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Abstract

The time to converge to the steady state of a finite Markov chain can be greatly reduced by

a lifting operation, which creates a new Markov chain on an expanded state space. For a class

of quadratic objectives, we show an analogous behavior where a distributed ADMM algorithm

can be seen as a lifting of Gradient Descent algorithm. This provides a deep insight for its faster

convergence rate under optimal parameter tuning. We conjecture that this gain is always present,

as opposed to the lifting of a Markov chain which sometimes only provides a marginal speedup.
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I. INTRODUCTION

Let M and M̂ be two finite Markov chains with states V and V̂ , of sizes |V| < |V̂|, and
with transition matrices M and M̂ , respectively. Let their stationary distributions be ⇡ and

⇡̂. In some cases it is possible to use M̂ to sample from the stationary distribution of M.

A formal set of conditions under which this happen is known as lifting. We say that M̂ is

a lifting of M if there is a row stochastic matrix S 2 R|ˆV|⇥|V| with elements S

ij

2 {0, 1}
and a single nonvanishing element per line, where 1|V| = S

>
1|ˆV|, and 1

n

is the all-ones

n-dimensional vector, such that

⇡ = S

>
⇡̂, D

⇡

M = S

>
D

ˆ

⇡

M̂S. (1)

We denote S

> the transpose of S, and for any vector v 2 Rn, D

v

= diag(v
1

, . . . , v

n

).

Intuitively, M̂ contains copies of the states of M and transition probabilities between the

extended sates V̂ such that it is possible to collapse M̂ onto M. This is the meaning of

relation (1). See Fig. 1 for an illustration. (We refer to [1] for more details on Markov chain

lifting.)

The mixing time H is a measure of the time it takes for the distribution of a Markov

chain M to approach stationarity. We follow the definitions of [1] but, up to multiplicative

factors and slightly loser bounds, the reader can think of

H = min{t : max
{i,p0}

|pt
i

� ⇡

i

| < 1/4}, (2)

where p

t

i

is the probability of being on state i after t steps, starting from the initial distri-

bution p

0. Lifting is particularly useful when the mixing time Ĥ of the lifted chain is much

smaller than H. There are several examples where Ĥ ⇡ C

pH, for some constant C 2 (0, 1)

which depends only on ⇡. However, there is a limit on how much speedup can be achieved.

If M is irreducible, then Ĥ � C

pH. If M and M̂ are reversible, then the limitation is even

stronger, Ĥ � CH.

Consider the undirected and connected graph G = (V , E), with vertex set V and edge set

E . Let z 2 R|V| with components z
i

, and consider the quadratic problem

min
z2R|V|

n

f(z) =
1

2

X

(i,j)2E
q

ij

(z
i

� z

j

)2
o

. (3)

We also write q

ij

= q

e

for e = (i, j) 2 E . There is a connection between solving (3)

by Gradient Descent (GD) algorithm and the evolution of a Markov chain. To see this,
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FIG. 1. The base Markov chain M over the cycle graph C

4

and its lifted Markov chain M̂ with

duplicate states. Each state in V (green nodes) is expanded into two states in V̂ (blue and red

nodes above each other).

consider q
e

= 1 for simplicity. The GD iteration with step-size ↵ > 0 is given by

z

t+1 = (I � ↵rf) zt = (I � ↵D

d

(I �W )) zt (4)

where W = D

�1

d

A is the transition matrix of a random walk on G, A is the adjacency matrix,

and D

d

is the degree matrix, where d = diag(d
1

, . . . , d|V|).

This connection is specially clear for d-regular graphs. Choosing ↵ = 1/d, equation (4)

simplifies to z

t+1 = Wz

t. In particular, the convergence rate of GD is determined by the

spectrum of W , which is connected to the mixing time of M. More precisely, when W is

irreducible and aperiodic, and denoting �
2

(W ) its second largest eigenvalue in absolute value,

the mixing time of the Markov chain and the convergence time of GD are both equal to

H =
C

log(1/|�
2

|) ⇡ C

1� |�
2

| (5)

where the constant C comes from the tolerance error, which in (2) is 1/4. In the above

approximation we assumed �

2

⇡ 1. Therefore, at least for GD, we can use the theory of

Markov chains to analyze the convergence rate when solving optimization problems. For

this example, and whenever there is linear convergence, the convergence rate ⌧ and the

convergence time H are related by ⌧

H = ⇥(1). For an introduction on Markov chains,

mixing times, and transition matrix eigenvalues, we refer the reader to [2].

