i is an ancestor of j or if j is an ancestor of i, (b) if i and j are in the same node, (c) if either i
or j are missing in the tree, or, otherwise, (d) if i and j are incomparable. We give these four possible
ancestral relations, the following names: ancestral, clustered, missing, and incomparable. A random
guess correctly identifies 25% of the ancestral categories, on average. If the fraction of misidentified
relations is 0, the output tree equals the ground-truth tree. All methods do better than random guesses.

For example, in Figure 6, according to EXACT, mutation 63, at the root, is an ancestor of mutation
57, at node 3. However, according to the ground truth, in Figure 6, they belong to the same node.
So, as far as comparing 63 with 57 goes, EXACT makes a mistake. As another example, according
tp EXACT, mutations 91 and 55 are incomparable, while according to the ground truth, 91 is a
descendent of 55. Hence, as far as comparing 91 with 55 goes, EXACT makes another mistake.
The fraction of errors, per ancestral relation error type, that each of these tools makes is: EXACT
= {23%, 10%, 0%, 13%}; PhyloWGS = {3%, 2%, 0%, 1%}; AncesTree = {54%, 16%, 95%, 25%};
CITUP = {27%, 13%, 0%, 21%}.
In our experiments, EXACT performs, on average, better than the other three methods. PhyloWGS
performs close to EXACT, however, it has a much longer run time. Although AncesTree does fairly
well in terms of accuracy, we observe that it often returns trees with the same topology, a star-shaped
tree. The other methods, produce trees whose topology seems to be more strongly linked to the input
data. Finally, AncesTree’s inferred tree does not cover all of the existing mutations. This behaviour is
expected, as, by construction, AncesTree tries to find the largest tree that can be explained with the
PPM. See Figure 6, and Figure 7, for an example of the output produced by different algorithms, and
the corresponding ground truth.
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Figure 6: Tree reconstructed by different algorithms for the first file in the folder [38]. AncesTree often outputs
star-shaped trees. The small numbers listed next to each node represent mutations. Mutations indexed by the
same number in different trees are the same real mutation. The root of each tree is circled in thick red. Nodes
are labeled by numbers, and these labels are assigned automatically by each tool. Labels of different trees are
incomparable.

We end this section by discussing a few extra properties that distinguished an approach like EXACT
from the existing tools. Because our algorithm’s speed allows a complete enumeration of all of the
trees, EXACT has two unique properties. First, EXACT can exactly solve

min
U∈U
J (C(U)) +Q(U), (72)

where U encodes ancestral relations, C(U) is the fitness cost as defined in our paper, J is an arbitrary,
fast-to-compute, 1D scaling function, andQ(U) is an arbitrary, fast-to-compute, tree-topology penalty
function. No other tool has this flexibility. Second, EXACT can find the k trees with the smallest
objective value in (72). A few existing tools can output multiple trees, but only when these all have the
same “heuristically-optimal” objective value. This feature is very important because, given that the
input data is noisy, and the number of samples is often small, it allows, e.g., one to give a confidence
score for the ancestry relations in the output tree. Furthermore, experiments show that the ground-
truth tree can often be found among these k best trees. Hence, using other biological principles, the
ground-truth tree can often be identified from this set. Outputting just “heuristically-optimal” trees
prevents this finding.
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Ground Truth

Figure 7: Ground truth tree for the input file that generated Figure 6. The small numbers listed next to each
node represent mutations. Mutations indexed by the same number in different trees are the same real mutation.
The root of each tree is circled in thick red. Nodes are labeled by numbers, and these labels are assigned
automatically by each tool. Labels of different trees are incomparable.
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