The main goal of this paper is to extend the above connection to the over-relaxed Alter-

nating Direction Method of Multipliers (ADMM) algorithm, and the concept of lifting will

play an important role. Specifically, for problem (3), we show that a distributed implemen-

tation of over-relaxed ADMM can be seen as a lifting of GD, in the same way that M̂ is a

lifting of the Markov chain M. More precisely, there is a matrix M

A

with stationary vector

3
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FIG. 2. GD is the analogue of a Markov chain, while distributed ADMM is the analogue of a

lifted version of this Markov chain, which mixes faster.

v

A

associated to distributed ADMM, and a matrix M

G

with stationary vector v
G

associated

to GD, such that relation (1) is satisfied. This duality is summarized in Fig. 2. In some

cases, M
A

might have a few negative entries preventing it from being the transition matrix

of a Markov chain. However, it always satisfies all the other properties of Markov matrices.

As explained in the example preceding (5), the convergence time of an algorithm can be

related to the mixing time of a Markov chain. Let H
A

be the convergence time of ADMM,

and H
G

the convergence time of GD. The lifting relation between both algorithms strongly

suggest that, for problem (3) and optimally tuned parameters, ADMM is always faster than

GD. Since lifting can speed mixing times of Markov chains up to a square root factor, we

conjecture that the optimal convergence times H?

A

and H?

G

are related as

H⇤
A

 C

pH⇤
G

, (6)

where C > 0 is a universal constant. Moreover, we conjecture that (6) holds for any

connected graph G. Note that (6) is much stronger than the analogous relation for lifted of

Markov chains, where for some graphs, e.g. with low conductance, the gain is marginal.

The outline of this paper is the following. After mentioning related works in Section II,

we state our main results in Section III, which shows that distributed implementations of

over-relaxed ADMM and GD obey the lifting relation (1). The proofs can be found in the

Appendix. In Section IV we support conjecture (6) with numerical evidence. We present

our final remarks in Section V.

II. RELATED WORK AND AN OPEN PROBLEM

We state conjecture (6) for the relatively simple problem (3), but, to the best of our

knowledge, it cannot be resolved through the existing literature. We compare the exact
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asymptotic convergence rates after optimal tuning of ADMM and GD, while the majority

of previous papers focus on upper bounding the global convergence rate of ADMM and, at

best, optimize such an upper bound.

Furthermore, to obtain linear convergence, strong convexity is usually assumed [3], which

does not hold for problem (3). Most results not requiring strong convexity focus on the

convergence rate of the objective function, as opposed to this paper which focus on the

convergence rate of the variables; see [4] for example.

Few papers consider a consensus problem with an objective function di↵erent than (3).

For instance, [5] considers f(z) =
P

i2V
P kz

i

� c

i

k2, subject to z

i

= z

j

if (i, j) 2 E , where
c

i

> 0 are constants. This problem is strongly convex and does not reduce to (3), and

vice-versa. Other branch of research consider f(z) =
P

i

f

i

(z) with ADMM iterations that

are agnostic to whether or not f
i

(z) depends on a subset of the components of z; see [6] and

references therein. These are in contrast with our setting where decentralized ADMM is a

message-passing algorithm [7], and the messages between agents i and j are only associated

to the variables shared by functions f
i

and f

j

.

For quadratic problems, there are explicit results on the convergence rate and optimal

parameters of ADMM [8–10]. However, their assumptions do not hold for the non strongly

convex distributed problem considered in this paper. Moreover, there are very few results

comparing the optimal convergence rate of ADMM as a function of the optimal convergence

rate of GD. For a centralized setting, an explicit comparison is provided in [11], but it

assumes strong convexity.

Finally, and most importantly, there is no prior result connecting GD and ADMM to lifted

Markov chains. Lifted Markov chains were previously employed to speedup convergence time

of distributed averaging and gossip algorithms [12–14], but these do not involve ADMM

algorithm.

III. ADMM AS A LIFTING OF GRADIENT DESCENT

We now show that the lifting relation (1) holds when distributed implementations of

over-relaxed ADMM and GD are applied to problem (3) defined over the graph G = (V , E).
Let us introduce the extended set of variables x 2 R| ˆE|, where

Ê = {(e, i) : e 2 E , i 2 e, and i 2 V}. (7)
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Note that |Ê | = 2|E|. Each component of x is indexed by a pair (e, i) 2 Ê . For simplicity

we denote e

i

= (e, i). We can now write (3) as

min
x,z

n

f(x) =
1

2

X

e=(i,j)2E
q

e

(x
ei � x

ej)
2

o

(8)

subject to x

ei = z

i

, x
ej = z

j

, for all e = (i, j) 2 E . The new variables are defined according

to the following diagram:

Qe

xei xeje = (i, j)
zi zj zi zj

Notice that we can also write f(x) = 1

2

x

>
Qx where Q is block diagonal, one block per

edge e = (i, j), in the form Q

e

= q

e

�

+1 �1

�1 +1

�

. Let us define the matrix S 2 R| ˆE|⇥|V| with

components

S

ei,i = S

ej ,j =

8

>

<

>

:

1 if e = (i, j) 2 E ,
0 otherwise.

(9)

The distributed over-relaxed ADMM is a first order method that operates on five vari-

ables: x and z defined above, and also u, m and n introduced below. It depends on the

relaxation parameter � 2 (0, 2), and several penalty parameters ⇢ 2 R| ˆE|. The components

of ⇢ are ⇢

ei > 0 for e
i

2 Ê ; see [7, 11] and also [15] for details on multiple ⇢’s. We can now

write ADMM iterations as

x

t+1 = An

t

,

m

t+1 = �x

t+1 + u

t

,

s

t+1 = (1� �)st +Bm

t+1

,

u

t+1 = u

t + �x

t+1 + (1� �)st � s

t+1

,

n

t+1 = s

t+1 � u

t+1

,

(10)

where s

t = Sz

t, B = S(S>
D

⇢

S)�1

S

>
D

⇢

, and A = (I + D

�1

⇢

Q)�1. The next result shows

that these iterations are equivalent to a linear system in |Ê | dimensions. (The proofs of the

following results are in the Appendix.)

Theorem 1 (Linear Evolution of ADMM). Iterations (10) are equivalent to

n

t+1 = T

A

n

t

, T

A

= I � �(A+B � 2BA), (11)

with s

t = Bn

t and u

t = �(I � B)nt. All the variables of ADMM depend only on n

t.

6



We can also write GD update z

t+1 = (I � ↵rf)zt to problem (3) as

z

t+1 = T

G

z

t

, T

G

= I � ↵S

>
QS. (12)

In the following, we establish lifting relations between distributed ADMM and GD in

terms of matrices M
A

and M

G

, which are very closely related but not necessarily equal to

T

A

and T

G

. They are defined as

M

G

= (I �D

G

)�1(T
G

�D

G

), (13)

M

A

= (I �D

A

)�1(T
A

�D

A

), (14)

where D

G

6= I and D

A

6= I are, for the moment, arbitrary diagonal matrices. Let us also

introduce the vectors

v

G

= (I �D

G

)1, (15)

v

A

= (I �D

A

)⇢. (16)

As shown below, these matrices and vectors satisfy relation (1). Moreover, M
G

can be

interpreted as a probability transition matrix, and the rows of M
A

sum up to one. We only

lack the strict non-negativity of M
A

, which in general is not a probability transition matrix.

Thus, in general, we do not have a lifting between Markov chains, however, we still have

lifting in the sense that M
A

can be collapsed onto M

G

according to (1).

Theorem 2. For (D
G

)
ii

< 1 and su�ciently small ↵, M
G

in (13) is a doubly stochastic

matrix.

Lemma 3. The rows of M
G

and M

A

sum up to one, i.e. M
G

1 = 1 and M

A

1 = 1. Moreover,

v

>
G

M

G

= v

>
G

and v

>
A

M

A

= v

>
A

. These properties are shared with Markov matrices.

Theorem 4 (ADMM as a Lifting of GD). M

A

and M

G

defined in (13) and (14) satisfy

relation (1), namely,

v

G

= S

>
v

A

, D

vGMG

= S

>
D

vAMA

S, (17)

provided D

G

, D
A

, ↵, �, and ⇢ are related according to

S

>
D

⇢

(I �D

A

)S = I �D

G

, (18)

↵ =
� q

e

⇢

ei,i ⇢ej ,j

⇢

ei,i ⇢ej ,j + q

e

�

⇢

ei,i + ⇢

ej ,j

�

, (19)

for all e = (i, j) 2 E . Equation (19) restricts the components of ⇢, and (17) is an equation

for D

A

and D

G

.
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Theorem 5 (Negative Probabilities). There exists a graph G such that, for any diagonal

matrix D

A

, ⇢ and �, the matrix M

A

has at least one negative entry. Thus, in general, M
A

is not a probability transition matrix.

For concreteness, let us consider some explicit examples illustrating Theorem 4.

Regular Graphs. Let us consider the solution to equations (18) and (19) for d-regular

graphs. Fix q

e

= 1 and ⇢ = ⇢1 for simplicity. Equation (18) is satisfied with

D

A

= (1� (⇢|Ê |)�1)I, D

G

= (1� |V|�1)I, (20)

since d|V| = |Ê | = 2|E|, while (19) requires

↵ =
�⇢

2 + ⇢

. (21)

Notice that (D
G

)
ii

< 1 for all i, so choosing � or ⇢ small enough we can make M

G

positive.

Moreover, the components of (15) and (16) are non-negative and sum up to one, i.e. v>
G

1 =

v

>
A

1 = 1, thus these vectors are stationary probability distributions of M
G

and M

A

.

Cycle Graph. Consider solving (3) over the 4-node cycle graph G = C

4

shown in

Fig. 1. By direct computation and upon using (20) we obtain

M

G

=

0

B

B

B

B

B

@

x y 0 y

y x y 0

0 y x y

y 0 y x

1

C

C

C

C

C

A

, M

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

x̂ 0 0 0 0 0 ŷ ẑ

0 x̂ ẑ ŷ 0 0 0 0

ŷ ẑ x̂ 0 0 0 0 0

0 0 0 x̂ ẑ ŷ 0 0

0 0 ŷ ẑ x̂ 0 0 0

0 0 ŷ 0 0 x̂ ẑ ŷ

0 0 0 0 ŷ ẑ x̂ 0

ẑ ŷ 0 0 0 0 0 x̂

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, (22)

where the probabilities of M
G

are given by x = 1� 8↵ and x+2y = 1, and the probabilities

of M
A

are x̂ = 1 � 4�⇢, ŷ = 8�⇢/(2 + ⇢) and x̂ + ŷ + ẑ = 1. The stationary probability

vectors are ⇡ = 1

4

1 and ⇡̂ = 1

8

1. Now (17) holds provided the parameters are related as

(21). Moreover, in this particular case the matrix M

A

is strictly non-negative, thus ADMM

is a lifting of GD in the Markov chain sense.

Based on the above theorems we propose conjecture (6). The convergence rate ⌧ is related

to the convergence time, for instance H ⇠ (1 � ⌧)�1 if ⌧ ⇡ 1. Thus, let ⌧ ?
G

and ⌧

?

A

be the

8



optimal convergence rates of GD and ADMM, respectively. Then, at least for objective (3),

and for any G, we conjecture that there is some universal constant C > 0 such that

1� ⌧

?

A

� C

p

1� ⌧

?

G

. (23)

IV. NUMERICAL EVIDENCE

For many graphs, we observe very few negative entries in M

A

, which can be further

reduced by adjusting the parameters ⇢ and �. Nonetheless, in general, the lack of strict

non-negativity of M
A

prevents us from directly applying the theory of lifted Markov chains

to prove (23). However, there is compelling numerical evidence to (23) as we now show.

Consider a sequence of graphs {G
n

}, where n = |V|, such that ⌧

?

G

! 1 and ⌧

?

A

! 1 as

n ! 1. Denote R
G

(n) = (1 � ⌧

?

G

)�1 and R
A

(n) = (1 � ⌧

?

A

)�1. We look for the smallest

� such that R
A

(n)  CR
G

(n)�, for some C > 0, and all large enough n. If (23) was

false, there would exist sequences {G
n

} for which � > 1/2. For instance, if {G
n

} have low

conductance it is well-known that lifting does not speedup the mixing time and we could

find � = 1.

To numerically find �, we plot

�̂

1

=
logR

A

(n)

logR
G

(n)
and �̂

2

=
R

G

(n)

R
A

(n)

�R
A

(n)

�R
G

(n)
(24)

against n, where �h(n) = h(n + 1) � h(n) for any function h(n). The idea behind this is

very simple. Let f(x) = Cg(x)�, and f, g ! 1 as x ! 1. Then, log f/log g ! � and

also @

x

log f/@
x

log g = (g @
x

f)/(f @

x

g) ! � as x ! 1. Thus, we analyze (24) which are

their discrete analogue. Given a graph G
n

, from (12) and (11) we numerically compute ⌧ =

max
j

{|�
j

(T )| : |�
j

(T )| < 1}. The optimal convergence rates are thus given by ⌧

?

G

= min
↵

⌧

G

and ⌧

?

A

= min{�,⇢} ⌧A, where we consider ⇢ = ⇢1 with ⇢ > 0.

In Fig. 3 we show the three di↵erent graphs considered in the numerical analysis contained

in the respective plots of Fig. 4. We show the values of (24) versus n, and also the curves

logR
A

and logR
G

against n, which for visualization purposes are scaled by the factor �0.03.

In Fig. 4a we see that (6), or equivalently (23), holds for the cycle graph G = C

n

. The same

is true for the periodic grid, or torus grid graph G = T

n

, as shown in Fig. 4b. Surprisingly,

as shown in Fig. 4c, we get the same square root speedup for a barbell graph, whose random

9



(a) (b) (c)

FIG. 3. We consider the following graphs for numerical analysis. (a) Cycle graph, G = C

n

. (b)

Torus or periodic grid graph, G = T

n

= C

p
n

⇥C

p
n

. (c) Barbel graph, obtained by connecting two

complete graphs K
n

by a bridge.

0 500 1000 1500 2000 2500 3000 3500
0.0

0.1

0.2

0.3

0.4

0.5

�̂

1

�̂

2

�0.03 logR
A

�0.03 logR
G

(a)
0 2000 4000 6000 8000 10000

0.0

0.1

0.2

0.3

0.4

0.5

�̂

1

�̂

2

�0.03 logR
A

�0.03 logR
G

(b)
0 50 100 150 200

0.0

0.1

0.2

0.3

0.4

0.5

�̂

1

�̂

2

�0.03 logR
A

�0.03 logR
G

(c)

FIG. 4. Plot of (24) versus n, and also logR
A

and logR
G

versus n, scaled by �0.03 for visualization

purposes only. The sequence of graphs {G
n

} in each plot are of the types indicated in Fig. 3, in

the same respective order. Notice that �̂
1

, �̂

2

 1/2, and �̂

1

and �̂

2

gets very close to 1/2 for large

n. (a) Cycle graph. (b) Torus grid graph. The two green curves occur because odd and even n

behave di↵erently. (c) Barbell graph. A Markov chain over this graph does not speedup via lifting,

however, (23) still holds.

walk is known to not speedup via lifting. We find similar behavior for several other graphs

but we omit these results due to the lack of space.

V. CONCLUSION

For a class of quadratic problems (3) we established a duality between lifted Markov chains

and two important distributed optimization algorithms, GD and over-relaxed ADMM; see

Fig. 2. We proved that precisely the same relation defining lifting of Markov chains (1), is

satisfied between ADMM and GD. This is the content of Theorem 4. Although the lifting

10



relation holds, in general, we cannot guarantee that the matrix M

A

associated to ADMM

is a probability transition matrix, since it might have a few negative entries. Therefore, in

general, Theorem 4 is not a Markov chain lifting, but it is a lifting in a graph theoretical

sense.

These negative entries actually make this parallel even more interesting since (6), or

equivalently (23), do not violate theorems of lifted Markov chains where the square root

improvement is a lower bound, thus the best possible, and in (6) it is an upper bound.

For graphs with low conductance, the speedup given by Markov chain lifting is negligible.

On the other hand, the lifting between ADMM and GD seems to always give the best

possible speedup achieved by Markov chains, even for graphs with low conductance. This is

numerically confirmed in Fig. 4c.

Due to the strong analogy with lifted Markov chains and numerical evidence, we con-

jectured the upper bound (6), or (23), which was well supported numerically. However, its

formal explanation remains open.

Finally, although we considered a simple class of quadratic objectives, when close to the

minimum the leading order term of more general convex functions is usually quadratic. In

the cases where the dominant term is close to the form (3), the results presented in this

paper should still hold. An attempt to prove our conjecture (23) is under investigation1.

ACKNOWLEDGMENT

We would like to thank Andrea Montanari for his guidance and useful discussions. We also

would like to thank the anonymous referees for careful reading of the manuscript and useful

suggestions. This work was partially supported by an NIH/NIAID grant U01AI124302.

Appendix A: Proof of Main Results

In the main part of the paper we introduced the extended edge set Ê which essentially

duplicates the edges of the original graph, |Ê | = 2|E|. This is the shortest route to state our

results concisely but it complicates the notation in the following proofs. Therefore, we first

introduce the notion of a factor graph for problem (3).

1 Note added: soon after the acceptance of this paper, we found a proof of (23) for a class of quadratic

problems. These results will be presented elsewhere.
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FIG. 5. Example of a factor graph Ḡ for problem (3), and (8), where G is the complete graph K

4

with one edge removed.

1. Factor Graph

The factor graph Ḡ = (F̄ , V̄ , Ē) for problem (3) is a bipartite graph that summarizes how

di↵erent variables are shared across di↵erent terms in the objective. This is illustrated in

Fig. 5, where for this case (3) is given by

f(z) = q

1(z
1

� z

2

)2 + q

2(z
2

� z

3

)2 + q

3(z
3

� z

4

)2

+ q

4(z
4

� z

1

)2 + q

5(z
4

� z

2

)2
(A1)

while (8) is given by

f(x) = q

1(x
12

� x

11

)2 + q

2(x
23

� x

22

)2

+ q

3(x
34

� x

33

)2 + q

4(x
41

� x

44

)2 + q

5(x
45

� x

52

)2
(A2)

where x

11

= x

41

, x
12

= x

22

, x
23

= x

33

, and x

44

= x

34

.

The factor graph Ḡ has two sets of vertices, F̄ and V̄ . The circles in Fig. 5 represent the

nodes in V̄ = V , and the squares represent the nodes in F̄ = E , where G = (V , E) is the

original graph. Note that each a 2 F̄ is uniquely associated to one edge e 2 E , and uniquely

associated to one term in the sum of the objective. In equation (8) we referred to each term

as f

e

= q

e

(x
ei � x

ej)
2, but now we refer to it by f

a

. With a slightly abuse of notation we

indiscriminately write a 2 F̄ or f
a

2 F̄ . Each node b 2 V̄ is uniquely associated to one node

i 2 V , and uniquely associated to one component of z. Before we referred to this variable

by z

i

, but now we refer to it by z

b

, and indiscriminately write b 2 F̄ or z
b

2 F̄ . Each edge

12



(a, b) 2 Ē must have a 2 F̄ and b 2 V̄ , and its existence implies that the function f

a

depends

on variable z

b

. Moreover, each edge (a, b) 2 Ē is also uniquely associated to one component

of x in the equivalent formulation (8). In particular, if a 2 Ē is associated to e 2 E , and
b 2 V̄ is associated to i 2 V , then (a, b) 2 Ē is associated to x

ei . Here, we denote xei by x

ab

.

Thus, we can think of Ē as being the same as Ê . Another way of thinking of Ē and x is as

follows. If (a, b) 2 Ē then x

ab

= z

b

appears as a constraint in (8).

Let us introduce the neighbor set of a given node in Ḡ. For a 2 F̄ , the independent

variables of f
a

are in the set

N

a

= {b 2 V̄ : (a, b) 2 Ḡ}. (A3)

Analogously, for b 2 V̄ , the functions that depend on z

b

are in the set

N

b

= {a 2 F̄ : (a, b) 2 Ḡ}. (A4)

In other words, N• denotes the neighbors of either circle or square nodes in Ḡ. For a 2 F̄
we define

I

a

= {e 2 Ē : e is incident on a}. (A5)

For b 2 V̄ we define

I

b

= {e 2 Ē : e is incident on b}. (A6)

If we re-write problem (8) using this new notation, which indexes variables by the position

they the take on Ḡ, the objective function takes the form

f(x) =
1

2
x

>
Qx =

1

2

X

a2F
x

>
a

Q

a

x

a

(A7)

where Q 2 R ¯E⇥ ¯E is block diagonal and each block, now indexed by a 2 F̄ , takes the form

Q

a = q

a

�

+1 �1

�1 +1

�

, where q

a

> 0, and x

a

= (x
ab

, x

ac

)> for (a, b) 2 Ē and (a, c) 2 Ē . Here, qa

is the same as q

e

in the main text. We also have the constraints x

ab

= x

a

0
b

= z

b

for each

a, a

0 2 N

b

and b 2 V̄ . The row stochastic matrix S introduced in the ADMM iterations is

now expressed as S 2 R| ¯E|⇥|¯V| and has a single 1 per row such that S

eb

= 1 if and only if

edge e 2 Ē is incident on b 2 V̄ . Notice that S>
S = D

d

is the degree matrix of the original

graph G.
With this notation at hands, we now proceed to the proofs.

13



2. Proof of Theorem 1

Recall that B = S(S>
D

⇢

S)�1

S

>
D

⇢

, thus B

2 = B is a projection operator, and B

? =

I �B its orthogonal complement. Consider updates (10). Substituting x

t+1 and m

t+1 into

the other variables we obtain
0

B

B

B

@

I 0 0

I I 0

�I I I

1

C

C

C

A

0

B

B

B

@

s

t+1

u

t+1

n

t+1

1

C

C

C

A

=

0

B

B

B

@

(1� �)I B �BA

(1� �)I I �A

0 0 0

1

C

C

C

A

0

B

B

B

@

s

t

u

t

n

t

1

C

C

C

A

which can be easily inverted yielding

s

t+1 = (1� �)st +Bu

t + �BAn

t

, (A8)

u

t+1 = B

?
u

t + �B

?
An

t

, (A9)

n

t+1 = (1� �)st + (B � B

?)ut + �(B � B

?)Ant

. (A10)

Note the following important relations:

Bn

t = s

t

, B

?
n

t = �u

t

, (A11)

Bs

t = s

t

, B

?
s

t = 0, (A12)

B

?
u

t = u

t

, Bu

t = 0. (A13)

Equation (A12) is a simple consequence of the definition of B, i.e.

B s

t = S(S>
D

⇢

S)�1(S>
D

⇢

S)zt = s

t

, (A14)

which also implies B?
s

t = 0. Since BB

? = 0, acting with B over (A9) implies Bu

t = 0 for

every t, and also B

?
u

t = u

t, which shows (A13). Now (A11) follows from these facts and

the own definition n

t = s

t � u

t. Finally, applying (A11) on (A10) we obtain n

t+1 = T

A

n

t

where T

A

= I � �(A+B � 2BA).

3. Proof of Theorem 2

Write Q = Q

+ + Q

� where Q

+ is diagonal and has only positive entries, and Q

� only

has o↵-diagonal and negative entries. First, notice that (S>
Q

+

S) is also diagonal. Indeed,

14



for b 2 V̄ and c 2 V̄ , (S>
Q

+

S)
bc

=
P

e2 ¯E Seb

Q

+

ee

S

ec

= �

bc

P

e2Ib Q
+

ee

where � is the Kronecker

delta. By a similar argument, S>
Q

�
S is o↵-diagonal. Hence, if b 6= c we have

(T
G

)
bc

= �↵

X

e2Ib

X

e

02Ic
Q

�
ee

0 � 0. (A15)

Recall that M

G

= (I � D

G

)�1(T
G

� D

G

), where D

G

6= I is diagonal. For M

G

to be non-

negative we first impose that (D
G

)
bb

< 1 for all b 2 V̄ . Then, since the o↵-diagonal elements

of T
G

are automatically positive by (A15), we just need to consider the diagonal elements

of T
G

�D

G

. Thus we require that for every b 2 V̄ ,

1� ↵

X

e2Ib
Q

ee

+ (D
G

)
bb

� 0. (A16)

Denoting Q

max

= max
b2¯V

P

e2Ib Qee

and D

G,min

the smallest element of D
G

, the matrix M

G

will be non-negative provided ↵  (1 +D

G,min

)/Q
max

.

Notice that S1|¯V| = 1| ¯E| and Q1 = 0. Thus S

>
QS1 = 0, implying T

G

1 = 1, and

1

>
T

G

= 1

>. From this we have M

G

1 = 1 and 1

>
M

G

= 1

>, so all the rows and columns of

M

G

sum up to one.

4. Proof of Lemma 3

We proved above that M
G

is a doubly stochastic matrix. Now let us consider M
A

. Recall

the definition of B = S

>(S>
D

⇢

S)�1

S

>
D

⇢

. Note that the action of B on a vector v 2 R| ¯E|

is to take a weighted average of its components, namely, if (a, b) 2 Ē then

(Bv)
ab

=

P

c2Nb
⇢

cb

v

cb

P

c2Nb
⇢

cb

. (A17)

Therefore, B1 = 1. Recall that Q1 = 0, thus A1 = 1, where A = (I + D

�1

⇢

Q)�1, which

implies T
A

1 = 1, and in turn M

A

1 = 1. Now the other relations follow trivially.

5. Proof of Theorem 4

Due to the block diagonal structure of Q it is possible write A explicitly as

A = I � FQ, (A18)
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where F is a block diagonal matrix with |F̄ | blocks. Each block F

a, for a 2 F̄ , is of the

form

F

a =
q

a

⇢

ab

⇢

ac

+ q

a(⇢
ab

+ ⇢

ac

)

0

@

⇢

ac

0

0 ⇢

ab

1

A

, (A19)

where b, c 2 N

a

. Now by the definition of B we have S

>
D

⇢

B = S

>
D

⇢

. Hence,

S

>
D

vAMA

S = S

>
D

⇢

(I �D

A

)S � �S

>
D

⇢

FQS, (A20)

D

vGMG

= (I �D

G

)� ↵S

>
QS. (A21)

Equating the first term of (A20) to the first term of (A21), and also the second terms to

each other, on using (A18) we obtain

S

>
D

⇢

(I �D

A

)S = I �D

G

, (A22)

↵ =
� q

a

⇢

ab

⇢

ac

⇢

ab

⇢

ac

+ q

a(⇢
ab

+ ⇢

bc

)
, (A23)

where (A23) must hold for all a 2 F̄ and b, c 2 N

a

. This gives the second equality in (17)

together with relations (18) and (19). Finally, since diagonal matrices commute, S>
v

A

=

S

>(I �D

A

)D
⇢

S1|¯V| = (I �D

G

)1|¯V| = v

G

, which gives the first relation in (17).

6. Proof of Theorem 5

It su�ces to show one example with at least one negative entry. Let G be the complete

graph K

4

with one edge removed, as shown in Fig. 5. By direct inspection one finds the

following sub-matrix of T
A

:

T

(S) =

0

@

(T
A

)
21

(T
A

)
24

(T
A

)
31

(T
A

)
34

1

A (A24)

whose elements are explicitly given by

(T
A

)
21

= � ⇢11(⇢12�⇢22)

(⇢12+⇢22)(⇢11+⇢12+⇢11⇢12)
, (A25)

(T
A

)
24

= 2�

(⇢12+⇢22)

�

1+⇢

�1
22 +⇢

�1
23

�

, (A26)

(T
A

)
31

= 2�

(⇢12+⇢22)

�

1+⇢

�1
11 +⇢

�1
12

�

, (A27)

(T
A

)
34

= � � ⇢23(⇢12�⇢22)

(⇢12+⇢22)(⇢22+⇢23+⇢22⇢23)
. (A28)
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First notice that subtractingD
A

from T

A

does not a↵ect T (S). Now recall that all components

of ⇢ must be strictly positive. The elements (A25) and (A28) have opposite signs, so one

of them is negative. Since (A26) and (A27) are both positive, one cannot remove the

negative entries of an entire row of T
A

by multiplying T

A

by the diagonal matrix (I�D

A

)�1.

Therefore, M
A

= (I �D

A

)�1(T
A

�D

A

) has at least one negative entry.
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